Interface design of a virtual laboratory for mobile robot programming

Size: px
Start display at page:

Download "Interface design of a virtual laboratory for mobile robot programming"

Transcription

1 Interface design of a virtual laboratory for mobile robot programming U. Borgolte * FernUniversität in Hagen, M+I/PRT, Universitätsstr. 27, Hagen, Germany This paper presents architectural considerations for a remotely operable laboratory with a mobile robot. The laboratory is used in student education within the MSc programme Mechatronics at FernUniversität in Hagen. It forms the practical part of the module Mechatronics and Robotics. Main objective of the laboratory is to learn about behaviour based programming, and simultaneously learning about differences between simulation and reality. Keywords virtual laboratory; mobile robots; robot programming; simulation; practical experience 1. Introduction FernUniversität in Hagen is the only distance-teaching university in the German-speaking countries. As the principle of distance education is in the main focus of our university, minimization of physical attendance of students is crucial. On the other hand, this causes some problems in teaching. Hands-on experience is essential in engineering education. This is especially true for students starting their studies with no prior practice. At conventional universities, this experience is gained by laboratory experiments. Even in distance education, students very often have to travel to the university to access laboratory equipment. Remote operation of a laboratory requires a certain bandwidth to allow real-time data transfer and video streaming for monitoring of the lab. With the increased availability of broadband network connections, several remotely operable laboratories have been developed [1]. But these labs were restricted to set-ups where no motion or only restricted motion was possible. This paper presents ongoing work on a laboratory, where a mobile robot can be programmed to execute any possible movement in its environment without any restriction. Thus automatic measures have to be taken to ensure un-supervised operation of the lab. 2. Layout of the robot laboratory The students have to develop programs for the mobile robot Pioneer 3 AT by ActivMedia Robotics, now MobileRobots Inc [2]. The sensorial system of the robot consists of bumpers, ultrasonic sensors, a SICK laser scanner, and a video camera (fig. 1). Within the lab only the laser scanner is used. The ultrasonic sensors are not used because signal noise is very high in the narrow environment. The video camera is not used at this stage because processing of video pictures is far beyond the scope of the experiments. Fig. 1 Mobile robot Pioneer 3 AT. Fig. 2 Robot maze. * Corresponding author: ulrich.borgolte@fernuni-hagen.de, Phone: +49 (0)

2 Students work in the lab should concentrate on the main topics and should not be hindered by complex disturbing influences. Therefore, instead of a natural environment, an artificial and fully controlled environment is used. The experimental plant is set up of a maze. The task of the robot is to drive through the hallways while avoiding collisions with the walls. The starting position is characterized by a specific width of the hallway. Once the robot starting position is reached again, the robot program shall identify it, rotate the robot into the original orientation, and stop all further movements. The maze s structure is extremely simple, with flat and perpendicular walls, well known angles and dimensions (fig. 2) [3]. With this simplification, the students are able to concentrate on basic principles of behaviour based programming, instead of struggling with strange effects of sensor readings and complicated geometric computations. 3. Laboratory for conventional operation As of today, the laboratory is still used in a conventional way as a presence laboratory. Therefore, students have to travel to the university; they can program the robot, execute the programs and intervene directly if anything goes wrong. There is direct access to the maze, and there is a supervisor to assist them. Programming is done in COLBERT, which is a designated programming language for behaviour based programming of robots. Its structure is very close to C, but much more simple and easy to understand. COLBERT offers quasi-parallel execution of activities. The programming environment is Saphira, once provided by the robot s manufacturer, MobileRobots. Though Saphira is no longer supported nor distributed by MobileRobots, it is still used in the lab as it works quite well for education purposes. A sample screenshot of the Saphira window is shown in fig. 3. Executing new programs on the robot is a little bit dangerous. Saphira offers the possibility to test programs before loading them to the real robot. Testing is done by establishing a connection between Saphira and SRIsim, which is a specialized simulation environment for devices from MobileRobots. The connection is via TCP/IP, with the same mechanisms as with the real robot. In SRIsim, environments can be defined by simple geometric commands. SRIsim reports back sensor signals corresponding to the situation of the simulated robot in this environment. Both ultrasonic and laser scanners are supported. To minimize the gap between simulation and reality, sensor signals are superimposed with artificial noise. In Saphira, the ultrasonic sensor readings are animated by dots, the laser readings by green lines (fig. 3). In addition to the Saphira and the SRIsim window, one more window showing the current status of the activities can be displayed. This information can be very helpful to test and debug programs. The whole programming environment is shown in fig. 4. Fig. 3 Saphira window. Fig. 4 Programming and simulation environment The communication structure is identical for simulation and application of the real robot. In general, Saphira communicates via a wireless link and standard Ethernet-protocol with the robot (fig. 5). The Pioneer is equipped with a PC board and a micro-controller board. The PC board is running Linux; it offers a user interface for direct interaction with the robot. For applications where no data link is available, Saphira can run on the robot-pc 403

3 directly. Thus a fully autonomous operation is possible. The movement commands are executed on the microcontroller board, where the feedback control is located, too. The communication between PC board and micro-controller board is serial via standard RS-232. For remote operation of the robot, the robot PC is barely more than an interface between the network link and the microcontroller (fig. 5). For Saphira, the robot-pc is invisible, there are no commands to the PC, and there is no feedback generated by the PC. Saphira WLAN Sensors Robot-PC Sensors Micro-controller Motors Fig. 5 General communication structure 4. Laboratory for remote operation If the laboratory is remotely operated, the most obvious change is in the location of the components of the programming environment. The PC where Saphira is hosted will be at the student s home, while the other parts are still in the real laboratory at the university. The student is able to simulate the programs in the same way is within the university, that is locally on his/her PC where Saphira is located. As soon as the student is connecting with the real robot, communication between Saphira and the robot-pc will be mediated by the Internet. This change will not influence any of the components directly. Every time a student wants to start the lab, it needs to be in its initial state. This has to be ensured 24 hours a day, 7 days a week, independently from the previous actions on the lab. Thus after a student finishes his/her experiment, the next student shall be able to start the lab in exactly the same way. If the experiment goes well and the task of the robot is executed as desired, this condition is true. But during program execution, something may go wrong and may prevent the robot from returning to its start position. This causes a problem if no one is present in the laboratory to intervene and to rectify the situation. The main reason for these failures is a kind of deadlock. The robot is equipped with bumpers both on the front and the rear side (fig. 1). When activated, these bumpers disable movements in the respective direction. This can lead to situations where the robot is no more able to drive forwards or backwards, or even to turn on the spot. Such problems can occur in the corners of the maze, if the robot touches the walls with both the front and the rear bumpers. Thus measures need to be implemented to avoid such situations. In particular, the following sub-problems have to be tackled: Detection of potential collision situations Avoidance of collisions Save return to docking station As mentioned before, movement commands from Saphira are directed to the micro-controller via the PC board on the robot. In the same way, sensor signals are routed back from the sensors to Saphira. The routing in both directions is done by a small program called ipthru (fig. 6). It simply acts as a logical interface between the physical Ethernet and serial interfaces. But at the same time, it is the program where all information on the status of the robot, on the commanded movements, and on the sensor readings is available. Therefore, it is the ideal location for implementing all the measures necessary for un-supervised operation. To make life easy, ipthru is split up into two parts, and the collision check and collision avoidance is put in between these parts (fig. 7). The ipthru/1 receives the original motion commands from Saphira and sends back the sensor readings to Saphira. The ipthru/2 sends modified motion commands to the micro-controller and receives sensor data from the sensors. 404

4 Saphira Program WLAN Motion commands ipthru Robot PC RS 232 Motion commands ARIA Robot micro-controller Fig. 6 Routing of movement commands and sensor data 4.1 Decomposition of movement commands If movement commands are limited (e.g. move 500 [mm]), it is easy to check if these will lead to collisions with the environment (see 4.2). The situation becomes more complicated, if rotational and longitudinal movements are superimposed. In this case, the area that will be traversed needs to be computed before checking the sensor data. The most complicated case is if movements are not limited. This can occur if a speed only is commanded (e.g. speed 200 [mm/sec]). The robot will move with this speed until the speed will be altered by another command. Therefore, it is not possible to calculate a boundary of the movement. For this reason, a different approach will be implemented. First of all, the current direction of movement will be calculated. Next, a limited movement command is generated which directs the robot in the same direction, but for a well known distance only. For this command, the simple collision check can be executed. If there is no danger of collision, the movement will be done and the next limited movement command will be calculated. This procedure will stop as soon as Saphira sends an altering command. Motion commands ipthru / 1 de-composition into basic movements collision check collision free movements ipthru / 2 Fig. 7 Structure of collision detection and avoidance 4.2 Detection of danger of collision 405

5 If length and direction of a movement are known, the checker simply needs to ask the laser scanner if there are obstacles within the direction of movement and if these obstacles are in less distance than the length of the movement. For linear movements, the area to be checked is the rectangle in front of the robot with the width of the robot and the length of the intended motion. For circular movements, the checked area is defined by the segment of a circle which is given by the rotation of the robot and the distance to be travelled. This includes zones never passed by the robot, but for simplification of computation these can act as safety margins. The laser sensor scans an angle of 180 in front of the robot. It does not cover parts of the sides and nothing behind the robot. If the robot turns on the spot or drives backwards, it is not possible to scan the whole area of movement by the laser scanner. In this case, the ultrasonic sensors need to be checked. Even if the signals from these sensors by far are not as precise as those from the laser scanner, they can indicate the existence of obstacles. Though the students do not deal with maps of the environment, it can ease the detection of risk of collisions if the checker builds a local map from the sensor signals by applying a SLAM algorithm [4]. Within this map, the path of the robot and the areas crossed by the robot allow more precise calculations where collisions could occur. Thus the safety margins can be chosen much smaller than with the simple methods mentioned above. 4.3 Collision avoidance If there are no obstacles within the predicted area of movement, the command can be executed without modification. In this case, the original or de-composed limited movement command is directed to ipthru/2. If there is a danger of collision, the movement will not be executed (it is not intended to drive around obstacles, but simply to ensure that the bumpers will not be activated). In this case, a speed 0 -command is given to ipthru/2 and the robot is stopped. In general, the user is not aware of the collision avoidance mechanism within the robot. Thus he/she will expect a causal dependency between the original program and the activities of the robot. To avoid confusion on the strange collision avoidance behaviour, this must be signalled to the user. As the only link back from the robot to Saphira is via the sensor signals, these are used to indicate the modification of the program to the user. So, the sensor signals will be modified to display the activation of the bumpers. The user will be informed by this hint that a collision has been prevented and that the robot program has to be changed. 4.4 Save return In the conventional operated lab, the robot is connected to the charging station manually after completion of its task. In case of a remotely operated lab, a standard procedure needs to be run every time a user disconnects from the lab. Within this procedure, the robot needs to identify its location, and to plan and execute a path to the charging station. This procedure can be activated by the host computer which is scheduling the access slots of the students. In addition, battery charge need to be supervised all the time the robot is running. The path to the charging station can be found in the maze environment by following the walls until the charging station is reached. But a better and more reliable solution is the usage of a map. As the environment is very simple, small, and time-invariant, a predefined map is the best solution. This can also be used instead of SLAM for the detection of dangers of collision. 5. Conclusion In this paper, methods and tools are presented to upgrade an existing laboratory for mobile robot programming to a remotely operated lab. The intention is to allow students running the lab from home, relieving them from travelling to the university, without loosing any information they get in the real laboratory. Remote access is quite simple with the programming environment used, as it is TCP/IP based even for the local access. But special attention is necessary to ensure 24/7 availability of the laboratory without human intervention. The work on this conversion is on-going. References [1] A. Bischoff and C. Röhrig, Remote Experimentation in a Collaborative Virtual Environment, 20 th World Conference on Open Learning and Distance Education, ICDE-2001, Düsseldorf, Germany (2001). [2] [3] U. Borgolte, Reaktive Roboter-Programmierung, FernUniversität in Hagen, internal paper (in German), (2008). [4] J. J. Leonard and H. F. Durrant-Whyte, (1991). Simultaneous map building and localization for an autonomous mobile robot, Proceedings Int. Conference on Intelligent Robots and Systems, IROS'91, Osaka, Japan (1991). 406

Autonomous Advertising Mobile Robot for Exhibitions, Developed at BMF

Autonomous Advertising Mobile Robot for Exhibitions, Developed at BMF Autonomous Advertising Mobile Robot for Exhibitions, Developed at BMF Kucsera Péter (kucsera.peter@kvk.bmf.hu) Abstract In this article an autonomous advertising mobile robot that has been realized in

More information

Automotive Applications of 3D Laser Scanning Introduction

Automotive Applications of 3D Laser Scanning Introduction Automotive Applications of 3D Laser Scanning Kyle Johnston, Ph.D., Metron Systems, Inc. 34935 SE Douglas Street, Suite 110, Snoqualmie, WA 98065 425-396-5577, www.metronsys.com 2002 Metron Systems, Inc

More information

Applications > Robotics research and education > Assistant robot at home > Surveillance > Tele-presence > Entertainment/Education > Cleaning

Applications > Robotics research and education > Assistant robot at home > Surveillance > Tele-presence > Entertainment/Education > Cleaning Introduction robulab 10 is a multi-purpose mobile robot designed for various indoor applications, such as research and education, tele-presence, assistance to people staying at home. robulab 10 is a generic

More information

Surveillance System Using Wireless Sensor Networks

Surveillance System Using Wireless Sensor Networks Surveillance System Using Wireless Sensor Networks Dan Nguyen, Leo Chang Computer Engineering, Santa Clara University Santa Clara, California, USA dantnguyen84@gmail.com chihshun@gmail.com Abstract The

More information

Automated Container Handling in Port Terminals

Automated Container Handling in Port Terminals Automated Container Handling in Port Terminals Overview. Shipping containers revolutionized the movement of goods, driving change and efficiency throughout the global supply chain. The next revolution

More information

Data Sheet. Remote Presence for the Enterprise. Product Overview. Benefits of Video Collaboration Robots

Data Sheet. Remote Presence for the Enterprise. Product Overview. Benefits of Video Collaboration Robots Data Sheet Remote Presence for the Enterprise Product Overview irobot Ava 500 Video Collaboration Robot builds on the value of telepresence by extending the power of in-person beyond fixed environments

More information

Development of Docking System for Mobile Robots Using Cheap Infrared Sensors

Development of Docking System for Mobile Robots Using Cheap Infrared Sensors Development of Docking System for Mobile Robots Using Cheap Infrared Sensors K. H. Kim a, H. D. Choi a, S. Yoon a, K. W. Lee a, H. S. Ryu b, C. K. Woo b, and Y. K. Kwak a, * a Department of Mechanical

More information

Project Development Plan

Project Development Plan Project Development Plan Roverwerx A.R.M. IRP Santa Clara University Richard Rasay 1 TABLE OF CONTENTS Introduction 1 Software Design.3 Robot-Side Application.5 Client-Side Application.7 Current Status

More information

Microcontrollers, Actuators and Sensors in Mobile Robots

Microcontrollers, Actuators and Sensors in Mobile Robots SISY 2006 4 th Serbian-Hungarian Joint Symposium on Intelligent Systems Microcontrollers, Actuators and Sensors in Mobile Robots István Matijevics Polytechnical Engineering College, Subotica, Serbia mistvan@vts.su.ac.yu

More information

Mobile Robotics I: Lab 2 Dead Reckoning: Autonomous Locomotion Using Odometry

Mobile Robotics I: Lab 2 Dead Reckoning: Autonomous Locomotion Using Odometry Mobile Robotics I: Lab 2 Dead Reckoning: Autonomous Locomotion Using Odometry CEENBoT Mobile Robotics Platform Laboratory Series CEENBoT v2.21 '324 Platform The Peter Kiewit Institute of Information Science

More information

The Basics of Robot Mazes Teacher Notes

The Basics of Robot Mazes Teacher Notes The Basics of Robot Mazes Teacher Notes Why do robots solve Mazes? A maze is a simple environment with simple rules. Solving it is a task that beginners can do successfully while learning the essentials

More information

A Surveillance Robot with Climbing Capabilities for Home Security

A Surveillance Robot with Climbing Capabilities for Home Security Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 2, Issue. 11, November 2013,

More information

Office Automation. Industrial Automation. Information Technology and Automation Systems in Industrial Applications. Product Development.

Office Automation. Industrial Automation. Information Technology and Automation Systems in Industrial Applications. Product Development. Information Technology and Automation Systems in Industrial Suppliers Customers Corporate Office Automation Product Development Sales and Customer Services Finance Industrial Automation Main Focus in our

More information

SE05: Getting Started with Cognex DataMan Bar Code Readers - Hands On Lab Werner Solution Expo April 8 & 9

SE05: Getting Started with Cognex DataMan Bar Code Readers - Hands On Lab Werner Solution Expo April 8 & 9 SE05: Getting Started with Cognex DataMan Bar Code Readers - Hands On Lab Werner Solution Expo April 8 & 9 Learning Goals: At the end of this lab, the student should have basic familiarity with the DataMan

More information

JAVA-BASED FRAMEWORK FOR REMOTE ACCESS TO LABORATORY EXPERIMENTS. Department of Electrical Engineering University of Hagen D-58084 Hagen, Germany

JAVA-BASED FRAMEWORK FOR REMOTE ACCESS TO LABORATORY EXPERIMENTS. Department of Electrical Engineering University of Hagen D-58084 Hagen, Germany JAVA-BASED FRAMEWORK FOR REMOTE ACCESS TO LABORATORY EXPERIMENTS Christof Röhrig, 1 Andreas Jochheim 2 Department of Electrical Engineering University of Hagen D-58084 Hagen, Germany Abstract: This paper

More information

Robotics for distance learning: a case study from a UK masters programme

Robotics for distance learning: a case study from a UK masters programme Robotics for distance learning: a case study from a UK masters programme Jenny Carter De Montfort University The Gateway Leicester LE1 9BH jennyc@dmu.ac.uk http://www.cse.dmu.ac.uk/msccir/ Simon Coupland

More information

DESIGN AND IMPLEMENTATION OF LOW COST HOME SECURITY SYSTEM USING PIC MICROCONTROLLER ANDGSM NETWORK

DESIGN AND IMPLEMENTATION OF LOW COST HOME SECURITY SYSTEM USING PIC MICROCONTROLLER ANDGSM NETWORK DESIGN AND IMPLEMENTATION OF LOW COST HOME SECURITY SYSTEM USING PIC MICROCONTROLLER ANDGSM NETWORK Varun Goel 1, Vinni 2 Abhishek Goel 3 1,2,3 Electronics & Communication Engineering Department, Hindu

More information

Creating 2D Isometric Drawings

Creating 2D Isometric Drawings 1-(800) 877-2745 www.ashlar-vellum.com Creating 2D Isometric Drawings Using Graphite TM Copyright 2008 Ashlar Incorporated. All rights reserved. C62DISO0806. Ashlar-Vellum Graphite No matter how many Top,

More information

DEVELOPING A PHYSICAL EMULATOR FOR A FLEXIBLE MANUFACTURING SYSTEM

DEVELOPING A PHYSICAL EMULATOR FOR A FLEXIBLE MANUFACTURING SYSTEM DEVELOPING A PHYSICAL EMULATOR FOR A FLEXIBLE MANUFACTURING SYSTEM Fernando G. Gonzalez Department of Electrical and Computer Engineering University of Central Florida Orlando, Florida 32816 USA (407)823-3987

More information

Mobile Robot FastSLAM with Xbox Kinect

Mobile Robot FastSLAM with Xbox Kinect Mobile Robot FastSLAM with Xbox Kinect Design Team Taylor Apgar, Sean Suri, Xiangdong Xi Design Advisor Prof. Greg Kowalski Abstract Mapping is an interesting and difficult problem in robotics. In order

More information

Bullet Camera. Installation Guide. Hangzhou Hikvision Digital Technology Co., Ltd. http://www.hikvision.com

Bullet Camera. Installation Guide. Hangzhou Hikvision Digital Technology Co., Ltd. http://www.hikvision.com Bullet Camera Installation Guide Hangzhou Hikvision Digital Technology Co., Ltd. http://www.hikvision.com 1 Thank you for purchasing our product. If there are any questions, or requests, please do not

More information

A 5 Degree Feedback Control Robotic Arm (Haptic Arm)

A 5 Degree Feedback Control Robotic Arm (Haptic Arm) A 5 Degree Feedback Control Robotic Arm (Haptic Arm) 1 Prof. Sheetal Nirve, 2 Mr.Abhilash Patil, 3 Mr.Shailesh Patil, 4 Mr.Vishal Raut Abstract: Haptics is the science of applying touch sensation and control

More information

SPRING SEMESTER. Turhan DOAN from Computer Engineering Department: Software Development Process

SPRING SEMESTER. Turhan DOAN from Computer Engineering Department: Software Development Process SPRING SEMESTER In this semester, we have started to make our regular meetings. In our first meeting, we talked about last semester and tried to evaluate our progress and found our missing points. And

More information

West Virginia University College of Engineering and Mineral Resources. Computer Engineering 313 Spring 2010

West Virginia University College of Engineering and Mineral Resources. Computer Engineering 313 Spring 2010 College of Engineering and Mineral Resources Computer Engineering 313 Spring 2010 Laboratory #4-A (Micromouse Algorithms) Goals This lab introduces the modified flood fill algorithm and teaches how to

More information

Adaptive Cruise Control

Adaptive Cruise Control IJIRST International Journal for Innovative Research in Science & Technology Volume 3 Issue 01 June 2016 ISSN (online): 2349-6010 Adaptive Cruise Control Prof. D. S. Vidhya Assistant Professor Miss Cecilia

More information

Massachusetts Institute of Technology

Massachusetts Institute of Technology Objectives Massachusetts Institute of Technology Robotics: Science and Systems I Lab 1: System Overview and Introduction to the µorcboard Distributed: February 4, 2015, 3:30pm Checkoffs due: February 9,

More information

A System for Capturing High Resolution Images

A System for Capturing High Resolution Images A System for Capturing High Resolution Images G.Voyatzis, G.Angelopoulos, A.Bors and I.Pitas Department of Informatics University of Thessaloniki BOX 451, 54006 Thessaloniki GREECE e-mail: pitas@zeus.csd.auth.gr

More information

COMPUTER BASED REMOTE CONTROL FOR LAYOUT OF SCALED MODEL TRAINS

COMPUTER BASED REMOTE CONTROL FOR LAYOUT OF SCALED MODEL TRAINS COMPUTER BASED REMOTE CONTROL FOR LAYOUT OF SCALED MODEL TRAINS Ivan Ivanov Monov, Ivan Petrov Gorchev Technical University - Sofia, 8 Kliment Ohridski Blvd., Sofia 1000, Bulgaria, phone: +359 887 204488,

More information

Analog control unit for mobile robots

Analog control unit for mobile robots Analog control unit for mobile robots Soldering kit for experimentation For Fischertechnik robots and others Most diverse functions Requires no programming Patented sensor technology Summary We are pleased

More information

TRIMBLE ATS TOTAL STATION ADVANCED TRACKING SYSTEMS FOR HIGH-PRECISION CONSTRUCTION APPLICATIONS

TRIMBLE ATS TOTAL STATION ADVANCED TRACKING SYSTEMS FOR HIGH-PRECISION CONSTRUCTION APPLICATIONS TRIMBLE ATS TOTAL STATION ADVANCED TRACKING SYSTEMS FOR HIGH-PRECISION CONSTRUCTION APPLICATIONS BY MARTIN WAGENER APPLICATIONS ENGINEER, TRIMBLE EUROPE OVERVIEW Today s construction industry demands more

More information

Visual Servoing Methodology for Selective Tree Pruning by Human-Robot Collaborative System

Visual Servoing Methodology for Selective Tree Pruning by Human-Robot Collaborative System Ref: C0287 Visual Servoing Methodology for Selective Tree Pruning by Human-Robot Collaborative System Avital Bechar, Victor Bloch, Roee Finkelshtain, Sivan Levi, Aharon Hoffman, Haim Egozi and Ze ev Schmilovitch,

More information

Managing Variability in Software Architectures 1 Felix Bachmann*

Managing Variability in Software Architectures 1 Felix Bachmann* Managing Variability in Software Architectures Felix Bachmann* Carnegie Bosch Institute Carnegie Mellon University Pittsburgh, Pa 523, USA fb@sei.cmu.edu Len Bass Software Engineering Institute Carnegie

More information

Information Technology Career Field Pathways and Course Structure

Information Technology Career Field Pathways and Course Structure Information Technology Career Field Pathways and Course Structure Courses in Information Support and Services (N0) Computer Hardware 2 145025 Computer Software 145030 Networking 2 145035 Network Operating

More information

Robotic Home Assistant Care-O-bot: Past Present Future

Robotic Home Assistant Care-O-bot: Past Present Future Robotic Home Assistant Care-O-bot: Past Present Future M. Hans, B. Graf, R.D. Schraft Fraunhofer Institute for Manufacturing Engineering and Automation (IPA) Nobelstr. 12, Stuttgart, Germany E-mail: {hans,

More information

Supervision software for Intrusion detection, Fire detection and CCTV systems

Supervision software for Intrusion detection, Fire detection and CCTV systems Supervision software for Intrusion detection, Fire detection and CCTV systems elmospa.com Global security solutions Globalpro GLOBALPRO is the new supervision software that allows to obtain a powerful

More information

Robot Task-Level Programming Language and Simulation

Robot Task-Level Programming Language and Simulation Robot Task-Level Programming Language and Simulation M. Samaka Abstract This paper presents the development of a software application for Off-line robot task programming and simulation. Such application

More information

REMOTE CONTROL OF REAL EXPERIMENTS VIA INTERNET

REMOTE CONTROL OF REAL EXPERIMENTS VIA INTERNET REMOTE CONTROL OF REAL EXPERIMENTS VIA INTERNET Carine Campos Teixeira, carinect@ita.br Jeeves Lopes dos Santos, jeeves@ita.br Cairo Lúcio Nascimento Júnior, cairo@ita.br Instituto Tecnológico de Aeronáutica,

More information

Synapse s SNAP Network Operating System

Synapse s SNAP Network Operating System Synapse s SNAP Network Operating System by David Ewing, Chief Technology Officer, Synapse Wireless Today we are surrounded by tiny embedded machines electro-mechanical systems that monitor the environment

More information

Controlling a Mobile Robot with a Personal Digital Assistant

Controlling a Mobile Robot with a Personal Digital Assistant Session 2620 Controlling a Mobile Robot with a Personal Digital Assistant Robert L. Avanzato Penn State Abington Abstract Penn State Abington has been exploring the application of personal digital assistant

More information

KS3 Computing Group 1 Programme of Study 2015 2016 2 hours per week

KS3 Computing Group 1 Programme of Study 2015 2016 2 hours per week 1 07/09/15 2 14/09/15 3 21/09/15 4 28/09/15 Communication and Networks esafety Obtains content from the World Wide Web using a web browser. Understands the importance of communicating safely and respectfully

More information

MSc in Autonomous Robotics Engineering University of York

MSc in Autonomous Robotics Engineering University of York MSc in Autonomous Robotics Engineering University of York Practical Robotics Module 2015 A Mobile Robot Navigation System: Labs 1a, 1b, 2a, 2b. Associated lectures: Lecture 1 and lecture 2, given by Nick

More information

Application of a Web-based Monitoring and Control system in Plastic Rotational Moulding Machine

Application of a Web-based Monitoring and Control system in Plastic Rotational Moulding Machine Application of a Web-based Monitoring and Control system in Plastic Rotational Moulding Machine Mário Rodrigues 1, José Mendes 2, and Jaime Fonseca 3 University of Minho 1,2,3 Dept. of Industrial Electronics

More information

Praktikum "Mobile Roboter" mit Simulation und Telerobotik-Zugang (TELEBOTS)

Praktikum Mobile Roboter mit Simulation und Telerobotik-Zugang (TELEBOTS) Praktikum "Mobile Roboter" mit Simulation und Telerobotik-Zugang (TELEBOTS) Universität Hamburg Fachbereich Informatik, Arbeitsbereich TAMS Dr. Houxiang Zhang, Dipl.-Inform. Tim Baier, Weining Zheng Zwischenbericht

More information

Introduction to programming moway

Introduction to programming moway moway Contents Contents... 1 Introduction... 2 Flowcharts... 2 Movement blocks... 5 Conditionals... 6 Loops... 7 AND/OR Operators... 8 Setting flowcharts in order... 10 www.moway-robot.com 1 Introduction

More information

A Measurement of 3-D Water Velocity Components During ROV Tether Simulations in a Test Tank Using Hydroacoustic Doppler Velocimeter

A Measurement of 3-D Water Velocity Components During ROV Tether Simulations in a Test Tank Using Hydroacoustic Doppler Velocimeter A Measurement of 3-D Water Velocity Components During ROV Tether Simulations in a Test Tank Using Hydroacoustic Doppler Velocimeter Leszek Kwapisz (*) Marek Narewski Lech A.Rowinski Cezary Zrodowski Faculty

More information

Protocol Data Units and Encapsulation

Protocol Data Units and Encapsulation Chapter 2: Communicating over the 51 Protocol Units and Encapsulation For application data to travel uncorrupted from one host to another, header (or control data), which contains control and addressing

More information

AXIS 262+ Network Video Recorder

AXIS 262+ Network Video Recorder 31433/EN/R4/0803 Complete Network Video Recording Solution Complete Network Video Recording Solution Picture this: A simple and reliable, plug-and-play video surveillance system for hotels, shops, banks,

More information

Tube Control Measurement, Sorting Modular System for Glass Tube

Tube Control Measurement, Sorting Modular System for Glass Tube Tube Control Measurement, Sorting Modular System for Glass Tube Tube Control is a modular designed system of settled instruments and modules. It comprises measuring instruments for the tube dimensions,

More information

4. CAMERA ADJUSTMENTS

4. CAMERA ADJUSTMENTS 4. CAMERA ADJUSTMENTS Only by the possibility of displacing lens and rear standard all advantages of a view camera are fully utilized. These displacements serve for control of perspective, positioning

More information

Synthetic Sensing: Proximity / Distance Sensors

Synthetic Sensing: Proximity / Distance Sensors Synthetic Sensing: Proximity / Distance Sensors MediaRobotics Lab, February 2010 Proximity detection is dependent on the object of interest. One size does not fit all For non-contact distance measurement,

More information

EDI Distributor Control Interface Wiring and Setup Instructions

EDI Distributor Control Interface Wiring and Setup Instructions Universal I/O EDI Distributor Control Interface Wiring and Setup Instructions EDI UNIVERSAL I/O INTERFACE MODULE The only interface needed for EDI-V5 controls Network compatible with all older EDI controls

More information

Force/position control of a robotic system for transcranial magnetic stimulation

Force/position control of a robotic system for transcranial magnetic stimulation Force/position control of a robotic system for transcranial magnetic stimulation W.N. Wan Zakaria School of Mechanical and System Engineering Newcastle University Abstract To develop a force control scheme

More information

SNC-VL10P Video Network Camera

SNC-VL10P Video Network Camera SNC-VL10P Video Network Camera CHANGING THE WAY BUSINESS 2AM. WATCHING HIS NEW PRODUCTION LINE. 10,000 MILES AWAY. COMMUNICATES www.sonybiz.net/netstation CORPORATE COMMUNICATIONS SURVEILLANCE VIDEOCONFERENCING

More information

CIM Computer Integrated Manufacturing

CIM Computer Integrated Manufacturing INDEX CIM IN BASIC CONFIGURATION CIM IN ADVANCED CONFIGURATION CIM IN COMPLETE CONFIGURATION DL CIM A DL CIM B DL CIM C DL CIM C DL CIM B DL CIM A Computer Integrated Manufacturing (CIM) is a method of

More information

Static Environment Recognition Using Omni-camera from a Moving Vehicle

Static Environment Recognition Using Omni-camera from a Moving Vehicle Static Environment Recognition Using Omni-camera from a Moving Vehicle Teruko Yata, Chuck Thorpe Frank Dellaert The Robotics Institute Carnegie Mellon University Pittsburgh, PA 15213 USA College of Computing

More information

White Paper Creating a Video Matrix over IP

White Paper Creating a Video Matrix over IP White Paper Creating a Video Matrix over IP As the worlds of AV and IT converge, software is rapidly becoming the new frontier of AV development. In the old days, once there was a picture on the screen

More information

An Instructional Aid System for Driving Schools Based on Visual Simulation

An Instructional Aid System for Driving Schools Based on Visual Simulation An Instructional Aid System for Driving Schools Based on Visual Simulation Salvador Bayarri, Rafael Garcia, Pedro Valero, Ignacio Pareja, Institute of Traffic and Road Safety (INTRAS), Marcos Fernandez

More information

STB- 2. Installation and Operation Manual

STB- 2. Installation and Operation Manual STB- 2 Installation and Operation Manual Index 1 Unpacking your STB- 2 2 Installation 3 WIFI connectivity 4 Remote Control 5 Selecting Video Mode 6 Start Page 7 Watching TV / TV Guide 8 Recording & Playing

More information

Collision Prevention and Area Monitoring with the LMS Laser Measurement System

Collision Prevention and Area Monitoring with the LMS Laser Measurement System Collision Prevention and Area Monitoring with the LMS Laser Measurement System PDF processed with CutePDF evaluation edition www.cutepdf.com A v o i d...... collisions SICK Laser Measurement Systems are

More information

Accurate Air Flow Measurement in Electronics Cooling

Accurate Air Flow Measurement in Electronics Cooling Accurate Air Flow Measurement in Electronics Cooling Joachim Preiss, Raouf Ismail Cambridge AccuSense, Inc. E-mail: info@degreec.com Air is the most commonly used medium to remove heat from electronics

More information

Developing a Sewer Inspection Robot through a Mechatronics Approach

Developing a Sewer Inspection Robot through a Mechatronics Approach Developing a Sewer Inspection Robot through a Mechatronics Approach Alireza. Hadi, Gholamhossein. Mohammadi Abstract Sewerage is a harsh environment which requires periodically inspection. The inspection

More information

Remote Maintenance with Security Appliances FL MGuard RS2000 and RS4000. Economic and Reliable Service

Remote Maintenance with Security Appliances FL MGuard RS2000 and RS4000. Economic and Reliable Service Remote Maintenance with Security Appliances FL MGuard RS2000 and RS4000 Economic and Reliable Service Today, plants generally comprise of complex machines and systems with a high degree of automation.

More information

MINIMAT-EC-Servo Screwdriver Spindles

MINIMAT-EC-Servo Screwdriver Spindles Screwdriving technology Automation Air motors Air tools Screwdriver Spindles electric MINIMAT-EC-Servo Screwdriver Spindles Maximum Flexibility and process Control Straight Spindle Form - Torque range

More information

Barcode Based Automated Parking Management System

Barcode Based Automated Parking Management System IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 03, 2014 ISSN (online): 2321-0613 Barcode Based Automated Parking Management System Parth Rajeshbhai Zalawadia 1 Jasmin

More information

IT4504 - Data Communication and Networks (Optional)

IT4504 - Data Communication and Networks (Optional) - Data Communication and Networks (Optional) INTRODUCTION This is one of the optional courses designed for Semester 4 of the Bachelor of Information Technology Degree program. This course on Data Communication

More information

High-Speed Thin Client Technology for Mobile Environment: Mobile RVEC

High-Speed Thin Client Technology for Mobile Environment: Mobile RVEC High-Speed Thin Client Technology for Mobile Environment: Mobile RVEC Masahiro Matsuda Kazuki Matsui Yuichi Sato Hiroaki Kameyama Thin client systems on smart devices have been attracting interest from

More information

Grant agreement no: FP7-600877 SPENCER: Project start: April 1, 2013 Duration: 3 years XXXXXXXXXXDELIVERABLE 6.6XXXXXXXXXX

Grant agreement no: FP7-600877 SPENCER: Project start: April 1, 2013 Duration: 3 years XXXXXXXXXXDELIVERABLE 6.6XXXXXXXXXX Grant agreement no: FP7-600877 SPENCER: Social situation-aware perception and action for cognitive robots Project start: April 1, 2013 Duration: 3 years XXXXXXXXXXDELIVERABLE 6.6XXXXXXXXXX Safety Audit

More information

Automated Receiving. Saving Money at the Dock Door. Page 8

Automated Receiving. Saving Money at the Dock Door. Page 8 Automated Receiving Saving Money at the Dock Door Page 8 Today s warehouse management and automated sortation systems are far easier to integrate than in the past. As a result, distribution centers are

More information

BENEFIT OF DYNAMIC USE CASES TO EARLY DESIGN A DRIVING ASSISTANCE SYSTEM FOR PEDESTRIAN/TRUCK COLLISION AVOIDANCE

BENEFIT OF DYNAMIC USE CASES TO EARLY DESIGN A DRIVING ASSISTANCE SYSTEM FOR PEDESTRIAN/TRUCK COLLISION AVOIDANCE BENEFIT OF DYNAMIC USE CASES TO EARLY DESIGN A DRIVING ASSISTANCE SYSTEM FOR PEDESTRIAN/TRUCK COLLISION AVOIDANCE Hélène Tattegrain, Arnaud Bonnard, Benoit Mathern, LESCOT, INRETS France Paper Number 09-0489

More information

FACTORY AUTOMATION LASER BARCODE SCANNERS FOR INDUSTRIAL AUTOMATION

FACTORY AUTOMATION LASER BARCODE SCANNERS FOR INDUSTRIAL AUTOMATION FACTORY AUTOMATION LASER BARCODE SCANNERS FOR INDUSTRIAL AUTOMATION Fixed Mount Laser Barcode Scanners Reading Angle Tilt Angle Pitch Angle Rotational Angle As the width of the barcode increases, Results

More information

Shape Ape. Low- Cost Cubing and Dimensioning

Shape Ape. Low- Cost Cubing and Dimensioning Shape Ape Low- Cost Cubing and Dimensioning 2 Warehousing & Distribution Shape Ape is a complete and low- cost solution for accurately dimensioning items and packages in warehouse, transportation, and

More information

Original Research Articles

Original Research Articles Original Research Articles Researchers Mr.Ramchandra K. Gurav, Prof. Mahesh S. Kumbhar Department of Electronics & Telecommunication, Rajarambapu Institute of Technology, Sakharale, M.S., INDIA Email-

More information

TRACKING DRIVER EYE MOVEMENTS AT PERMISSIVE LEFT-TURNS

TRACKING DRIVER EYE MOVEMENTS AT PERMISSIVE LEFT-TURNS TRACKING DRIVER EYE MOVEMENTS AT PERMISSIVE LEFT-TURNS Michael A. Knodler Jr. Department of Civil & Environmental Engineering University of Massachusetts Amherst Amherst, Massachusetts, USA E-mail: mknodler@ecs.umass.edu

More information

TEST REPORT Pipe-abc Line Inspection Project

TEST REPORT Pipe-abc Line Inspection Project TEST REPORT Pipe-abc Line Inspection Project Client YYYYYY / XX Facility Pipe-abc Cooling Spool Item Inspected General Pipe Inspection Method SLOFEC Date Commenced November 2007 Date Completed November

More information

ZEISS T-SCAN Automated / COMET Automated 3D Digitizing - Laserscanning / Fringe Projection Automated solutions for efficient 3D data capture

ZEISS T-SCAN Automated / COMET Automated 3D Digitizing - Laserscanning / Fringe Projection Automated solutions for efficient 3D data capture ZEISS T-SCAN Automated / COMET Automated 3D Digitizing - Laserscanning / Fringe Projection Automated solutions for efficient 3D data capture ZEISS 3D Digitizing Automated solutions for efficient 3D data

More information

CALIBRATION OF A ROBUST 2 DOF PATH MONITORING TOOL FOR INDUSTRIAL ROBOTS AND MACHINE TOOLS BASED ON PARALLEL KINEMATICS

CALIBRATION OF A ROBUST 2 DOF PATH MONITORING TOOL FOR INDUSTRIAL ROBOTS AND MACHINE TOOLS BASED ON PARALLEL KINEMATICS CALIBRATION OF A ROBUST 2 DOF PATH MONITORING TOOL FOR INDUSTRIAL ROBOTS AND MACHINE TOOLS BASED ON PARALLEL KINEMATICS E. Batzies 1, M. Kreutzer 1, D. Leucht 2, V. Welker 2, O. Zirn 1 1 Mechatronics Research

More information

Hinomiyagura 2014 TDP: Diffraction mode in Wireless Communication Simulation

Hinomiyagura 2014 TDP: Diffraction mode in Wireless Communication Simulation Hinomiyagura 2014 TDP: Diffraction mode in Wireless Communication Simulation Hideki Nishimura 1, Masaru Shimizu 2, and Tomoichi Takahashi 1 Meijo University, Aichi, Japan 1, Chukyo University, Aichi, Japan

More information

U g CS for DJI Phantom 2 Vision+, Phantom 3 and Inspire 1

U g CS for DJI Phantom 2 Vision+, Phantom 3 and Inspire 1 U g CS for DJI Phantom 2 Vision+, Phantom 3 and Inspire 1 Copyright 2015, Smart Projects Holdings Ltd Contents Preface... 2 Drone connection and first run... 2 Before you begin... 2 First run... 2 Connecting

More information

Optical Fibres. Introduction. Safety precautions. For your safety. For the safety of the apparatus

Optical Fibres. Introduction. Safety precautions. For your safety. For the safety of the apparatus Please do not remove this manual from from the lab. It is available at www.cm.ph.bham.ac.uk/y2lab Optics Introduction Optical fibres are widely used for transmitting data at high speeds. In this experiment,

More information

AN INTERNET OF THINGS (IOT) BASED SECURITY ALERT SYSTEM USING RASPBERRY PI

AN INTERNET OF THINGS (IOT) BASED SECURITY ALERT SYSTEM USING RASPBERRY PI Available online at www.apije.com ASIA PACIFIC INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE Vol. 02 (01) (2016) 37 41 AN INTERNET OF THINGS (IOT) BASED SECURITY ALERT SYSTEM USING RASPBERRY PI A.Arun Raja

More information

Intuitive Navigation in an Enormous Virtual Environment

Intuitive Navigation in an Enormous Virtual Environment / International Conference on Artificial Reality and Tele-Existence 98 Intuitive Navigation in an Enormous Virtual Environment Yoshifumi Kitamura Shinji Fukatsu Toshihiro Masaki Fumio Kishino Graduate

More information

A method of generating free-route walk-through animation using vehicle-borne video image

A method of generating free-route walk-through animation using vehicle-borne video image A method of generating free-route walk-through animation using vehicle-borne video image Jun KUMAGAI* Ryosuke SHIBASAKI* *Graduate School of Frontier Sciences, Shibasaki lab. University of Tokyo 4-6-1

More information

3D Drawing. Single Point Perspective with Diminishing Spaces

3D Drawing. Single Point Perspective with Diminishing Spaces 3D Drawing Single Point Perspective with Diminishing Spaces The following document helps describe the basic process for generating a 3D representation of a simple 2D plan. For this exercise we will be

More information

How To Program A Laser Cutting Robot

How To Program A Laser Cutting Robot Robotics ABB Robotics Laser Cutting Software High precision laser cutting made easy - Greater manufacturing flexibility at lower capital investment Robotic laser cutting Overview Allows for the increased

More information

Application Report. Propeller Blade Inspection Station

Application Report. Propeller Blade Inspection Station 34935 SE Douglas Street, Suite, Snoqualmie, WA 9874 Ph: 425-396-5577 Fax: 425-396-586 Application Report Propeller Blade Inspection Station Prepared By Kyle Johnston, Ph. D. Metron Systems Inc.5.5 3 2.5

More information

A laboratory work: A teaching robot arm for mechanics and electronic circuits

A laboratory work: A teaching robot arm for mechanics and electronic circuits A laboratory work: A teaching robot arm for mechanics and electronic circuits Omer Sise * Department of Physics, Kocatepe University, Science and Art Faculty, Afyon, 03200, Turkey * e-mail: omersise@aku.edu.tr

More information

Lab 3 Microcontroller programming Interfacing to Sensors and Actuators with irobot

Lab 3 Microcontroller programming Interfacing to Sensors and Actuators with irobot 1. Objective Lab 3 Microcontroller programming Interfacing to Sensors and Actuators with irobot In this lab, you will: i. Become familiar with the irobot and AVR tools. ii. Understand how to program a

More information

Sensor-Based Robotic Model for Vehicle Accident Avoidance

Sensor-Based Robotic Model for Vehicle Accident Avoidance Copyright 2012 American Scientific Publishers All rights reserved Printed in the United States of America Journal of Computational Intelligence and Electronic Systems Vol. 1, 1 6, 2012 Sensor-Based Robotic

More information

Software Manual RS232 Laser Merge Module. Document # SU-256521-09 Rev A

Software Manual RS232 Laser Merge Module. Document # SU-256521-09 Rev A Laser Merge Module Document # SU-256521-09 Rev A The information presented in this document is proprietary to Spectral Applied Research Inc. and cannot be used for any purpose other than that for which

More information

Blender Notes. Introduction to Digital Modelling and Animation in Design Blender Tutorial - week 9 The Game Engine

Blender Notes. Introduction to Digital Modelling and Animation in Design Blender Tutorial - week 9 The Game Engine Blender Notes Introduction to Digital Modelling and Animation in Design Blender Tutorial - week 9 The Game Engine The Blender Game Engine This week we will have an introduction to the Game Engine build

More information

ANDROID LEVERED DATA MONITORING ROBOT

ANDROID LEVERED DATA MONITORING ROBOT ANDROID LEVERED DATA MONITORING ROBOT 1 HIMANI PATHAK, 2 VIDYALAKSHMI KRISHNAKUMAR, 3 SHILPA RAVIKUMAR, 4 AJINKYA SHINDE 1,2,3,4 Electronics & Telecommunication Engineering, Fr. C. R. Institute of Technology,

More information

RPLIDAR. Low Cost 360 degree 2D Laser Scanner (LIDAR) System Development Kit User Manual. 2014-2 Rev.1

RPLIDAR. Low Cost 360 degree 2D Laser Scanner (LIDAR) System Development Kit User Manual. 2014-2 Rev.1 RPLIDAR Low Cost 360 degree 2D Laser Scanner (LIDAR) Development Kit User Manual 2014-2 Rev.1 Team Contents: 1. OVERVIEW... 2 ITEMS IN DEVELOPMENT KIT... 2 RPLIDAR... 2 USB ADAPTER... 3 2. CONNECTION AND

More information

3D SCANNING: A NEW APPROACH TOWARDS MODEL DEVELOPMENT IN ADVANCED MANUFACTURING SYSTEM

3D SCANNING: A NEW APPROACH TOWARDS MODEL DEVELOPMENT IN ADVANCED MANUFACTURING SYSTEM 3D SCANNING: A NEW APPROACH TOWARDS MODEL DEVELOPMENT IN ADVANCED MANUFACTURING SYSTEM Dr. Trikal Shivshankar 1, Patil Chinmay 2, Patokar Pradeep 3 Professor, Mechanical Engineering Department, SSGM Engineering

More information

COFDM Transmission systems

COFDM Transmission systems COFDM Transmission systems www.vtq.de COFDM Radio Communication Appliance O.R.C.A - Trade Show Highlights Probably the fastest¹ COFDM video transmitter world s The brand new generation of O.R.C.A transmitters

More information

PROGRAM CRITERIA FOR ELECTRICAL ENGINEERING TECHNOLOGY

PROGRAM CRITERIA FOR ELECTRICAL ENGINEERING TECHNOLOGY PROGRAM CRITERIA FOR ELECTRICAL ENGINEERING TECHNOLOGY Scope These program criteria apply to programs having titles involving Electrical Engineering Technology including: electrical engineering, electrical

More information

Basler. Line Scan Cameras

Basler. Line Scan Cameras Basler Line Scan Cameras High-quality line scan technology meets a cost-effective GigE interface Real color support in a compact housing size Shading correction compensates for difficult lighting conditions

More information

Sensor Based Control of Autonomous Wheeled Mobile Robots

Sensor Based Control of Autonomous Wheeled Mobile Robots Sensor Based Control of Autonomous Wheeled Mobile Robots Gyula Mester University of Szeged, Department of Informatics e-mail: gmester@inf.u-szeged.hu Abstract The paper deals with the wireless sensor-based

More information

Harmonic oscillations of spiral springs Springs linked in parallel and in series

Harmonic oscillations of spiral springs Springs linked in parallel and in series .3.26 Related topics Spring constant, Hooke s Law, oscillations, limit of elasticity, parallel springs, serial springs, use of an interface. Principle and task The spring constant D is determined for different

More information

Robot Sensors. Outline. The Robot Structure. Robots and Sensors. Henrik I Christensen

Robot Sensors. Outline. The Robot Structure. Robots and Sensors. Henrik I Christensen Robot Sensors Henrik I Christensen Robotics & Intelligent Machines @ GT Georgia Institute of Technology, Atlanta, GA 30332-0760 hic@cc.gatech.edu Henrik I Christensen (RIM@GT) Sensors 1 / 38 Outline 1

More information

Frequently Asked Questions

Frequently Asked Questions Frequently Asked Questions Basic Facts What does the name ASIMO stand for? ASIMO stands for Advanced Step in Innovative Mobility. Who created ASIMO? ASIMO was developed by Honda Motor Co., Ltd., a world

More information