Hip Hop solutions of the 2N Body problem

Size: px
Start display at page:

Download "Hip Hop solutions of the 2N Body problem"

Transcription

1 Hip Hop solutions of the N Boy poblem Esthe Baabés Depatament Infomàtica i Matemàtica Aplicaa, Univesitat e Giona. Josep Maia Cos Depatament e Matemàtica Aplicaa III, Univesitat Politècnica e Catalunya. Conxita Pinyol Depatament Economia i Històia Econòmica, Univesitat Autònoma e Bacelona. Jaume Sole Depatament Infomàtica i Matemàtica Aplicaa, Univesitat e Giona. Abstact. Hip Hop solutions of the N boy poblem with equal masses ae shown to exist using an analytic continuation agument. These solutions ae close to plana egula N gon elative equilibia with small vetical oscillations. Fo fixe N, an infinity of these solutions ae thee imensional choeogaphies, with all the boies moving along the same close cuve in the inetial fame. Keywos: N-boy poblem, analytic continuation, Hip Hop, Choeogaphies. Intouction The equal mass n boy poblem has ecently attacte much attention thanks to the wok of Chencine an othe authos on the type of obits calle hip-hop solutions, an on the solutions that have eventually been calle choeogaphies. In a hip-hop solution, N boies of equal mass stay fo all time in the vetices of a egula otating anti-pism whose basis, i.e. the egula polygons that efine it, pefom an oscillatoy motion sepaating, eaching a maximum istance, appoaching, cossing each othe, an so on, as sketche in Figue fo N = 3. The N boies can be aange in two goups of N, each goup moving on its plane on a otating egula N gon configuation homogaphic, while the planes ae always pepenicula to the z-axis, oscillate along this axis, an coincie with opposite velocities at egula intevals when they coss the oigin. The othogonal pojection of both N gons on the z = 0 plane is always a egula otating N gon. On the othe han, a choeogaphy is a solution in which n boies move along the same close line in the inetial fame, chasing each othe at equi space intevals of time. It is well known the figue eight choeogaphy in the thee boy poblem, shown by Chencine c 006 Kluwe Acaemic Publishes. Pinte in the Nethelans. hiphop.tex; 6/0/006; 5:44; p.

2 Baabés, Cos, Pinyol, Sole an Montgomey 00 in a most celebate pape. A geat many choeogaphies with n > 3 have been shown numeically to exist by Simo 00. The above esults wee obtaine mostly by means of vaiational methos, which make it possible to fin solutions that o not epen on a small paamete, i.e. fa fom solutions of an integable poblem. See Chencine an Ventuelli, 000, Chencine et al., 00, Chencine an Féjoz, 005, an efeences theein fo etails. In the case of hip hop solutions, the question aises whethe in some simple cases they coul be obtaine though the taitional analytic continuation metho of Poincaé, which woul give families iffeentiable with espect to a paamete of peioic solutions, at least in a otating fame. In this espect, mention shoul be mae of a esult by Meye an Schmit 993 on a simila solution with a lage cental mass an n vey small, equal masses aoun it which was suggeste as a moel fo the baie stuctue of some of Satun s ings. In this pape we show that Poincae s agument of analytic continuation can be use to a vetical oscillations to the cicula motion of N boies of equal mass occupying the vetices of a egula N-gon. In this way, a family of thee-imensional obits, peioic in a otating fame, can be shown to exist. This is a Lyapunov family of obits whose peios ten to the peio of the vetical oscillations of the lineaize system aoun the elative equilibium solution. These solutions wee foun numeically by Davies et al Infinitely many of this solutions ae peioic in the inetial fame, povie that the quantity HN given by 7 oes not vanish, an ae thee imensional choeogaphies, in the sense that all boies move at equi space time intevals along a close twiste cuve in the inetial fame. Some solutions foun in ou aticle may coincie with the genealize hip hop solutions obtaine by Chencine in 00. Teacini an Ventuelli 005 ecently showe the existence of hip hop solutions in the same poblem using vaiational methos, aing vetical vaiations to the plana elative equilibium in oe to euce the value of the action functional. The vaiational appoach oes not epen on any small paamete an yiels global existence, while continuation methos give explicit appoximations to solutions in a small neighbouhoo of the elative equilibium. A pecise compaison of both methos fom a puely analytic point of view woul involve eithe estimating the istance fom the vaiational solutions to the elative equilibium o estimating the size of the neighbouhoo in which the family can be continue, but both questions seem fa fom easy. hiphop.tex; 6/0/006; 5:44; p.

3 Hip Hop solutions of the N Boy poblem Figue. Qualitative epesentation of a Hip-Hop motion in the case of 6 boies. Equations of motion Consie N boies with equal mass m moving une thei mutual gavitational attaction an let i, ṙ i, i =,, N, be thei positions an velocities. The equations of motion of the N boy poblem ae i = Gm N,k i k i ki 3, whee ki = k i. Scaling the time t by Gm t the Lagangian function associate to the poblem becomes L = N i= ṙ i + i<j N i j. As we ae looking fo solutions of the N boy poblem such that all the boies stay fo all time on the vetices of an anti-pism, it will suffice to know the position an velocity of one of the N boies. Given = t, we efine i = R i, ṙ i = R i ṙ, fo i =,, N, whee R is a otation plus a eflection in such a way that all the boies ae on the vetices of an anti-pism. Since in this configuation N of the boies on a plane an the othe N on a paallel plane we can assume, without loss of geneality, that both planes ae pepenicula to the z axis. In this case, the matix R can be witten hiphop.tex; 6/0/006; 5:44; p.3

4 4 Baabés, Cos, Pinyol, Sole as cos π N sin π N 0 R = sin π N cos π N PROPOSITION.,,..., N =, R,..., R N is a solution of the N boy poblem given by if an only if t satisfies the equation N R k I = R k I 3. Poof. Substituting,,..., N =, R,..., R N in we have R i = N j=,j i R j R i R j R i 3 = N j=,j i R i R j i I R j i I 3, fo i =,..., N. Using the fact that R l = R N l, fo l =,..., N, we get = = = i j= i l= N R j i I R j i I 3 + N j=i+ R N l N i I R N l I 3 + R k I R k I 3. l= R j i I R j i I 3 R l I R l I 3 That is, we get the same equation fom the initial N equations. If = x, y, z is the position of the fist boy, then the equations of motion can be witten as the following iffeential system of oe two ẍ = Ux, y, z, ÿ = x Ux, y, z, z = y whee Ux, y, z is the potential function Ux, y, z = N Ux, y, z, 3 z. 4x + y sin kπ N + k z The poblem state by system 3 can be fomulate in Hamiltonian tems by the Hamiltonian function H = p x + p y + p z Ux, y, z, 4 hiphop.tex; 6/0/006; 5:44; p.4

5 Hip Hop solutions of the N Boy poblem 5 whee p x, p y an p z ae the momenta associate to the x, y, z cooinates. Intoucing cylinical cooinates by means of the canonical change x = cos θ, p x = p cos θ p θ sin θ, y = sin θ, p y = p sin θ + p θ cos θ, z =, p z = p, the Hamiltonian 4 becomes H = p + p θ + p N 4 sin kπ N Then the equations of motion fo the fist boy ae. 5 + k ṙ = p, θ = p θ, = p, p = p N θ 3 p θ = 0, p = N 4 sin kπ N sin kπ N + k 3/, k 4 sin kπ N + k 3/. 6 Since p θ = 0, the angula momentum p θ = Θ is constant an can be calculate fom the initial conitions. Then, once is obtaine, we will get θ fom the secon equation in Symmetic peioic solutions of the euce poblem We call euce poblem the poblem given by consieing in 6 only the equations fo the vaiables an, an complete poblem the whole set of equations 6. Ou aim is to fin peioic solutions of this euce poblem. This solutions will be, in geneal, quasi peioic solutions of the complete poblem. Consie the poblem pose by the Hamiltonian 5 fo a fixe value of the angula momentum p θ = Θ. The equations of motion of the hiphop.tex; 6/0/006; 5:44; p.5

6 6 Baabés, Cos, Pinyol, Sole euce poblem ae ṙ = p, = p, p = Θ N 3 p = N sin kπ N 4 sin kπ N + k 3/, k + k 3/, 4 sin kπ N which has a unique equilibium point,, p, p = a, 0, 0, 0, whee a = Θ /KN an is N KN = 4 sin kπ N The matix of the lineaize equations aoun this equilibium point whee an λ M = = 3Θ a 4 λ = 6a 3 S N = λ λ K N a 3 N = K8 N Θ 6, 7. 8, k = S N K6 N sin 3 kπ Θ 6, N N k. 9 sin 3 kπ N The matix M has two pais of imaginay eigenvalues ±iλ an ±iλ. By Lyapunov s cente theoem, Meye an Hall, 99, thee exist two one paamete families of peioic solutions, emanating fom the equilibium point povie that λ /λ is not a ational numbe. That is, it suffices to ensue that λ λ = 4 N N k sin 3 kπ N sin kπ N 0 hiphop.tex; 6/0/006; 5:44; p.6

7 Hip Hop solutions of the N Boy poblem 7 Table I. Values of λ /λ iffeent values of N N λ /λ fo is not the squae of a ational numbe. A numbe of values of this expession fo iffeent values of N ae shown on Table I. The = p = 0 plane is invaiant an the -moe solutions lie in this plane with peios appoaching π/λ. These ae actually the homogaphic solutions nea the elative equilibium. The -moe solutions ae thee imensional obits whose peios ten to π/λ an this is the family we ae inteeste in. The equations of motion of the euce poblem 7 ae invaiant by the symmeties S : t,,, p, p t,,, p, p, S : t,,, p, p t,,, p, p, an we have the following well known poposition. PROPOSITION. Let qt = t, t, p t, p t be a solution of the equations 7. If qt satisfies that 0, p 0 = 0, 0 an p T, p T = 0, 0, then qt is a oubly symmetic peioic solution of peio 4T. We will show the existence of oubly symmetic peioic obits in system 7. Let q 0 = 0, 0, p 0, p 0 = 0, 0, p 0, 0. The solution of system 7 with these initial conitions is given by t = 0, fo all t, togethe with any solution t of the Keple poblem = Θ 3 K N, with K N given by 8. As is well known, its solutions can be witten as t = a e cos Et, hiphop.tex; 6/0/006; 5:44; p.7

8 8 Baabés, Cos, Pinyol, Sole whee a is the semimajo axis, e the eccenticity an E the eccentic anomaly. The function t is peioic of peio T = πa 3/ /K N = π/λ an a e K N = Θ. These solutions will be calle plana as oppose to the spatial o thee imensional solutions when t the istance fom the fist boy to the z = 0 plane is not ientically zeo. In oe to obtain peioic solutions of the euce poblem, we a petubations to peioic plana obits in the vetical iection. If the petubation is small enough, the motion can be ecouple into a plana plus a vetical motion in a fist appoximation. Substituting by ε on the equations 7, an keeping tems in ɛ, we obtain whee ṙ = p, = p, ṗ ṗ = Θ 3 K N + 3S N 4 ɛ + Oɛ 4, = S N 3 + 3W N 5 3 ɛ + Oɛ 4, WN = N k sin 5 kπ N System can then be witten as whee q = Fq,ɛ = F 0 q + ɛ F q + Oɛ 4 3 F 0 q = p, p, Θ 3 K N, S N 3, F q = 0, 0, 3S N 4, 3W N 5 3. Let q 0 be a vecto of initial conitions. The solution of 3 with initial value q 0 at t = 0 can be expane as a powe seies in ɛ as qt, q 0, ɛ = q 0 t, q 0 + ɛ q t, q 0 + Oɛ 4, whee q 0 t, q 0 is the solution of the unpetube poblem q 0 t, q 0 = F 0 q 0 4 with initial conitions q 0, an q t, q 0 is the solution of q t, q 0 = F q 0 t, q 0 + DF 0 q 0 t, q 0 q t, q 0 with initial conitions q 0, q 0 = 0. The enties of the matix DF ae the patial eivatives of F with espect to the q vaiable, an by the fomula of Lagange we have hiphop.tex; 6/0/006; 5:44; p.8

9 Hip Hop solutions of the N Boy poblem 9 whee t q t, q 0 = Qt, q 0 Q τ, q 0 F q 0 τ, q 0 τ, 5 0 Qt, q 0 = q0 t, ξ ξ 6 ξ=q0 THEOREM. Let T0 = k+ π λ, a = Θ an q KN 0 = a, 0, 0, p 0. Assume that λ /λ given by 0 is not a ational numbe. Then thee exist 0, T such that the solution qt, q 0, ɛ of system with initial conitions q 0 = a+ 0, 0, 0, p 0 is a oubly symmetic peioic solution of peio 4T0 + T. The functions 0 an T ae given by 0 = ɛ 3 p 0 Sn a 4 λ λ 4 λ + Oɛ 4 T = ɛ 9 p 0 a 5 λ 3 λ 4 λ whee an B k, N λ B k, N + Oɛ 4 B k, N = S N λ λ sin + k π λ λ, B k, N = + k π W N λ 3 λ 4 λ + SN λ B, 7 B k, N = λ π+kλ 4λ 3λ 8λ +3λ 3 λ λ sin + kπ λ. λ Note that fo ɛ 0 the peios of the solutions given by the theoem ten to π/λ an they belong to a symmetic Lyapunov family. Poof. Notice that the solution of the unpetube poblem 4 with initial conition q 0 is This solution satisfies q 0 t, q 0 = a, p 0 λ sinλ t, 0, p 0 cosλ t. 8 q 0 T 0, q 0 = a, p 0 k λ, 0, 0, 9 an q 0 t, q 0 is a oubly symmetic peioic solution of the unpetube system of peio 4T0. hiphop.tex; 6/0/006; 5:44; p.9

10 0 Baabés, Cos, Pinyol, Sole We must fin initial conitions q 0 = a + 0, 0, 0, p 0 an T = T0 + T such that the solution qt, q 0, ɛ of system satisfies { p T0 + T, q 0, ɛ = p 0 T0 + T, q 0 + ɛ p T0 + T, q 0 + Oɛ 4 = 0 p T 0 + T, q 0, ɛ = p 0 T 0 + T, q 0 + ɛ p T 0 + T, q 0 + Oɛ 4 = 0 0 By Poposition, qt, q 0, ɛ will be a oubly symmetic peioic solution of peio 4T0 + T. Fo a fixe value p 0, an k = 0,, we consie p k T0 + T, q 0 an p k T 0 + T, q 0 as functions of T, 0. Expaning 0 as powe seies in the s we get 0 p 0 T0 =, q 0 0 p 0 T + 0, q 0 +ɛ p T0, q 0 p T + 0, q 0 +Oɛ 4 p 0 p 0 p 0 p 0 p p T 0,q 0 p p T 0 + O T, 0 + T 0,q 0 T 0 + O T, 0 Now we have fom 9 that 0 p T0, q 0 0 p 0 T 0, q 0 = 0 p 0 p 0 so that if p 0 p 0 0, the system 0 can be solve fo T 0,q 0 T, 0 in a neigbouhoo of 0, 0 by means of the implicit function theoem. An appoximation to T, 0 can be easily compute fom p 0 T = ɛ p 0 p T0, q 0 0 p T + O T, 0 +Oɛ 4 0, q 0 p 0 The functions p0 the tems p0 p 0 p 0 p 0 p 0 an p T0, q 0, p0 T 0,q 0 =, p p 0, p0 T 0,q 0 can be compute fom 8. In oe to get we must compute 6. Then 0 λ sin k+ λ λ π p 0λ k 3 p 0 λ k +k π λ sin λ λ λ a λ λ 4 λ T 0, q 0 ae the last two components of q T 0, q 0 = QT 0, q 0 T 0 0 Q τ, q 0 F q 0 τ, q 0 τ, hiphop.tex; 6/0/006; 5:44; p.0

11 Hip Hop solutions of the N Boy poblem Table II. Numeical values of T, 0 fo Θ =, N = 3 an k = 0. p 0 = p 0 = p 0 = 0.5 ɛ = , , , ɛ = , , , ɛ = , , , ɛ = , , , which can be easily compute an ae given by p z 0 = p z 0 = 3 p 0 S N a 4 λ λ 4 λ + kπ sin 9 k p a 5 λ 3 λ 4 λ 4 λ B, k, N λ, 3 λ whee B k, N is given by 7. Finally we can substitute 3 an in an we obtain the appoximation to T, 0. Theoem gives an appoximation to initial conitions fo oubly symmetic peioic obits fo ɛ sufficiently small. This esults have been checke numeically an a goo ageement has been obtaine. Fo fixe values of N, k, Θ, p 0 an ɛ, we compute numeically the values T, nea to T0, a such that the obit with initial conitions q =, 0, 0, p 0 is a oubly symmetic peioic obit of peio 4T. The integation of the iffeential equations has been one by means of a Runge-Kutta RK78 algoithm. Then we compute T = T T0 an 0 = a. Table II shows the numeically compute values of T, 0, fo Θ = an iffeent values of ɛ. hiphop.tex; 6/0/006; 5:44; p.

12 Baabés, Cos, Pinyol, Sole 4. Hip Hop peioic obits an choeogaphies The question whethe obits which ae peioic in the euce system ae peioic also in the inetial fame is of couse only a question of commensuability between π an the angle otate in the inetial system in a peio. If this angle can be seen to change along the family of peioic solutions, then thee will exist infinitely many peioic solutions in the inetial system wheneve its value is commensuable with π. It suffices then to see that its eivative with espect to ɛ is iffeent fom zeo fo ɛ = 0. Now, a small vaiation on this simple agument shows that thee exist infinitely many choeogaphies as well. Think of the obit as having peio 4T, whee T is the time spent fom the initial plana position as a egula N gon to the maximum sepaation of the planes containing the N gon configuations. Afte a time T, the N boies that at t = 0 whee thown upwas will hit the initial plane with a velocity symmetic to the initial one, which is exactly the initial velocity of the othe N boies, which wee thown ownwas. If at t = T the position of N boies is the same as the position at t = 0 of the othe N boies, they will follow the same path, so we have the kin of motion that has been calle a choeogaphy. We give an outline of the computation of the eivative. As we have seen in the pevious Section, fo small values of ɛ we can obtain peioic solutions qt, q 0, ɛ of the euce poblem fo initial conitions q 0 = a + 0, 0, 0,p 0 an peio 4T = 4T T. Fo a fixe value p 0, the function t is given by t, q 0, ɛ = 0 0 t, a O 0 + q 0 +ɛ t, a O 0 + Oɛ 4 q 0 = a + cosλ t 0 + ɛ a, t + Oɛ 4 4 whee 0 is given in Theoem, an a, t = 3 p 0 S N sint λ λ + + cost λ λ a 4 λ λ 4 4 λ λ is the fist component of the vecto q t as given by 5. hiphop.tex; 6/0/006; 5:44; p.

13 Hip Hop solutions of the N Boy poblem 3 Thus, in oe to fin peioic solutions in the inetial efeence system, fo a fixe Θ we must fin solutions of the equation with θ0 = 0 at such that θ = Θ 5 θ4qt = πp 6 fo some integes p an q. Substituting 4 in 5, we get that θ = Θ a cosλ t 0 + ɛ a, t + Oɛ 4 a Integating an emembeing that T is Oɛ, we have θ4t = Θ a 4T 0 + ɛ 3 + kπp 0 Θ 6 whee 8 a 7 K N 7 S N 5 K N 4 S N HN + Oɛ4 HN = 8 S N K N 4 W N + K N S N 4 S N W N 7 an K N, S N, W N ae efine, espectively, in 8, 9 an. Thus, it is enough to see that the tem HN is iffeent fom zeo to guaantee that thee exist infinitely many values of the paamete ɛ such that 6 hols. This is inee the case fo N 0, an pobably fo infinitely many values of N, although we o not have a fomal poof of this fact. Acknowlegements The fist autho is patially suppote by DGES gant BFM C0-0. The secon an fouth authos ae patially suppote by DGES gant numbe BFM C0-0 an by a DURSI gant numbe 00SGR The thi autho is patially suppote by CI- CYT gant numbe SEC003-05/ECO an by DURSI gant numbe SGR Refeences Chencine, A.: 00, Action minimizing solutions of the newtonian n-boy poblem: fom homology to symmety. Poceeings of the Intenational Congess of Mathematicians Vol. III, Beijing, 00, hiphop.tex; 6/0/006; 5:44; p.3

14 4 Baabés, Cos, Pinyol, Sole Chencine, A. an Féjoz, J.: 005, L équation aux vaiations veticales un équilibe elatif comme souce e nouvelles solutions péioiques u poblème es N cops, C. R. Math. Aca. Sci. Pais 3408, Chencine, A., Geve, J., Montgomey, R. an Simó, C.: 00, Simple choeogaphic motions of N boies: a peliminay stuy, Geomety, mechanics, an ynamics, Spinge, New Yok, pp Chencine, A. an Montgomey, R.: 000, A emakable peioic solution of the thee-boy poblem in the case of equal masses, Ann. of Math. 53, Chencine, A. an Ventuelli, A.: 000, Minima e l intégale action u poblème newtonien e 4 cops e masses égales ans R 3 : obites hip-hop, Celestial Mech. Dynam. Astonom. 77, Davies, I., Tuman, A. an Williams, D.: 983, Classical peioic solution of the equal-mass n-boy poblem, n-ion poblem an the n-electon atom poblem, Phys. Lett. A 99, 5 8. Meye, K. R. an Hall, G. R.: 99, Intouction to Hamiltonian ynamical systems an the N-boy poblem, Vol. 90 of Applie Mathematical Sciences, Spinge- Velag, New Yok. Meye, K. R. an Schmit, D. S.: 993, Libations of cental configuations an baie Satun ings, Celestial Mech. Dynam. Astonom. 553, Simó, C.: 00, New families of solutions in N boy poblems, Poceeings of the thi Euopean Congess of Mathematics, in Pog. Math. Vol. 0, 0 5. Teacini, S. an Ventuelli, A.: 005, Symmetic tajectoies fo the n-boy poblem with equal masses, pepint. hiphop.tex; 6/0/006; 5:44; p.4

Analytical Proof of Newton's Force Laws

Analytical Proof of Newton's Force Laws Analytical Poof of Newton s Foce Laws Page 1 1 Intouction Analytical Poof of Newton's Foce Laws Many stuents intuitively assume that Newton's inetial an gavitational foce laws, F = ma an Mm F = G, ae tue

More information

Chapter 19: Electric Charges, Forces, and Fields ( ) ( 6 )( 6

Chapter 19: Electric Charges, Forces, and Fields ( ) ( 6 )( 6 Chapte 9 lectic Chages, Foces, an Fiels 6 9. One in a million (0 ) ogen molecules in a containe has lost an electon. We assume that the lost electons have been emove fom the gas altogethe. Fin the numbe

More information

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses,

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses, 3.4. KEPLER S LAWS 145 3.4 Keple s laws You ae familia with the idea that one can solve some mechanics poblems using only consevation of enegy and (linea) momentum. Thus, some of what we see as objects

More information

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review Vecto Calculus: Ae you eady? Vectos in D and 3D Space: Review Pupose: Make cetain that you can define, and use in context, vecto tems, concepts and fomulas listed below: Section 7.-7. find the vecto defined

More information

Determining solar characteristics using planetary data

Determining solar characteristics using planetary data Detemining sola chaacteistics using planetay data Intoduction The Sun is a G type main sequence sta at the cente of the Sola System aound which the planets, including ou Eath, obit. In this inestigation

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

PRICING MODEL FOR COMPETING ONLINE AND RETAIL CHANNEL WITH ONLINE BUYING RISK

PRICING MODEL FOR COMPETING ONLINE AND RETAIL CHANNEL WITH ONLINE BUYING RISK PRICING MODEL FOR COMPETING ONLINE AND RETAIL CHANNEL WITH ONLINE BUYING RISK Vaanya Vaanyuwatana Chutikan Anunyavanit Manoat Pinthong Puthapon Jaupash Aussaavut Dumongsii Siinhon Intenational Institute

More information

Exam 3: Equation Summary

Exam 3: Equation Summary MASSACHUSETTS INSTITUTE OF TECHNOLOGY Depatment of Physics Physics 8.1 TEAL Fall Tem 4 Momentum: p = mv, F t = p, Fext ave t= t f t= Exam 3: Equation Summay total = Impulse: I F( t ) = p Toque: τ = S S,P

More information

Gravitation and Kepler s Laws Newton s Law of Universal Gravitation in vectorial. Gm 1 m 2. r 2

Gravitation and Kepler s Laws Newton s Law of Universal Gravitation in vectorial. Gm 1 m 2. r 2 F Gm Gavitation and Keple s Laws Newton s Law of Univesal Gavitation in vectoial fom: F 12 21 Gm 1 m 2 12 2 ˆ 12 whee the hat (ˆ) denotes a unit vecto as usual. Gavity obeys the supeposition pinciple,

More information

CLOSE RANGE PHOTOGRAMMETRY WITH CCD CAMERAS AND MATCHING METHODS - APPLIED TO THE FRACTURE SURFACE OF AN IRON BOLT

CLOSE RANGE PHOTOGRAMMETRY WITH CCD CAMERAS AND MATCHING METHODS - APPLIED TO THE FRACTURE SURFACE OF AN IRON BOLT CLOSE RANGE PHOTOGRAMMETR WITH CCD CAMERAS AND MATCHING METHODS - APPLIED TO THE FRACTURE SURFACE OF AN IRON BOLT Tim Suthau, John Moé, Albet Wieemann an Jens Fanzen Technical Univesit of Belin, Depatment

More information

Gravitation. AP Physics C

Gravitation. AP Physics C Gavitation AP Physics C Newton s Law of Gavitation What causes YOU to be pulled down? THE EARTH.o moe specifically the EARTH S MASS. Anything that has MASS has a gavitational pull towads it. F α Mm g What

More information

How many times have you seen something like this?

How many times have you seen something like this? VOL. 77, NO. 4, OTOR 2004 251 Whee the amea Was KTHRN McL. YRS JMS M. HNL Smith ollege Nothampton, M 01063 jhenle@math.smith.eu How many times have you seen something like this? Then Now Souces: outesy

More information

Poynting Vector and Energy Flow in a Capacitor Challenge Problem Solutions

Poynting Vector and Energy Flow in a Capacitor Challenge Problem Solutions Poynting Vecto an Enegy Flow in a Capacito Challenge Poblem Solutions Poblem 1: A paallel-plate capacito consists of two cicula plates, each with aius R, sepaate by a istance. A steay cuent I is flowing

More information

PHYSICS 111 HOMEWORK SOLUTION #13. May 1, 2013

PHYSICS 111 HOMEWORK SOLUTION #13. May 1, 2013 PHYSICS 111 HOMEWORK SOLUTION #13 May 1, 2013 0.1 In intoductoy physics laboatoies, a typical Cavendish balance fo measuing the gavitational constant G uses lead sphees with masses of 2.10 kg and 21.0

More information

UNIT CIRCLE TRIGONOMETRY

UNIT CIRCLE TRIGONOMETRY UNIT CIRCLE TRIGONOMETRY The Unit Cicle is the cicle centeed at the oigin with adius unit (hence, the unit cicle. The equation of this cicle is + =. A diagam of the unit cicle is shown below: + = - - -

More information

Revision Guide for Chapter 11

Revision Guide for Chapter 11 Revision Guide fo Chapte 11 Contents Student s Checklist Revision Notes Momentum... 4 Newton's laws of motion... 4 Gavitational field... 5 Gavitational potential... 6 Motion in a cicle... 7 Summay Diagams

More information

Explicit, analytical solution of scaling quantum graphs. Abstract

Explicit, analytical solution of scaling quantum graphs. Abstract Explicit, analytical solution of scaling quantum gaphs Yu. Dabaghian and R. Blümel Depatment of Physics, Wesleyan Univesity, Middletown, CT 06459-0155, USA E-mail: ydabaghian@wesleyan.edu (Januay 6, 2003)

More information

Physics 505 Homework No. 5 Solutions S5-1. 1. Angular momentum uncertainty relations. A system is in the lm eigenstate of L 2, L z.

Physics 505 Homework No. 5 Solutions S5-1. 1. Angular momentum uncertainty relations. A system is in the lm eigenstate of L 2, L z. Physics 55 Homewok No. 5 s S5-. Angula momentum uncetainty elations. A system is in the lm eigenstate of L 2, L z. a Show that the expectation values of L ± = L x ± il y, L x, and L y all vanish. ψ lm

More information

Continuous Compounding and Annualization

Continuous Compounding and Annualization Continuous Compounding and Annualization Philip A. Viton Januay 11, 2006 Contents 1 Intoduction 1 2 Continuous Compounding 2 3 Pesent Value with Continuous Compounding 4 4 Annualization 5 5 A Special Poblem

More information

Spirotechnics! September 7, 2011. Amanda Zeringue, Michael Spannuth and Amanda Zeringue Dierential Geometry Project

Spirotechnics! September 7, 2011. Amanda Zeringue, Michael Spannuth and Amanda Zeringue Dierential Geometry Project Spiotechnics! Septembe 7, 2011 Amanda Zeingue, Michael Spannuth and Amanda Zeingue Dieential Geomety Poject 1 The Beginning The geneal consensus of ou goup began with one thought: Spiogaphs ae awesome.

More information

AN IMPLEMENTATION OF BINARY AND FLOATING POINT CHROMOSOME REPRESENTATION IN GENETIC ALGORITHM

AN IMPLEMENTATION OF BINARY AND FLOATING POINT CHROMOSOME REPRESENTATION IN GENETIC ALGORITHM AN IMPLEMENTATION OF BINARY AND FLOATING POINT CHROMOSOME REPRESENTATION IN GENETIC ALGORITHM Main Golub Faculty of Electical Engineeing and Computing, Univesity of Zageb Depatment of Electonics, Micoelectonics,

More information

PY1052 Problem Set 8 Autumn 2004 Solutions

PY1052 Problem Set 8 Autumn 2004 Solutions PY052 Poblem Set 8 Autumn 2004 Solutions H h () A solid ball stats fom est at the uppe end of the tack shown and olls without slipping until it olls off the ight-hand end. If H 6.0 m and h 2.0 m, what

More information

MULTIPLE SOLUTIONS OF THE PRESCRIBED MEAN CURVATURE EQUATION

MULTIPLE SOLUTIONS OF THE PRESCRIBED MEAN CURVATURE EQUATION MULTIPLE SOLUTIONS OF THE PRESCRIBED MEAN CURVATURE EQUATION K.C. CHANG AND TAN ZHANG In memoy of Pofesso S.S. Chen Abstact. We combine heat flow method with Mose theoy, supe- and subsolution method with

More information

Discussion on Fuzzy Logic Operation of Impedance Control for Upper Limb Rehabilitation Robot 1,a Zhai Yan

Discussion on Fuzzy Logic Operation of Impedance Control for Upper Limb Rehabilitation Robot 1,a Zhai Yan Intenational Confeence on Automation, Mechanical Contol an Computational Engineeing (AMCCE 05) Discussion on Fuzzy Logic Opeation of Impeance Contol fo Uppe Limb Rehabilitation Robot,a Zhai Yan,b Guo Xiaobo

More information

Deflection of Electrons by Electric and Magnetic Fields

Deflection of Electrons by Electric and Magnetic Fields Physics 233 Expeiment 42 Deflection of Electons by Electic and Magnetic Fields Refeences Loain, P. and D.R. Coson, Electomagnetism, Pinciples and Applications, 2nd ed., W.H. Feeman, 199. Intoduction An

More information

Chapter 3 Savings, Present Value and Ricardian Equivalence

Chapter 3 Savings, Present Value and Ricardian Equivalence Chapte 3 Savings, Pesent Value and Ricadian Equivalence Chapte Oveview In the pevious chapte we studied the decision of households to supply hous to the labo maket. This decision was a static decision,

More information

Coordinate Systems L. M. Kalnins, March 2009

Coordinate Systems L. M. Kalnins, March 2009 Coodinate Sstems L. M. Kalnins, Mach 2009 Pupose of a Coodinate Sstem The pupose of a coodinate sstem is to uniquel detemine the position of an object o data point in space. B space we ma liteall mean

More information

Seshadri constants and surfaces of minimal degree

Seshadri constants and surfaces of minimal degree Seshadi constants and sufaces of minimal degee Wioletta Syzdek and Tomasz Szembeg Septembe 29, 2007 Abstact In [] we showed that if the multiple point Seshadi constants of an ample line bundle on a smooth

More information

!( r) =!( r)e i(m" + kz)!!!!. (30.1)

!( r) =!( r)e i(m + kz)!!!!. (30.1) 3 EXAMPLES OF THE APPLICATION OF THE ENERGY PRINCIPLE TO CYLINDRICAL EQUILIBRIA We now use the Enegy Pinciple to analyze the stability popeties of the cylinical! -pinch, the Z-pinch, an the Geneal Scew

More information

Hour Exam No.1. p 1 v. p = e 0 + v^b. Note that the probe is moving in the direction of the unit vector ^b so the velocity vector is just ~v = v^b and

Hour Exam No.1. p 1 v. p = e 0 + v^b. Note that the probe is moving in the direction of the unit vector ^b so the velocity vector is just ~v = v^b and Hou Exam No. Please attempt all of the following poblems befoe the due date. All poblems count the same even though some ae moe complex than othes. Assume that c units ae used thoughout. Poblem A photon

More information

Concept and Experiences on using a Wiki-based System for Software-related Seminar Papers

Concept and Experiences on using a Wiki-based System for Software-related Seminar Papers Concept and Expeiences on using a Wiki-based System fo Softwae-elated Semina Papes Dominik Fanke and Stefan Kowalewski RWTH Aachen Univesity, 52074 Aachen, Gemany, {fanke, kowalewski}@embedded.wth-aachen.de,

More information

2. Orbital dynamics and tides

2. Orbital dynamics and tides 2. Obital dynamics and tides 2.1 The two-body poblem This efes to the mutual gavitational inteaction of two bodies. An exact mathematical solution is possible and staightfowad. In the case that one body

More information

FXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it.

FXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it. Candidates should be able to : Descibe how a mass ceates a gavitational field in the space aound it. Define gavitational field stength as foce pe unit mass. Define and use the peiod of an object descibing

More information

Gauss Law. Physics 231 Lecture 2-1

Gauss Law. Physics 231 Lecture 2-1 Gauss Law Physics 31 Lectue -1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing

More information

Skills Needed for Success in Calculus 1

Skills Needed for Success in Calculus 1 Skills Needed fo Success in Calculus Thee is much appehension fom students taking Calculus. It seems that fo man people, "Calculus" is snonmous with "difficult." Howeve, an teache of Calculus will tell

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 of 9 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage

More information

Problems on Force Exerted by a Magnetic Fields from Ch 26 T&M

Problems on Force Exerted by a Magnetic Fields from Ch 26 T&M Poblems on oce Exeted by a Magnetic ields fom Ch 6 TM Poblem 6.7 A cuent-caying wie is bent into a semicicula loop of adius that lies in the xy plane. Thee is a unifom magnetic field B Bk pependicula to

More information

Episode 401: Newton s law of universal gravitation

Episode 401: Newton s law of universal gravitation Episode 401: Newton s law of univesal gavitation This episode intoduces Newton s law of univesal gavitation fo point masses, and fo spheical masses, and gets students pactising calculations of the foce

More information

Power and Sample Size Calculations for the 2-Sample Z-Statistic

Power and Sample Size Calculations for the 2-Sample Z-Statistic Powe and Sample Size Calculations fo the -Sample Z-Statistic James H. Steige ovembe 4, 004 Topics fo this Module. Reviewing Results fo the -Sample Z (a) Powe and Sample Size in Tems of a oncentality Paamete.

More information

Chapter 13. Vector-Valued Functions and Motion in Space 13.6. Velocity and Acceleration in Polar Coordinates

Chapter 13. Vector-Valued Functions and Motion in Space 13.6. Velocity and Acceleration in Polar Coordinates 13.6 Velocity and Acceleation in Pola Coodinates 1 Chapte 13. Vecto-Valued Functions and Motion in Space 13.6. Velocity and Acceleation in Pola Coodinates Definition. When a paticle P(, θ) moves along

More information

Carter-Penrose diagrams and black holes

Carter-Penrose diagrams and black holes Cate-Penose diagams and black holes Ewa Felinska The basic intoduction to the method of building Penose diagams has been pesented, stating with obtaining a Penose diagam fom Minkowski space. An example

More information

In the lecture on double integrals over non-rectangular domains we used to demonstrate the basic idea

In the lecture on double integrals over non-rectangular domains we used to demonstrate the basic idea Double Integals in Pola Coodinates In the lectue on double integals ove non-ectangula domains we used to demonstate the basic idea with gaphics and animations the following: Howeve this paticula example

More information

Software Engineering and Development

Software Engineering and Development I T H E A 67 Softwae Engineeing and Development SOFTWARE DEVELOPMENT PROCESS DYNAMICS MODELING AS STATE MACHINE Leonid Lyubchyk, Vasyl Soloshchuk Abstact: Softwae development pocess modeling is gaining

More information

Problem Set # 9 Solutions

Problem Set # 9 Solutions Poblem Set # 9 Solutions Chapte 12 #2 a. The invention of the new high-speed chip inceases investment demand, which shifts the cuve out. That is, at evey inteest ate, fims want to invest moe. The incease

More information

CHAPTER 9 THE TWO BODY PROBLEM IN TWO DIMENSIONS

CHAPTER 9 THE TWO BODY PROBLEM IN TWO DIMENSIONS 9. Intoduction CHAPTER 9 THE TWO BODY PROBLEM IN TWO DIMENSIONS In this chapte we show how Keple s laws can be deived fom Newton s laws of motion and gavitation, and consevation of angula momentum, and

More information

Questions & Answers Chapter 10 Software Reliability Prediction, Allocation and Demonstration Testing

Questions & Answers Chapter 10 Software Reliability Prediction, Allocation and Demonstration Testing M13914 Questions & Answes Chapte 10 Softwae Reliability Pediction, Allocation and Demonstation Testing 1. Homewok: How to deive the fomula of failue ate estimate. λ = χ α,+ t When the failue times follow

More information

Financing Terms in the EOQ Model

Financing Terms in the EOQ Model Financing Tems in the EOQ Model Habone W. Stuat, J. Columbia Business School New Yok, NY 1007 hws7@columbia.edu August 6, 004 1 Intoduction This note discusses two tems that ae often omitted fom the standad

More information

Forces & Magnetic Dipoles. r r τ = μ B r

Forces & Magnetic Dipoles. r r τ = μ B r Foces & Magnetic Dipoles x θ F θ F. = AI τ = U = Fist electic moto invented by Faaday, 1821 Wie with cuent flow (in cup of Hg) otates aound a a magnet Faaday s moto Wie with cuent otates aound a Pemanent

More information

The Supply of Loanable Funds: A Comment on the Misconception and Its Implications

The Supply of Loanable Funds: A Comment on the Misconception and Its Implications JOURNL OF ECONOMICS ND FINNCE EDUCTION Volume 7 Numbe 2 Winte 2008 39 The Supply of Loanable Funds: Comment on the Misconception and Its Implications. Wahhab Khandke and mena Khandke* STRCT Recently Fields-Hat

More information

Mechanics 1: Work, Power and Kinetic Energy

Mechanics 1: Work, Power and Kinetic Energy Mechanics 1: Wok, Powe and Kinetic Eneg We fist intoduce the ideas of wok and powe. The notion of wok can be viewed as the bidge between Newton s second law, and eneg (which we have et to define and discuss).

More information

An Efficient Group Key Agreement Protocol for Ad hoc Networks

An Efficient Group Key Agreement Protocol for Ad hoc Networks An Efficient Goup Key Ageement Potocol fo Ad hoc Netwoks Daniel Augot, Raghav haska, Valéie Issany and Daniele Sacchetti INRIA Rocquencout 78153 Le Chesnay Fance {Daniel.Augot, Raghav.haska, Valéie.Issany,

More information

1240 ev nm 2.5 ev. (4) r 2 or mv 2 = ke2

1240 ev nm 2.5 ev. (4) r 2 or mv 2 = ke2 Chapte 5 Example The helium atom has 2 electonic enegy levels: E 3p = 23.1 ev and E 2s = 20.6 ev whee the gound state is E = 0. If an electon makes a tansition fom 3p to 2s, what is the wavelength of the

More information

Fast FPT-algorithms for cleaning grids

Fast FPT-algorithms for cleaning grids Fast FPT-algoithms fo cleaning gids Josep Diaz Dimitios M. Thilikos Abstact We conside the poblem that given a gaph G and a paamete k asks whethe the edit distance of G and a ectangula gid is at most k.

More information

Chapter 17 The Kepler Problem: Planetary Mechanics and the Bohr Atom

Chapter 17 The Kepler Problem: Planetary Mechanics and the Bohr Atom Chapte 7 The Keple Poblem: Planetay Mechanics and the Boh Atom Keple s Laws: Each planet moves in an ellipse with the sun at one focus. The adius vecto fom the sun to a planet sweeps out equal aeas in

More information

The Role of Gravity in Orbital Motion

The Role of Gravity in Orbital Motion ! The Role of Gavity in Obital Motion Pat of: Inquiy Science with Datmouth Developed by: Chistophe Caoll, Depatment of Physics & Astonomy, Datmouth College Adapted fom: How Gavity Affects Obits (Ohio State

More information

Gravitational Mechanics of the Mars-Phobos System: Comparing Methods of Orbital Dynamics Modeling for Exploratory Mission Planning

Gravitational Mechanics of the Mars-Phobos System: Comparing Methods of Orbital Dynamics Modeling for Exploratory Mission Planning Gavitational Mechanics of the Mas-Phobos System: Compaing Methods of Obital Dynamics Modeling fo Exploatoy Mission Planning Alfedo C. Itualde The Pennsylvania State Univesity, Univesity Pak, PA, 6802 This

More information

YARN PROPERTIES MEASUREMENT: AN OPTICAL APPROACH

YARN PROPERTIES MEASUREMENT: AN OPTICAL APPROACH nd INTERNATIONAL TEXTILE, CLOTHING & ESIGN CONFERENCE Magic Wold of Textiles Octobe 03 d to 06 th 004, UBROVNIK, CROATIA YARN PROPERTIES MEASUREMENT: AN OPTICAL APPROACH Jana VOBOROVA; Ashish GARG; Bohuslav

More information

Structure and evolution of circumstellar disks during the early phase of accretion from a parent cloud

Structure and evolution of circumstellar disks during the early phase of accretion from a parent cloud Cente fo Tubulence Reseach Annual Reseach Biefs 2001 209 Stuctue and evolution of cicumstella disks duing the ealy phase of accetion fom a paent cloud By Olusola C. Idowu 1. Motivation and Backgound The

More information

ON THE (Q, R) POLICY IN PRODUCTION-INVENTORY SYSTEMS

ON THE (Q, R) POLICY IN PRODUCTION-INVENTORY SYSTEMS ON THE R POLICY IN PRODUCTION-INVENTORY SYSTEMS Saifallah Benjaafa and Joon-Seok Kim Depatment of Mechanical Engineeing Univesity of Minnesota Minneapolis MN 55455 Abstact We conside a poduction-inventoy

More information

Lesson 7 Gauss s Law and Electric Fields

Lesson 7 Gauss s Law and Electric Fields Lesson 7 Gauss s Law and Electic Fields Lawence B. Rees 7. You may make a single copy of this document fo pesonal use without witten pemission. 7. Intoduction While it is impotant to gain a solid conceptual

More information

VISCOSITY OF BIO-DIESEL FUELS

VISCOSITY OF BIO-DIESEL FUELS VISCOSITY OF BIO-DIESEL FUELS One of the key assumptions fo ideal gases is that the motion of a given paticle is independent of any othe paticles in the system. With this assumption in place, one can use

More information

Model Question Paper Mathematics Class XII

Model Question Paper Mathematics Class XII Model Question Pape Mathematics Class XII Time Allowed : 3 hous Maks: 100 Ma: Geneal Instuctions (i) The question pape consists of thee pats A, B and C. Each question of each pat is compulsoy. (ii) Pat

More information

Mechanics 1: Motion in a Central Force Field

Mechanics 1: Motion in a Central Force Field Mechanics : Motion in a Cental Foce Field We now stud the popeties of a paticle of (constant) ass oving in a paticula tpe of foce field, a cental foce field. Cental foces ae ve ipotant in phsics and engineeing.

More information

Symmetric polynomials and partitions Eugene Mukhin

Symmetric polynomials and partitions Eugene Mukhin Symmetic polynomials and patitions Eugene Mukhin. Symmetic polynomials.. Definition. We will conside polynomials in n vaiables x,..., x n and use the shotcut p(x) instead of p(x,..., x n ). A pemutation

More information

Nontrivial lower bounds for the least common multiple of some finite sequences of integers

Nontrivial lower bounds for the least common multiple of some finite sequences of integers J. Numbe Theoy, 15 (007), p. 393-411. Nontivial lowe bounds fo the least common multiple of some finite sequences of integes Bai FARHI bai.fahi@gmail.com Abstact We pesent hee a method which allows to

More information

The force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges

The force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges The foce between electic chages Coulomb s Law Two chaged objects, of chage q and Q, sepaated by a distance, exet a foce on one anothe. The magnitude of this foce is given by: kqq Coulomb s Law: F whee

More information

Efficient Redundancy Techniques for Latency Reduction in Cloud Systems

Efficient Redundancy Techniques for Latency Reduction in Cloud Systems Efficient Redundancy Techniques fo Latency Reduction in Cloud Systems 1 Gaui Joshi, Emina Soljanin, and Gegoy Wonell Abstact In cloud computing systems, assigning a task to multiple seves and waiting fo

More information

The advent of e-commerce has prompted many manufacturers to redesign their traditional

The advent of e-commerce has prompted many manufacturers to redesign their traditional Diect Maketing, Iniect Pofits: A Stategic Analysis of Dual-Channel Supply-Chain Design Wei-yu Kevin Chiang Dilip Chhaje James D. Hess Depatment of Infomation Systems, Univesity of Maylan at Baltimoe County,

More information

arxiv:1012.5438v1 [astro-ph.ep] 24 Dec 2010

arxiv:1012.5438v1 [astro-ph.ep] 24 Dec 2010 Fist-Ode Special Relativistic Coections to Keple s Obits Tyle J. Lemmon and Antonio R. Mondagon Physics Depatment, Coloado College, Coloado Spings, Coloado 80903 (Dated: Decembe 30, 00) Abstact axiv:0.5438v

More information

Ilona V. Tregub, ScD., Professor

Ilona V. Tregub, ScD., Professor Investment Potfolio Fomation fo the Pension Fund of Russia Ilona V. egub, ScD., Pofesso Mathematical Modeling of Economic Pocesses Depatment he Financial Univesity unde the Govenment of the Russian Fedeation

More information

Chapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere.

Chapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere. Chapte.3 What is the magnitude of a point chage whose electic field 5 cm away has the magnitude of.n/c. E E 5.56 1 11 C.5 An atom of plutonium-39 has a nuclea adius of 6.64 fm and atomic numbe Z94. Assuming

More information

Multiple choice questions [70 points]

Multiple choice questions [70 points] Multiple choice questions [70 points] Answe all of the following questions. Read each question caefull. Fill the coect bubble on ou scanton sheet. Each question has exactl one coect answe. All questions

More information

INVESTIGATION OF FLOW INSIDE AN AXIAL-FLOW PUMP OF GV IMP TYPE

INVESTIGATION OF FLOW INSIDE AN AXIAL-FLOW PUMP OF GV IMP TYPE 1 INVESTIGATION OF FLOW INSIDE AN AXIAL-FLOW PUMP OF GV IMP TYPE ANATOLIY A. YEVTUSHENKO 1, ALEXEY N. KOCHEVSKY 1, NATALYA A. FEDOTOVA 1, ALEXANDER Y. SCHELYAEV 2, VLADIMIR N. KONSHIN 2 1 Depatment of

More information

Risk Sensitive Portfolio Management With Cox-Ingersoll-Ross Interest Rates: the HJB Equation

Risk Sensitive Portfolio Management With Cox-Ingersoll-Ross Interest Rates: the HJB Equation Risk Sensitive Potfolio Management With Cox-Ingesoll-Ross Inteest Rates: the HJB Equation Tomasz R. Bielecki Depatment of Mathematics, The Notheasten Illinois Univesity 55 Noth St. Louis Avenue, Chicago,

More information

Lab M4: The Torsional Pendulum and Moment of Inertia

Lab M4: The Torsional Pendulum and Moment of Inertia M4.1 Lab M4: The Tosional Pendulum and Moment of netia ntoduction A tosional pendulum, o tosional oscillato, consists of a disk-like mass suspended fom a thin od o wie. When the mass is twisted about the

More information

NURBS Drawing Week 5, Lecture 10

NURBS Drawing Week 5, Lecture 10 CS 43/585 Compute Gaphics I NURBS Dawing Week 5, Lectue 1 David Been, William Regli and Maim Pesakhov Geometic and Intelligent Computing Laboato Depatment of Compute Science Deel Univesit http://gicl.cs.deel.edu

More information

An Introduction to Omega

An Introduction to Omega An Intoduction to Omega Con Keating and William F. Shadwick These distibutions have the same mean and vaiance. Ae you indiffeent to thei isk-ewad chaacteistics? The Finance Development Cente 2002 1 Fom

More information

Dynamic Pricing and Profit Maximization for the Cloud with Geo-distributed Data Centers

Dynamic Pricing and Profit Maximization for the Cloud with Geo-distributed Data Centers Dynamic Picing an Pofit Maximization fo the Clou with Geo-istibute Data Centes Jian Zhao, Hongxing Li, Chuan Wu, Zongpeng Li, Zhizhong Zhang, Fancis C.M. Lau The Univesity of Hong Kong, {jzhao,hxli,cwu,zzzhang,fcmlau}@cs.hku.hk

More information

On the Relativistic Forms of Newton's Second Law and Gravitation

On the Relativistic Forms of Newton's Second Law and Gravitation On the Relativistic Foms of Newton's Second Law and avitation Mohammad Bahami,*, Mehdi Zaeie 3 and Davood Hashemian Depatment of physics, College of Science, Univesity of Tehan,Tehan, Islamic Republic

More information

A r. (Can you see that this just gives the formula we had above?)

A r. (Can you see that this just gives the formula we had above?) 24-1 (SJP, Phys 1120) lectic flux, and Gauss' law Finding the lectic field due to a bunch of chages is KY! Once you know, you know the foce on any chage you put down - you can pedict (o contol) motion

More information

Experiment 6: Centripetal Force

Experiment 6: Centripetal Force Name Section Date Intoduction Expeiment 6: Centipetal oce This expeiment is concened with the foce necessay to keep an object moving in a constant cicula path. Accoding to Newton s fist law of motion thee

More information

Notes on Electric Fields of Continuous Charge Distributions

Notes on Electric Fields of Continuous Charge Distributions Notes on Electic Fields of Continuous Chage Distibutions Fo discete point-like electic chages, the net electic field is a vecto sum of the fields due to individual chages. Fo a continuous chage distibution

More information

Multiple choice questions [60 points]

Multiple choice questions [60 points] 1 Multiple choice questions [60 points] Answe all o the ollowing questions. Read each question caeully. Fill the coect bubble on you scanton sheet. Each question has exactly one coect answe. All questions

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 Voltage ( = Electic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage is

More information

Week 3-4: Permutations and Combinations

Week 3-4: Permutations and Combinations Week 3-4: Pemutations and Combinations Febuay 24, 2016 1 Two Counting Pinciples Addition Pinciple Let S 1, S 2,, S m be disjoint subsets of a finite set S If S S 1 S 2 S m, then S S 1 + S 2 + + S m Multiplication

More information

CONCEPTUAL FRAMEWORK FOR DEVELOPING AND VERIFICATION OF ATTRIBUTION MODELS. ARITHMETIC ATTRIBUTION MODELS

CONCEPTUAL FRAMEWORK FOR DEVELOPING AND VERIFICATION OF ATTRIBUTION MODELS. ARITHMETIC ATTRIBUTION MODELS CONCEPUAL FAMEOK FO DEVELOPING AND VEIFICAION OF AIBUION MODELS. AIHMEIC AIBUION MODELS Yui K. Shestopaloff, is Diecto of eseach & Deelopment at SegmentSoft Inc. He is a Docto of Sciences and has a Ph.D.

More information

Displacement, Velocity And Acceleration

Displacement, Velocity And Acceleration Displacement, Velocity And Acceleation Vectos and Scalas Position Vectos Displacement Speed and Velocity Acceleation Complete Motion Diagams Outline Scala vs. Vecto Scalas vs. vectos Scala : a eal numbe,

More information

A statistical development of fixed odds betting rules in soccer

A statistical development of fixed odds betting rules in soccer A statistical evelopment of fixe os betting ules in socce Ian Milline 1, Paul White 1 an Don J. Webbe 2 1 Depatment of Mathematics an Statistics, Univesity of the West of Englan, Bistol, UK 2 Depatment

More information

est using the formula I = Prt, where I is the interest earned, P is the principal, r is the interest rate, and t is the time in years.

est using the formula I = Prt, where I is the interest earned, P is the principal, r is the interest rate, and t is the time in years. 9.2 Inteest Objectives 1. Undestand the simple inteest fomula. 2. Use the compound inteest fomula to find futue value. 3. Solve the compound inteest fomula fo diffeent unknowns, such as the pesent value,

More information

The Binomial Distribution

The Binomial Distribution The Binomial Distibution A. It would be vey tedious if, evey time we had a slightly diffeent poblem, we had to detemine the pobability distibutions fom scatch. Luckily, thee ae enough similaities between

More information

Product reviews by third parties are growing in popularity. This paper examines when and how a manufacturing

Product reviews by third parties are growing in popularity. This paper examines when and how a manufacturing Vol. 24, No. 2, Sping 2005, pp. 218 240 issn 0732-2399 eissn 1526-548X 05 2402 0218 infoms oi 10.1287/mksc.1040.0089 2005 INFORMS Thi-Paty Pouct Review an Fim Maketing Stategy Yubo Chen Elle College of

More information

A framework for the selection of enterprise resource planning (ERP) system based on fuzzy decision making methods

A framework for the selection of enterprise resource planning (ERP) system based on fuzzy decision making methods A famewok fo the selection of entepise esouce planning (ERP) system based on fuzzy decision making methods Omid Golshan Tafti M.s student in Industial Management, Univesity of Yazd Omidgolshan87@yahoo.com

More information

SAMPLE CHAPTERS UNESCO EOLSS THE MOTION OF CELESTIAL BODIES. Kaare Aksnes Institute of Theoretical Astrophysics University of Oslo

SAMPLE CHAPTERS UNESCO EOLSS THE MOTION OF CELESTIAL BODIES. Kaare Aksnes Institute of Theoretical Astrophysics University of Oslo THE MOTION OF CELESTIAL BODIES Kaae Aksnes Institute of Theoetical Astophysics Univesity of Oslo Keywods: celestial mechanics, two-body obits, thee-body obits, petubations, tides, non-gavitational foces,

More information

Integer sequences from walks in graphs

Integer sequences from walks in graphs otes on umbe Theoy and Discete Mathematics Vol. 9, 3, o. 3, 78 84 Intege seuences fom walks in gahs Enesto Estada, and José A. de la Peña Deatment of Mathematics and Statistics, Univesity of Stathclyde

More information

30 H. N. CHIU 1. INTRODUCTION. Recherche opérationnelle/operations Research

30 H. N. CHIU 1. INTRODUCTION. Recherche opérationnelle/operations Research RAIRO Rech. Opé. (vol. 33, n 1, 1999, pp. 29-45) A GOOD APPROXIMATION OF THE INVENTORY LEVEL IN A(Q ) PERISHABLE INVENTORY SYSTEM (*) by Huan Neng CHIU ( 1 ) Communicated by Shunji OSAKI Abstact. This

More information

Lab #7: Energy Conservation

Lab #7: Energy Conservation Lab #7: Enegy Consevation Photo by Kallin http://www.bungeezone.com/pics/kallin.shtml Reading Assignment: Chapte 7 Sections 1,, 3, 5, 6 Chapte 8 Sections 1-4 Intoduction: Pehaps one of the most unusual

More information

12. Rolling, Torque, and Angular Momentum

12. Rolling, Torque, and Angular Momentum 12. olling, Toque, and Angula Momentum 1 olling Motion: A motion that is a combination of otational and tanslational motion, e.g. a wheel olling down the oad. Will only conside olling with out slipping.

More information

Chapter 4: Matrix Norms

Chapter 4: Matrix Norms EE448/58 Vesion.0 John Stensby Chate 4: Matix Noms The analysis of matix-based algoithms often equies use of matix noms. These algoithms need a way to quantify the "size" of a matix o the "distance" between

More information

TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION

TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION MISN-0-34 TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION shaft TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION by Kiby Mogan, Chalotte, Michigan 1. Intoduction..............................................

More information