Linear Algebra and Matrices


 Claribel Daniel
 11 months ago
 Views:
Transcription
1 LECTURE Linear Algebra and Matrices Before embarking on a study of systems of differential equations we will first review, very quickly, some fundamental objects and operations in linear algebra.. Matrices Definition.. An n m matrix n by m matrix ) is an arrangement of nm objects usually numbers) into a rectangular array with n rows and m columns. We ll typically denote the entry in the i th row and j th column of a matrix A as a ij and similarly, b ij for the ij) th entry of a matrix B). Thus, for example, a a a m a a a m A..... a n a n a nm An n matrix is called a column vector and a m matrix is called a row vector. v v v. v n v v, v,..., v m.. Matrix Operations. Definition.. The sum of two n m matrices A and B is the n m matrix A + B with entries A + B) ij a ij + b ij. Definition.3. The scalar product of an n m matrix A with a number λ is the n m matrix λa with entries λa) ij λa ij. Definition.4. The difference of two n m matrices A and B is the n m matrix A B with entries A B) ij a ij b ij A + ) B) ij Definition.5. The transpose of an n m matrix A is the m n matrix A t with entries A t ) ij A ji Note the i th row of A t is simply the j th column of A written horizontally.) Definition.6. An n n matrix A is said to be symmetric if A A t.
2 . COMPLEX NUMBERS Note that the transpose of a rowvector is a column vector and the transpose of a column vector is a row vector. Definition.7. The dot product of an ndimensional row vector r,..., r n with a ndimensional column c vector. is the number c n r,..., r n c.. r c + + r n c n c n This coincides with the usual dot products of vectors when we think of vectors as ordered lists of numbers rather than special kinds of matrices.) Definition.8. The matrix product of an n m matrix A with a m q matrix B is the n q matrix with entries m AB) ij a ik b kj Note that the ij) th entry of the matrix product AB is the dot product of the i th row of A with the j th column of B. k. Complex Numbers In what follows it will be sometime necessary to consider vectors and matrices with entries that are complex numbers. We recall here some basic facts about complex numbers. Definition.9. A complex numbers are pairs x, y) of real numbers which satisfying the following addition and multiplication rules x, y) + x, y ) x + x, y + y ) x, y) x, y ) xx yy, xy + yx ) Usually though we write a complex number as z x + iy and then add and multiply complex numbers by employing the usual rules of arithmetic and the relation i. Thus, x + iy) x + iy ) xx + x iy ) + iy x ) + iy) iy ) xx yy + i xy + yx ) When we write z x + iy we say that x is the real part of z and y is the imaginary part of z. The complex conjugate of z x + iy is the complex number z obtained by switching the sign of it imaginary part z x iy We have Re z) x z + z Im z) y z z i Re )
3 3. DETERMINANTS 3 We will also sometimes consider functions of a complex variable. Here we only state the very fundamental Euler Formula We note that e x+iy e x cos y) + i sin y)) cos y) Re e iy) sin y) Im e iy) Definition.. A complex matrix is a matrix whose entries are complex numbers. Similarly, a complex vector is a vector whose components are complex numbers. The hermitian adjoint of a complex matrix A is the matrix A with entries A ) ij a ji Equivalently, A A ) t At ) Example.. A + i i 3 + i 3 ) A i 3 i + i 3 ) Definition.. An n n matrix is hermitian or selfadjoint) if A A Definition.3. Let x and y be two complex column) vectors. The hermitian) inner product x, y) of x and y is the complex number x t y x,, x n y. y n x y + + x n y n Remark.4. If A is a real hermitian matrix that is, all of its entries are real numbers), then A A ) t A) t A t so a real hemitian matrix is just a real symmetric matrix. If x and y are two real vectors then the hermitian inner product x, y) coincides with the usual dot product of real vectors. 3. Determinants Definition.5. The ij) th minor of an n n matrix A is the n ) n ) matrix M ij obtained by deleting the i th row and j th column from A. Definition.6. The determinant of an n n matrix A is the number det A determined by the following recursive algorithm: If A is a matrix a, then det A a if A is an n n matrix then n det A : ) i+j a ij det M ij : j n ) i+j a ij det M ij i i any fixed row index) j any fixed column index)
4 5. EIGENVALUES AND EIGENVECTORS 4 The following formulas for the determinants of and 3 3 matrices follow easily from the above definition a a det ) + a a a det M ) + ) + a det M ) det a a a 3 a a a 3 a 3 a 3 a 33 a det a a det a a a a a ) + a det a a 3 a 3 a 33 + ) +3 a a a 3 det a 3 a 3 + ) + a a a det 3 a 3 a 33 a a a 33 a 3 a 3 ) a a a 33 a 3 a 3 ) + a 3 a a 3 a a 3 ) 4. Inverses Definition.7. The inverse of an n n matrix A is the n n matrix A such that N.B. matrix inverses do not always exist.) A A I AA There are two basic ways of computing matrix inverses: Row reduction: A I row reduction I A Cofactor Method: A det A Ct where C is the cofactor matrix of A whose entries are ± times the determinants of the n ) n ) minors of A. C) ij ) i+j det M ij ) 5. Eigenvalues and Eigenvectors Definition.8. Let A be an n n matrix. If there exists a number λ and an ndimensional column) vector v such that Av λv then v is said to be an eigenvector of A and λ is said to be the eigenvalue of A corresponding to the eigenvector v. The following algorithm determines all the eigenvectors and eigenvalues of an n n matrix A. Set p A det A λi). Here λ is regarded as a variable, and λi is the matrix obtained by scalar multiplying the n n identity matrix by λ. A λi is thus the matrix obtained by subtracting λ from each of the diagonal entries of A. Upon computation, det A λi) will yield a polynomial of degree n in λ. The solutions of will be the eigenvalues of A. p A λ)
5 5. EIGENVALUES AND EIGENVECTORS 5 For each root λ r of p A λ), find the general solution of A ri) x and expand that solution in terms of the free parameters of the solution. The eigenvectors corresponding to the eigenvalue r of A will be the constant vectors in that expansion. Example.9. Find the eigenvalues and eigenvectors of A. We have p A λ) : det λ λ λ) 4 λ λ 3 λ 3) λ + ) Since λ 3, are the solutions of p A λ), these are the eigenvalues of A. Now we look for the eigenvectors corresponding to λ 3. 3 x x 3 The reduced row echelon form of the coefficient matrix is { x x x x x so v λ3 x Similarly, we look for the eigenvectors corresponding to λ : ) x x ) x x and so Example.. Suppose Find the eigenvectors and eigenvalues of A. v λ A ) x The characteristic polynomial is λ p A λ) det λ) + λ λ + λ To solve p A λ), we apply the quadratic formula and find a + bx + c x b ± b 4ac a p A λ) λ ± 4 8 Thus we have two complex eigenvalues. ± 4 ± 4 ± i ± i
6 6. DIAGONALIZATION OF MATRICES 6 Setting λ + i, we now solve + i) x + i) i x i x The row reduction method of solving linear systems still works: i i R i R + ir R i) R ix i x i x v λ+i Similarly, for λ i, one finds i v λ i i i 6. Diagonalization of Matrices Recall that a diagonal matrix is a square n n matrix with nonzero entries only along the diagonal from the under left to the lower right the main diagonal). Diagonal matrices are particularly convenient for eigenvalue problems since the eigenvalues of a diagonal matrix a A a..... a nn coincide with the diagonal entries {a ii } and the eigenvector corresponding the eigenvalue a ii is just the i th coordinate vector. That is, if A is of the above form, we always have Ae i a ii e i Definition.. An n n matrix A is diagonalizable if there is an invertible n n matrix C such that C AC is a diagonal matrix. The matrix C is said to diagonalize A. Lemma.. Let A be a real or complex) n n matrix, let λ, λ,..., λ n be a set of n real respectively, complex) scalars, and let v, v,..., v n be a set of n vectors in R n respectively, C n ). Let C be the n n matrix formed by using v j for j th column vector, and let D be the n n diagonal matrix whose diagonal entries are λ, λ,..., λ n. Then AC CD if and only if λ, λ,..., λ n are the eigenvalues of A and each v j is an eigenvector of A correponding the eigenvalue λ j. Now suppose AC CD, and the matrix C is invertible. D C AC. Then we can write And so we can think of the matrix C as converting A into a diagonal matrix. Theorem.3. An n n matrix A is diagonalizable if and only if it has n linearly independent eigenvectors. Example.4. Find the matrix that diagonalizes 6 A
7 6. DIAGONALIZATION OF MATRICES 7 First we ll find the eigenvalues and eigenvectors of A. λ 6 det A λi) det λ) λ) λ, λ The eigenvectors corresponding to the eigenvalue λ are solutions of A )I) x or 6 x 6x x 3 3 x r The eigenvectors corresponding to the eigenvalue λ are solutions of A )I) x or 3 6 x 3x + 6 x x r So the vectors v, and v, will be eigenvectors of A. We now arrange these two vectors as the column vectors of the matrix C. C In order to compute the diagonalization of A we also need C. This we compute using the technique of Section.5: R R + R C Finally, D C AC C AC) ) 6
Lecture 23: Spectral theory in inner product spaces
Lecture 23: Spectral theory in inner product spaces Recall last time we defined T : V V (in an inner product space V ) to be unitary if T is invertible and T 1 = T. There are alternate characterizations
More informationHarvey Mudd College Math Tutorial: Matrix Algebra. We review here some of the basic definitions and elementary algebraic operations on matrices.
Harvey Mudd College Math Tutorial: Matrix Algebra We review here some of the basiefinitions and elementary algebraic operations on matrices There are many applications as well as much interesting theory
More informationEigenvalues and Eigenvectors
LECTURE 3 Eigenvalues and Eigenvectors Definition 3.. Let A be an n n matrix. The eigenvalueeigenvector problem for A is the problem of finding numbers λ and vectors v R 3 such that Av = λv. If λ, v are
More informationLinear Algebra A Summary
Linear Algebra A Summary Definition: A real vector space is a set V that is provided with an addition and a multiplication such that (a) u V and v V u + v V, (1) u + v = v + u for all u V en v V, (2) u
More informationMath 24 Winter 2010 Wednesday, February 24
(.) TRUE or FALSE? Math 4 Winter Wednesday, February 4 (a.) Every linear operator on an ndimensional vector space has n distinct eigenvalues. FALSE. There are linear operators with no eigenvalues, and
More informationSOLUTIONS TO PROBLEM SET 6
SOLUTIONS TO PROBLEM SET 6 18.6 SPRING 16 Note the difference of conventions: these solutions adopt that the characteristic polynomial of a matrix A is det A xi while the lectures adopt the convention
More information(a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular.
Theorem.7.: (Properties of Triangular Matrices) (a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular. (b) The product
More information6 Inner Product Spaces
Lectures 16,17,18 6 Inner Product Spaces 6.1 Basic Definition Parallelogram law, the ability to measure angle between two vectors and in particular, the concept of perpendicularity make the euclidean space
More informationUnitary Matrices and Hermitian Matrices
Unitary Matrices and Hermitian Matrices 11242014 Recall that the conjugate of a complex number a + bi is a bi The conjugate of a + bi is denoted a+bi or (a+bi) In this section, I ll use ( ) for complex
More informationPOL502: Linear Algebra
POL502: Linear Algebra Kosuke Imai Department of Politics, Princeton University December 12, 2005 1 Matrix and System of Linear Equations Definition 1 A m n matrix A is a rectangular array of numbers with
More informationIntroduction to Systems and General Solutions to Systems
Introduction to Systems and General Solutions to Systems 1 Introduction to Systems We now turn our attention to systems of first order linear equations We will be reviewing some linear algebra as we go,
More informationLECTURE NOTES FOR 416, INNER PRODUCTS AND SPECTRAL THEOREMS
LECTURE NOTES FOR 416, INNER PRODUCTS AND SPECTRAL THEOREMS CHARLES REZK Real inner product. Let V be a vector space over R. A (real) inner product is a function, : V V R such that x, y = y, x for all
More informationChapters 78: Linear Algebra
Sections 75, 78 & 81 Solutions 1 A linear system of equations of the form a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 + + a mn x n = b m can be written
More information(u, Av) = (A T u,v), (6.4)
216 SECTION 6.1 CHAPTER 6 6.1 Hermitian Operators HERMITIAN, ORTHOGONAL, AND UNITARY OPERATORS In Chapter 4, we saw advantages in using bases consisting of eigenvectors of linear operators in a number
More informationMATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix.
MATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix. Inverse matrix Definition. Let A be an n n matrix. The inverse of A is an n n matrix, denoted
More informationUNIT 2 MATRICES  I 2.0 INTRODUCTION. Structure
UNIT 2 MATRICES  I Matrices  I Structure 2.0 Introduction 2.1 Objectives 2.2 Matrices 2.3 Operation on Matrices 2.4 Invertible Matrices 2.5 Systems of Linear Equations 2.6 Answers to Check Your Progress
More informationSOLUTIONS TO HOMEWORK #7, MATH 54 SECTION 001, SPRING 2012
SOLUTIONS TO HOMEWORK #7, MATH 54 SECTION, SPRING JASON FERGUSON Beware of typos These may not be the only ways to solve these problems In fact, these may not even be the best ways to solve these problems
More informationSolutions to Assignment 9
Solutions to Assignment 9 Math 7, Fall 5.. Construct an example of a matrix with only one distinct eigenvalue. [ ] a b We know that if A then the eigenvalues of A are the roots of the characteristic equation
More informationfor any pair of vectors u and v and any pair of complex numbers c 1 and c 2.
Linear Operators in Dirac notation We define an operator Â as a map that associates with each vector u belonging to the (finitedimensional) linear vector space V a vector w ; this is represented by Â u
More information1. Linear systems of equations. Chapters 78: Linear Algebra. Solution(s) of a linear system of equations. Row operations.
A linear system of equations of the form Sections 75 78 & 8 a x + a x + + a n x n = b a x + a x + + a n x n = b a m x + a m x + + a mn x n = b m can be written in matrix form as AX = B where a a a n x
More informationLinear algebra vectors, matrices, determinants
Linear algebra vectors, matrices, determinants Mathematics FRDIS MENDELU Simona Fišnarová Brno 2012 Vectors in R n Definition (Vectors in R n ) By R n we denote the set of all ordered ntuples of real
More informationMATH 304 Linear Algebra Lecture 6: Transpose of a matrix. Determinants.
MATH 304 Linear Algebra Lecture 6: Transpose of a matrix. Determinants. Transpose of a matrix Definition. Given a matrix A, the transpose of A, denoted A T, is the matrix whose rows are columns of A (and
More informationA Crash Course in Linear Algebra
A Crash Course in Linear Algebra Jim Fakonas October, 202 Definitions The goal of this section is to provide a brief refresher in the basic terms and concepts of linear algebra, listed here roughly in
More informationSergei Silvestrov, Christopher Engström, Karl Lundengård, Johan Richter, Jonas Österberg. November 13, 2014
Sergei Silvestrov,, Karl Lundengård, Johan Richter, Jonas Österberg November 13, 2014 Analysis Todays lecture: Course overview. Repetition of matrices elementary operations. Repetition of solvability of
More informationThe Characteristic Polynomial
Physics 116A Winter 2011 The Characteristic Polynomial 1 Coefficients of the characteristic polynomial Consider the eigenvalue problem for an n n matrix A, A v = λ v, v 0 (1) The solution to this problem
More informationMath 1180, Hastings. Notes, part 9
Math 8, Hastings Notes, part 9 First I want to recall the following very important theorem, which only concerns square matrices. We will need to use parts of this frequently. Theorem Suppose that A is
More informationMatrices Gaussian elimination Determinants. Graphics 2011/2012, 4th quarter. Lecture 4: matrices, determinants
Lecture 4 Matrices, determinants m n matrices Matrices Definitions Addition and subtraction Multiplication Transpose and inverse a 11 a 12 a 1n a 21 a 22 a 2n A =...... a m1 a m2 a mn is called an m n
More informationLecture 8. Econ August 19
Lecture 8 Econ 2001 2015 August 19 Lecture 8 Outline 1 Eigenvectors and eigenvalues 2 Diagonalization 3 Quadratic Forms 4 Definiteness of Quadratic Forms 5 Uniqure representation of vectors Eigenvectors
More informationMATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +
More informationDeterminants. Dr. Doreen De Leon Math 152, Fall 2015
Determinants Dr. Doreen De Leon Math 52, Fall 205 Determinant of a Matrix Elementary Matrices We will first discuss matrices that can be used to produce an elementary row operation on a given matrix A.
More informationMATH 304 Linear Algebra Lecture 9: Properties of determinants.
MATH 304 Linear Algebra Lecture 9: Properties of determinants. Determinants Determinant is a scalar assigned to each square matrix. Notation. The determinant of a matrix A = (a ij ) 1 i,j n is denoted
More informationSolutions to Assignment 12
Solutions to Assignment Math 7, Fall 6.7. Let P have the inner product given by evaluation at,,, and. Let p =, p = t and q = /(t 5). Find the best approximation to p(t) = t by polynomials in Span{p, p,
More informationMATH 240 Fall, Chapter 1: Linear Equations and Matrices
MATH 240 Fall, 2007 Chapter Summaries for Kolman / Hill, Elementary Linear Algebra, 9th Ed. written by Prof. J. Beachy Sections 1.1 1.5, 2.1 2.3, 4.2 4.9, 3.1 3.5, 5.3 5.5, 6.1 6.3, 6.5, 7.1 7.3 DEFINITIONS
More informationRefresher course  Mathematics/Matlab
Refresher course  Mathematics/Matlab Joachim Rang October 10, 016 1 Linear algebra 1.1 Vectors, scalar products and norms What is a vector? A vector is a member of a vector space, for example, x = (x
More informationCofactor Expansion: Cramer s Rule
Cofactor Expansion: Cramer s Rule MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Introduction Today we will focus on developing: an efficient method for calculating
More informationSummary of week 8 (Lectures 22, 23 and 24)
WEEK 8 Summary of week 8 (Lectures 22, 23 and 24) This week we completed our discussion of Chapter 5 of [VST] Recall that if V and W are inner product spaces then a linear map T : V W is called an isometry
More informationA matrix over a field F is a rectangular array of elements from F. The symbol
Chapter MATRICES Matrix arithmetic A matrix over a field F is a rectangular array of elements from F The symbol M m n (F) denotes the collection of all m n matrices over F Matrices will usually be denoted
More informationPreliminaries of linear algebra
Preliminaries of linear algebra (for the Automatic Control course) Matteo Rubagotti March 3, 2011 This note sums up the preliminary definitions and concepts of linear algebra needed for the resolution
More informationMath 480 Diagonalization and the Singular Value Decomposition. These notes cover diagonalization and the Singular Value Decomposition.
Math 480 Diagonalization and the Singular Value Decomposition These notes cover diagonalization and the Singular Value Decomposition. 1. Diagonalization. Recall that a diagonal matrix is a square matrix
More informationNotes on Hermitian Matrices and Vector Spaces
1. Hermitian matrices Notes on Hermitian Matrices and Vector Spaces Defn: The Hermitian conjugate of a matrix is the transpose of its complex conjugate. So, for example, if M = 1 i 0, 1 i 1 + i then its
More informationSimilarity and Diagonalization. Similar Matrices
MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that
More information( % . This matrix consists of $ 4 5 " 5' the coefficients of the variables as they appear in the original system. The augmented 3 " 2 2 # 2 " 3 4&
Matrices define matrix We will use matrices to help us solve systems of equations. A matrix is a rectangular array of numbers enclosed in parentheses or brackets. In linear algebra, matrices are important
More informationGRA6035 Mathematics. Eivind Eriksen and Trond S. Gustavsen. Department of Economics
GRA635 Mathematics Eivind Eriksen and Trond S. Gustavsen Department of Economics c Eivind Eriksen, Trond S. Gustavsen. Edition. Edition Students enrolled in the course GRA635 Mathematics for the academic
More information3.2 The Characteristic Equation of a Matrix
32 The Characteristic Equation of a Matrix Let A be a 2 2 matrix; for example A = 2 8 If v is a vector in R 2, eg v = [2, 3], then we can think of the components of v as the entries of a column vector
More informationSolutions to Linear Algebra Practice Problems
Solutions to Linear Algebra Practice Problems. Find all solutions to the following systems of linear equations. (a) x x + x 5 x x x + x + x 5 (b) x + x + x x + x + x x + x + 8x Answer: (a) We create the
More information, we define the determinant of a 21 a 22 A, (also denoted by deta,) to be the scalar. det A = a 11 a 22 a 12 a 21.
70 Chapter 4 DETERMINANTS [ ] a11 a DEFINITION 401 If A 12, we define the determinant of a 21 a 22 A, (also denoted by deta,) to be the scalar The notation a 11 a 12 a 21 a 22 det A a 11 a 22 a 12 a 21
More informationc 1 v 1 + c 2 v c k v k
Definition: A vector space V is a nonempty set of objects, called vectors, on which the operations addition and scalar multiplication have been defined. The operations are subject to ten axioms: For any
More informationCHARACTERISTIC ROOTS AND VECTORS
CHARACTERISTIC ROOTS AND VECTORS 1 DEFINITION OF CHARACTERISTIC ROOTS AND VECTORS 11 Statement of the characteristic root problem Find values of a scalar λ for which there exist vectors x 0 satisfying
More information1 Matrices and matrix algebra
1 Matrices and matrix algebra 11 Examples of matrices Definition: A matrix is a rectangular array of numbers and/or variables For instance 4 2 0 3 1 A 5 12 07 x 3 π 3 4 6 27 is a matrix with 3 rows and
More informationMath 108B Selected Homework Solutions
Math 108B Selected Homework Solutions Charles Martin March 5, 2013 Homework 1 5.1.7 (a) If matrices A, B both represent T under different bases, then for some invertible matrix Q we have B = QAQ 1. Then
More informationMath 2040: Matrix Theory and Linear Algebra II Solutions to Assignment 3
Math 24: Matrix Theory and Linear Algebra II Solutions to Assignment Section 2 The Characteristic Equation 22 Problem Restatement: Find the characteristic polynomial and the eigenvalues of A = Final Answer:
More informationINTRODUCTION TO MATRIX ALGEBRA. a 11 a a 1n a 21 a a 2n...
INTRODUCTION TO MATRIX ALGEBRA 1 DEFINITION OF A MATRIX AND A VECTOR 11 Definition of a matrix A matrix is a rectangular array of numbers arranged into rows and columns It is written as a 11 a 12 a 1n
More information16 Eigenvalues and eigenvectors
6 Eigenvalues and eigenvectors Definition: If a vector x 0 satisfies the equation Ax = λx for some real or complex number λ then λ is said to be an eigenvalue of the matrix A and x is said to be an eigenvector
More informationMATH 304 Linear Algebra Lecture 4: Matrix multiplication. Diagonal matrices. Inverse matrix.
MATH 304 Linear Algebra Lecture 4: Matrix multiplication. Diagonal matrices. Inverse matrix. Matrices Definition. An mbyn matrix is a rectangular array of numbers that has m rows and n columns: a 11
More informationMATH 2030: EIGENVALUES AND EIGENVECTORS
MATH 200: EIGENVALUES AND EIGENVECTORS Eigenvalues and Eigenvectors of n n matrices With the formula for the determinant of a n n matrix, we can extend our discussion on the eigenvalues and eigenvectors
More information18.03 LA.4: Inverses and Determinants
8.3 LA.4: Inverses and Determinants [] Transposes [2] Inverses [3] Determinants [] Transposes The transpose of a matrix A is denoted A T, or in Matlab, A. The transpose of a matrix exchanges the rows and
More informationPHYSICS 116A Homework 8 Solutions 1. Boas, problem Given the matrix, 0 2i 1. i 2 0
PHYSICS 6A Homework 8 Solutions Boas, problem 9 4 Given the matrix, 0 2i A = i 2 0, find the transpose, the inverse, the complex conjugate and the transpose conjugate of A Verify that AA = A A = I, where
More informationand B = 0 1. Since the size of A is 2 3 and that of B is , A B. Do note, however, that the entries of A and B are the same.
Matrix Arithmetic Harold W. Ellingsen Jr. SUNY Potsdam ellinghw@potsdam.edu This supplements Linear Algebra by Hefferon, which is lacking a chapter of matrix arithmetic for its own sake. Instructors who
More informationVector coordinates, matrix elements and changes of basis
Physics 6A Winter Vector coordinates, matrix elements and changes of basis. Coordinates of vectors and matrix elements of linear operators Let V be an ndimensional real (or complex) vector space. Vectors
More informationElements of Matrix Theory
Elements of Matrix Theory M.T. Nair (I.I.T. Madras) March 27 Introduction Notations and Preliminaries Consider the following simultaneous equations  three equations in three unknowns: a x + a 2 x 2 +
More informationMatrices A = n n
Chapter 3 Matrices 3.1 Overview 3.1.1 A matrix is an ordered rectangular array of numbers (or functions). For example, A x 4 3 4 3 x 3 x 4 The numbers (or functions) are called the elements or the entries
More information7. Linearly Homogeneous Functions and Euler's Theorem
24 7. Linearly Homogeneous Functions and Euler's Theorem Let f(x 1,..., x N ) f(x) be a function of N variables defined over the positive orthant, W {x: x >> 0 N }. Note that x >> 0 N means that each component
More informationMATRIX ALGEBRA AND SYSTEMS OF EQUATIONS
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a
More informationMATH 304 Linear Algebra Lecture 34: Review for Test 2.
MATH 304 Linear Algebra Lecture 34: Review for Test 2. Topics for Test 2 Coordinates and linear transformations (Leon 3.5, 4.1 4.3) Coordinates relative to a basis Change of basis, transition matrix Matrix
More informationMath 22 Final Exam 1
Math 22 Final Exam. (36 points) Determine if the following statements are true or false. In each case give either a short justification or example (as appropriate) to justify your conclusion. T F (a) If
More informationSection 1: Linear Algebra
Section 1: Linear Algebra ECO4112F 2011 Linear (matrix) algebra is a very useful tool in mathematical modelling as it allows us to deal with (among other things) large systems of equations, with relative
More information1 Matrix Algebra Review
1 Matrix Algebra Review Introduction This is the matrix review for A Student s Guide to Vectors and Tensors (SGVT). It is not meant to be a thorough introduction to the theory and practice of matrix algebra,
More informationMATH 304 Linear Algebra Lecture 22: Eigenvalues and eigenvectors (continued). Characteristic polynomial.
MATH 304 Linear Algebra Lecture 22: Eigenvalues and eigenvectors (continued). Characteristic polynomial. Eigenvalues and eigenvectors of a matrix Definition. Let A be an n n matrix. A number λ R is called
More informationLinear Algebra: Matrix Eigenvalue Problems
Chap 8 Linear Algebra: Matrix Eigenvalue Problems Sec 81 Eigenvalues, Eigenvectors Eigenvectors of a (square!) matrix A are vectors x, not zero vectors, such that if you multiply them by A, you get a vector
More information2 Length preserving linear transformations.
J Rauch Math 555 Fall 2009 Conformal Matrices Abstract We analyse the elliptical image of spheres by linear transformations We characterize those transformations which preserve lengths (orthogonal matrices)
More information1 Eigenvalues and Eigenvectors
Math 20 Chapter 5 Eigenvalues and Eigenvectors Eigenvalues and Eigenvectors. Definition: A scalar λ is called an eigenvalue of the n n matrix A is there is a nontrivial solution x of Ax = λx. Such an x
More informationMA 52 May 9, Final Review
MA 5 May 9, 6 Final Review This packet contains review problems for the whole course, including all the problems from the previous reviews. We also suggest below problems from the textbook for chapters
More informationMatrix Algebra for Econometrics and Statistics GARTH TARR 2011
Matrix Algebra for Econometrics and Statistics GARTH TARR 2011 Matrix fundamentals [ ] a11 a A = 12 a 13 a 21 a 22 a 23 A matrix is a rectangular array of numbers. Size: (rows) (columns). E.g. the size
More informationLinear Algebra for the Sciences. Thomas Kappeler, Riccardo Montalto
Linear Algebra for the Sciences Thomas Kappeler, Riccardo Montalto 2 Contents Systems of linear equations 5. Linear systems with two equations and two unknowns............ 6.2 Gaussian elimination..............................
More informationTopic 1: Matrices and Systems of Linear Equations.
Topic 1: Matrices and Systems of Linear Equations Let us start with a review of some linear algebra concepts we have already learned, such as matrices, determinants, etc Also, we shall review the method
More informationMath Winter Final Exam
Math 02  Winter 203  Final Exam Problem Consider the matrix (i) Find the left inverse of A A = 2 2 (ii) Find the matrix of the projection onto the column space of A (iii) Find the matrix of the projection
More information1 Systems Of Linear Equations and Matrices
1 Systems Of Linear Equations and Matrices 1.1 Systems Of Linear Equations In this section you ll learn what Systems Of Linear Equations are and how to solve them. Remember that equations of the form a
More informationChapter 4: Binary Operations and Relations
c Dr Oksana Shatalov, Fall 2014 1 Chapter 4: Binary Operations and Relations 4.1: Binary Operations DEFINITION 1. A binary operation on a nonempty set A is a function from A A to A. Addition, subtraction,
More informationChapter 6. Orthogonality
6.3 Orthogonal Matrices 1 Chapter 6. Orthogonality 6.3 Orthogonal Matrices Definition 6.4. An n n matrix A is orthogonal if A T A = I. Note. We will see that the columns of an orthogonal matrix must be
More information10.1 Systems of Linear Equations: Substitution and Elimination
10.1 Systems of Linear Equations: Substitution and Elimination What does it mean to be a solution to a system of equations?  It is the set of all ordered pairs (x, y) that satisfy the two equations. You
More informationLecture 2 Matrix Operations
Lecture 2 Matrix Operations transpose, sum & difference, scalar multiplication matrix multiplication, matrixvector product matrix inverse 2 1 Matrix transpose transpose of m n matrix A, denoted A T or
More informationChapter 2 Review. Solution of Linear Systems by the Echelon Method
Chapter 2 Review Solution of Linear Systems by the Echelon Method A firstdegree equation in n unknowns is any equation of the form a 1 x 1 + a 2 x 2 + + a n x n = k, where a 1, a 2,..., a n and k are
More informationSimilarly rotations R y (θ) commute and rotations R z (θ) commute. In general, however, rotations in three dimensions do not commute.
7. Rotations This lecture is a more formal discussion of orthogonal transformations, the orthogonal group O(3), and especially the orientation preserving ones, SO(3), the rotations. A matrix is defined
More information9 Matrices, determinants, inverse matrix, Cramer s Rule
AAC  Business Mathematics I Lecture #9, December 15, 2007 Katarína Kálovcová 9 Matrices, determinants, inverse matrix, Cramer s Rule Basic properties of matrices: Example: Addition properties: Associative:
More informationMathematics Notes for Class 12 chapter 3. Matrices
1 P a g e Mathematics Notes for Class 12 chapter 3. Matrices A matrix is a rectangular arrangement of numbers (real or complex) which may be represented as matrix is enclosed by [ ] or ( ) or Compact form
More informationCoordinates. Definition Let B = { v 1, v 2,..., v n } be a basis for a vector space V. Let v be a vector in V, and write
MATH10212 Linear Algebra Brief lecture notes 64 Coordinates Theorem 6.5 Let V be a vector space and let B be a basis for V. For every vector v in V, there is exactly one way to write v as a linear combination
More informationContents Matrices Vector Calculus
Contents 1 Matrices 1 1.1 Introduction................................... 1 1. Determinant of a matrix............................ 1.3 Inverse of a matrix............................... 4 1.4 Eigenvalues
More information2.5 Complex Eigenvalues
1 25 Complex Eigenvalues Real Canonical Form A semisimple matrix with complex conjugate eigenvalues can be diagonalized using the procedure previously described However, the eigenvectors corresponding
More informationMatrices provide a compact notation for expressing systems of equations or variables. For instance, a linear function might be written as: x n.
X. LINEAR ALGEBRA: THE BASICS OF MATRICES Matrices provide a compact notation for expressing systems of equations or variables. For instance, a linear function might be written as: y = a 1 + a 2 + a 3
More informationElementary Matrix Theory
4 We will be using matrices: 1 For describing change of basis formulas 2 For describing how to compute the result of any given linear operation acting on a vector (eg, finding the components with respect
More informationHomework Two Solutions
Homework Two Solutions Keith Fratus July 6, 20 Problem One. Part a To show that this operator is not Hermitian, we will show that it fails to satisfy the equation f ˆD g = g ˆD f, which is one of the ways
More informationMAT 2038 LINEAR ALGEBRA II Instructor: Engin Mermut Course assistant: Zübeyir Türkoğlu web:
MAT 2038 LINEAR ALGEBRA II 15.05.2015 Dokuz Eylül University, Faculty of Science, Department of Mathematics Instructor: Engin Mermut Course assistant: Zübeyir Türkoğlu web: http://kisi.deu.edu.tr/engin.mermut/
More informationFacts About Eigenvalues
Facts About Eigenvalues By Dr David Butler Definitions Suppose A is an n n matrix An eigenvalue of A is a number λ such that Av = λv for some nonzero vector v An eigenvector of A is a nonzero vector v
More informationChapters 2 & 3: Matrices, Systems of Linear Equations, and Determinants
Chapters 2 & 3: Matrices, Systems of Linear Equations, and Determinants Philip Gressman University of Pennsylvania Philip Gressman Math 240 002 2014C: Chapter 2 1 / 36 Matrices: Definitions, Notation,
More informationVectors. Arrows that have the same direction and length represent the same vector.
Part 1. 1 Part 1. Vectors A vector in the plane is a quantity that has both a magnitude and a direction. We can represent it by an arrow. Arrows that have the same direction and length represent the same
More information1 Eigenvalues and Eigenvectors
Eigenvalues and Eigenvectors The product Ax of a matrix A M n n (R) and an nvector x is itself an nvector Of particular interest in many settings (of which differential equations is one) is the following
More information2.5 Elementary Row Operations and the Determinant
2.5 Elementary Row Operations and the Determinant Recall: Let A be a 2 2 matrtix : A = a b. The determinant of A, denoted by det(a) c d or A, is the number ad bc. So for example if A = 2 4, det(a) = 2(5)
More informationMath 322 Definitions and Theorems
Math 322 Definitions and Theorems Theorem 1.1 (Cancellation Law for Vector Addition). If x,y, and z are vectors in a vector space V such that x+z = y+z, then x = y. Corollary 1. The zero vector in a vector
More informationEigenvalues and Eigenvectors
Math 20F Linear Algebra Lecture 2 Eigenvalues and Eigenvectors Slide Review: Formula for the inverse matrix. Cramer s rule. Determinants, areas and volumes. Definition of eigenvalues and eigenvectors.
More informationChapter 8. Matrices II: inverses. 8.1 What is an inverse?
Chapter 8 Matrices II: inverses We have learnt how to add subtract and multiply matrices but we have not defined division. The reason is that in general it cannot always be defined. In this chapter, we
More information