Like with systems of linear equations, we can solve linear inequalities by graphing.

Size: px
Start display at page:

Download "Like with systems of linear equations, we can solve linear inequalities by graphing."

Transcription

1 Like with systems of linear equations, we can solve linear inequalities by graphing. Section 1: Reminder on Graphing Word Bank smaller equation slope slope-intercept y-intercept bigger The of a line looks like this: y = mx + b. The above form of a line s equation is called m represents the slope b represents the y-intercept form, where: is the steepness of a line. If a line is very steep, the slope is. However, if a line is not very steep (more flat), the slope is. is where a line crosses the y-axis. - Think of it as where the line intercepts (or meets with) the y-axis. Example: The line y = 1 x 1 has a slope of and a y-intercept of. 2 To graph this line, we start by placing a point on the y-intercept. This point should be at (0,-1). Next, we will use the slope of the line to find additional points on the line. If a line has a slope of 1, then we know that from the location of our first plotted 2 point, we must: rise: space(s) and run: space(s) Note: when we say run on a graph, we mean: move to the (right / left).

2 Example 2: For a line with a slope of 3 we would rise: space(s) and run: space(s). 4 That means, move space(s) (up / down). And, move space(s) (right / left). Example 3: For a line with a slope of 1 2 That means, move space(s) (up / down). we would rise: space(s) and run: space(s). And, move space(s) (right / left). Note: we rise a (positive / negative) amount. Example 4: For a line with a slope of 3 we would rise: space(s) and run: space(s). 4 That means, move space(s) (up / down). And, move space(s) (right / left). Note: we run a (positive / negative) amount. Careful on this one. Since we are running a negative amount, we will actually be moving to the left, not the right (Note: yes, I realize I just answered the previous blank for you thanks for noticing!) Example 5: For a line with a slope of - 4 the negative sign can go in either the numerator (top) or the 5 denominator (bottom). If we put it in both parts, however, we would end up with 4 and when you divide a negative by a negative like this, you will end up with a positive. That is to say, 4 5 is the exact same thing as 4 5. And 4 5 is equal to 4 5. So, we will rise: space(s) and run: space(s). 5 Example 6: For a line with a slope of 2 we would rise: space(s) and run: space(s). Note: 2 is equal to 2 1

3 Practice: On the coordinate plane to the left, graph the line y = 4x +2. Your y-intercept will be at. So, your first point should be at: (, ) To find your next point, you will rise: space(s) and run: space(s). Repeat this procedure to find additional points. In the practice problem above, complete the line on your graph so that it crosses the entire coordinate plane. For the next section of this activity, it will be important that you do this when graphing all lines. For instance, the graph of y = 1 3 x 2 should look like this: Now, consider all the points that are less than the line y = 1 3 x 2 Do you think you will find these points above or below the line? (above / below) With a colored pencil or highlighter, color all of the points on the above graph that are less than the line y = 1 x 2. To represent all 3 of these points, along with the line, we will write y 1 3 x 2. Practice: On the axis to the right, graph y 2x 4 Did you color your graph above or below the line?

4 What is the difference between y 2x 4 and y < 2x 4? Section 2: Graphing Inequalities If we wanted to make a graph of all of the points that are less than y = 2x -4, without including the line, we would write y < 2x 4. In this case, we would draw a dotted line instead of a regular line, and then color beneath the dotted line. It should look like this: Practice: Now, you try. On the coordinate plane below, graph y < 1 x What is the difference between y < 1 x + 2 and y > 1 x + 2? 3 3 Where do you think you should color when y is greater than 1 x + 2? Above or Below the line: 3 Now, on the coordinate plane below, graph y > 1 3 x + 2 What is the difference between y > 1 3 x + 2 and y 1 3 x + 2? Which one has a dotted line? Which one has a complete line?

5 Section 3: Graphing Systems of Inequalities Word Box Intersection Ordered Pair Divide Standard Slope-Intercept Common Two or More Equations A system of equations is a set of two or more. When we were solving systems of linear equations, we graphed both lines and found the. That is to say, the place where the two lines cross (a.k.a. the point that the two lines have in ). A system of inequalities is a set of inequalities. Just like with systems of equations, we can use graphing to solve a system of inequalities. Practice: On the coordinate plane to the right, graph both of these inequalities: y 3x 1 y -2x + 2 (Use different colors to fill in the colored areas of your graph). Next, in dark pencil or pen, outline the areas that the two graphs have in common. That is the solution to your system of inequalities the part your two graphs have in common. Now, on the following grid, graph your two inequalities, and only color the parts that they have in common.

6 Practice For the following systems of inequalities, graph to find the solution. y > x + 2 y < 2x + 3 x + y -2 y < 1 4 x - 1 y x -3 y < -4x + 5 y 1 2 x + 4 y > 2x 3 Note: If you are given an inequality in the form 3x 4y > 1 which is in form, you must first put the inequality into form by solving for y. Example: 3x 4y > 1 To solve for y, I want y by itself, so move everything else to the other side of the inequality. 3x 4y > 1-3x -3x (Subtract 3x from both sides of the inequality) - 4y > -3x + 1-4y > -3x + 1 (Divide both sides by -4) -4-4 y < 3 x + 1 (Note: the > becomes < when you by a negative number. 4 4 y < 3 4 x 1 4

Chapter 2 Section 5: Linear Inequalities

Chapter 2 Section 5: Linear Inequalities Chapter Section : Linear Inequalities Introduction Now we ll see what happens in the coordinate plane when we replace the equal sign in a linear equation with an inequality symbol. A line with equation

More information

The slope m of the line passes through the points (x 1,y 1 ) and (x 2,y 2 ) e) (1, 3) and (4, 6) = 1 2. f) (3, 6) and (1, 6) m= 6 6

The slope m of the line passes through the points (x 1,y 1 ) and (x 2,y 2 ) e) (1, 3) and (4, 6) = 1 2. f) (3, 6) and (1, 6) m= 6 6 Lines and Linear Equations Slopes Consider walking on a line from left to right. The slope of a line is a measure of its steepness. A positive slope rises and a negative slope falls. A slope of zero means

More information

Lines and Linear Equations. Slopes

Lines and Linear Equations. Slopes Lines and Linear Equations Slopes Consider walking on a line from left to right. The slope of a line is a measure of its steepness. A positive slope rises and a negative slope falls. A slope of zero means

More information

Solving Linear Systems (Slope-Intercept Form) Answer Key

Solving Linear Systems (Slope-Intercept Form) Answer Key Solving Linear Systems (Slope-Intercept Form) Answer Key Vocabulary: slope-intercept form, solution, substitution method, system of linear equations Prior Knowledge Questions (Do these BEFORE using the

More information

Slope and Y intercept (math.com)

Slope and Y intercept (math.com) Slope and Y intercept (math.com) Every straight line can be represented by an equation: y = mx + b. This is called the slope-intercept form. The coordinates of every point on the line will solve the equation

More information

Math 1310 Section 1.1 Points, Regions, Distance and Midpoints

Math 1310 Section 1.1 Points, Regions, Distance and Midpoints Math 1310 Section 1.1 Points, Regions, Distance and Midpoints In this section, we ll review plotting points in the coordinate plane, then graph vertical lines, horizontal lines and some inequalities. We

More information

10/2/2010. Objectives. Solving Systems of Equations and Inequalities. Solving Systems of Equations by Graphing S E C T I O N 4.1

10/2/2010. Objectives. Solving Systems of Equations and Inequalities. Solving Systems of Equations by Graphing S E C T I O N 4.1 Solving Systems of Equations and Inequalities 4 S E C T I O N 4.1 Solving Systems of Equations by Graphing Objectives 1. Determine whether a given ordered pair is a solution of a system. 2. Solve systems

More information

Unit 2: Linear Functions In-Class Notes and Problems Objective #0: Ordered Pairs and Graphing on a Coordinate Plane

Unit 2: Linear Functions In-Class Notes and Problems Objective #0: Ordered Pairs and Graphing on a Coordinate Plane Algebra 1-Ms. Martin Name Unit 2: Linear Functions In-Class Notes and Problems Objective #0: Ordered Pairs and Graphing on a Coordinate Plane 1) Tell what point is located at each ordered pair. (6, 6)

More information

3 2: Solving Systems in Three Variables

3 2: Solving Systems in Three Variables 3 2: Solving Systems in Three Variables What is a system of 3 Equations with 3 Unknowns? A system of 3 equations with 3 unknowns is a list of three equations that have 3 variables in common. Each equation

More information

Copyright by the McGraw-Hill Companies McGraw-Hill Professional Development

Copyright by the McGraw-Hill Companies McGraw-Hill Professional Development Coordinate Pairs and Graphing Algebra Walk Student Activity Copyright by the McGraw-Hill Companies McGraw-Hill Professional Development Algebra Walk In this activity, students physically move around a

More information

MINI LESSON. Lesson 1b Linear Equations

MINI LESSON. Lesson 1b Linear Equations MINI LESSON Lesson 1b Linear Equations Lesson Objectives: 1. Identify LINEAR EQUATIONS 2. Determine slope and y-intercept for a LINEAR EQUATION 3. Determine the x-intercept for a LINEAR EQUATION 4. Draw

More information

Module 5 Highlights. Mastered Reviewed. Sections , Appendix C

Module 5 Highlights. Mastered Reviewed. Sections , Appendix C Sections 3.1 3.6, Appendix C Module 5 Highlights Andrea Hendricks Math 0098 Pre-college Algebra Topics Identifying linear equations (Section 3.1, Obj. 1) Interpreting a line graph (Section 3.1, Obj. 5)

More information

6.4 Linear Inequalities

6.4 Linear Inequalities 6.4 Linear Inequalities Now that we can graph linear equations, it only makes sense to change the equal sign to an inequality symbol and graph that as well. Definition: Linear Inequality- A linear equation

More information

Water Park Project. TASK 1: Designing your Park

Water Park Project. TASK 1: Designing your Park Water Park Project TASK 1: Designing your Park You have recently been hired to create a blueprint for a water park. Your boss, Gelatinous Harrington, is a very controlling person. She wants you to include

More information

MAT 171. Example. January 10, S1.1 Introduction to Graphing. 1.1 Introduction to Graphing. Cartesian Coordinate System

MAT 171. Example. January 10, S1.1 Introduction to Graphing. 1.1 Introduction to Graphing. Cartesian Coordinate System MAT 171 Dr. Claude Moore, CFCC CHAPTER 1: Graphs, Functions, and Models 1.1 Introduction to Graphing 1.2 Functions and Graphs 1.3 Linear Functions, Slope, and Applications 1.4 Equations of Lines and Modeling

More information

Lines, Lines, Lines!!! Horizontal and Vertical Lines ~ Lesson Plan

Lines, Lines, Lines!!! Horizontal and Vertical Lines ~ Lesson Plan Lines, Lines, Lines!!! Horizontal and Vertical Lines ~ Lesson Plan I. Topic: Horizontal and Vertical Lines II. III. Goals and Objectives: A. The students will understand the difference between horizontal

More information

Make sure you look at the reminders or examples before each set of problems to jog your memory! Solve

Make sure you look at the reminders or examples before each set of problems to jog your memory! Solve Name Date Make sure you look at the reminders or examples before each set of problems to jog your memory! I. Solving Linear Equations 1. Eliminate parentheses. Combine like terms 3. Eliminate terms by

More information

System of Equations Review

System of Equations Review Name: Date: 1. Solve the following system of equations for x: x + y = 6 x y = 2 6. Solve the following systems of equations for x: 2x + 3y = 5 4x 3y = 1 2. Solve the following system of equations algebraically

More information

1.2. GRAPHS OF RELATIONS

1.2. GRAPHS OF RELATIONS 1.2. GRAPHS OF RELATIONS Graphs of relations as sets in coordinate plane Let us recall that a coordinate plane is formed by choosing two number lines (lines where points represent real numbers) which intersect

More information

Lesson 3 Linear Equations and Functions

Lesson 3 Linear Equations and Functions The first Function that we are going to investigate is the Linear Function. This is a good place to start because with Linear Functions, the average rate of change is constant and no exponents are involved.

More information

8.1 Solving Systems of Equations Graphically

8.1 Solving Systems of Equations Graphically 8.1 Solving Systems of Equations Graphically Definitions System of Equations involves equations that contain the same variables In this section we will look at both linear-quadratic systems and quadratic-quadratic

More information

Part 1 Subsets of The Real Numbers (Lessons 1A, 1G) Part 2 Properties of The Real Numbers (Lesson 1E) Algebra I Basic Concepts Review

Part 1 Subsets of The Real Numbers (Lessons 1A, 1G) Part 2 Properties of The Real Numbers (Lesson 1E) Algebra I Basic Concepts Review Algebra I Basic Concepts Review Name / Date Part 1 Subsets of The Real Numbers (Lessons 1A, 1G) 1. 1,2,3,4,5, are the. 2. 0,1,2,3,4,5, are the. 3. 3, 2, 1,0,1,2,3 are the. 4. The additive inverse of is.

More information

Project 6: Solving Equations, Part I

Project 6: Solving Equations, Part I Project 6: Solving Equations, Part I We can use the following properties to rewrite equations (to put them in a particular form like, or to solve them, or to combine multiple equations into a single equation).

More information

MCAS Algebra Relations and Patterns - Review

MCAS Algebra Relations and Patterns - Review Examples: Expressions Ex 1. Simplify ( 3x 7) (4x 3). MCAS Algebra Relations and Patterns - Review 3x 7 1(4x 3) 3x 7 4x + 3 3x 4x + 3 7 The first set of parentheses are not necessary. Replace the negative

More information

Section 3.4 The Slope Intercept Form: y = mx + b

Section 3.4 The Slope Intercept Form: y = mx + b Slope-Intercept Form: y = mx + b, where m is the slope and b is the y-intercept Reminding! m = y x = y 2 y 1 x 2 x 1 Slope of a horizontal line is 0 Slope of a vertical line is Undefined Graph a linear

More information

Study Guide and Review - Chapter 4

Study Guide and Review - Chapter 4 State whether each sentence is or false. If false, replace the underlined term to make a sentence. 1. The y-intercept is the y-coordinate of the point where the graph crosses the y-axis. 2. The process

More information

E. Comparing Linear, Exponential, and Quadratic Models (pp )

E. Comparing Linear, Exponential, and Quadratic Models (pp ) E. Comparing Linear, Exponential, and Quadratic Models (pp. 96 99) The linear, exponential, and quadratic functions you have studied can be used to model data. The following examples describe methods for

More information

Beginning of the Semester To-Do List

Beginning of the Semester To-Do List Beginning of the Semester To-Do List Set up your account at https://casa.uh.edu/ Read the Math 13xx Departmental Course Policies Take Course Policies Quiz until your score is 100%. You can find it on the

More information

Gradient - Activity 1 Gradient from the origin.

Gradient - Activity 1 Gradient from the origin. Name: Class: p 31 Maths Helper Plus Resource Set 1. Copyright 2002 Bruce A. Vaughan, Teachers Choice Software Gradient - Activity 1 Gradient from the origin. 1) On the graph below, there is a line ruled

More information

Mini Lecture 4.1 Graphing Equations in Two Variables

Mini Lecture 4.1 Graphing Equations in Two Variables Mini Lecture 4. Graphing Equations in Two Variables Learning Objectives:. Plot ordered pairs in the rectangular coordinate system.. Find coordinates of points in the rectangular coordinate system. 3. Determine

More information

Ordered Pairs. Graphing Lines and Linear Inequalities, Solving System of Linear Equations. Cartesian Coordinates System.

Ordered Pairs. Graphing Lines and Linear Inequalities, Solving System of Linear Equations. Cartesian Coordinates System. Ordered Pairs Graphing Lines and Linear Inequalities, Solving System of Linear Equations Peter Lo All equations in two variables, such as y = mx + c, is satisfied only if we find a value of x and a value

More information

Question 5: What are demand and supply? An important application of linear functions is the connection between the price of a good or service and the quantity of a good or service. If we are interested

More information

Keystone Review Graphing I: Points & Lines. 1. Which point satisfies the equation 2x + 3y = 8?

Keystone Review Graphing I: Points & Lines. 1. Which point satisfies the equation 2x + 3y = 8? Name: ate: 1. Which point satisfies the equation x + 3y = 8?. (1, 4). (, ). ( 1, 3). (, 4) 7. What are the coordinates of the point where the graph of the equation x + y = 8 crosses the y-axis?. (0, 8).

More information

Section 1.4 Notes Page Linear Equations in Two Variables and Linear Functions., x

Section 1.4 Notes Page Linear Equations in Two Variables and Linear Functions., x Section. Notes Page. Linear Equations in Two Variables and Linear Functions Slope Formula The slope formula is used to find the slope between two points ( x, y ) and ( ) x, y. x, y ) The slope is the vertical

More information

Lesson 9: Graphing Standard Form Equations Lesson 2 of 2. Example 1

Lesson 9: Graphing Standard Form Equations Lesson 2 of 2. Example 1 Lesson 9: Graphing Standard Form Equations Lesson 2 of 2 Method 2: Rewriting the equation in slope intercept form Use the same strategies that were used for solving equations: 1. 2. Your goal is to solve

More information

Student Exploration: Slope-Intercept Form of a Line

Student Exploration: Slope-Intercept Form of a Line Name: Date: Student Exploration: Slope-Intercept Form of a Line Vocabulary: slope, slope-intercept form, y-intercept Prior Knowledge Questions (Do these BEFORE using the Gizmo.) 1. Your friend offers to

More information

In this section, we ll review plotting points, slope of a line and different forms of an equation of a line.

In this section, we ll review plotting points, slope of a line and different forms of an equation of a line. Math 1313 Section 1.2: Straight Lines In this section, we ll review plotting points, slope of a line and different forms of an equation of a line. Graphing Points and Regions Here s the coordinate plane:

More information

Exercises for Absolute Value Solutions

Exercises for Absolute Value Solutions Exercises for Absolute Value Solutions A) Solve each of the following. To solve means to find and write the solution set. Write each solution set in as many ways as you can. Graph each of the inequalities.

More information

Section 1.4 Graphs of Linear Inequalities

Section 1.4 Graphs of Linear Inequalities Section 1.4 Graphs of Linear Inequalities A Linear Inequality and its Graph A linear inequality has the same form as a linear equation, except that the equal symbol is replaced with any one of,,

More information

Graphing Inequalities (Scaffolding Task)

Graphing Inequalities (Scaffolding Task) Graphing Inequalities (Scaffolding Task) Introduction In this task, students will graph two separate inequalities in two variables and analyze the graph for solutions to each. The students will then graph

More information

x x y y Then, my slope is =. Notice, if we use the slope formula, we ll get the same thing: m =

x x y y Then, my slope is =. Notice, if we use the slope formula, we ll get the same thing: m = Slope and Lines The slope of a line is a ratio that measures the incline of the line. As a result, the smaller the incline, the closer the slope is to zero and the steeper the incline, the farther the

More information

( 7, 3) means x = 7 and y = 3

( 7, 3) means x = 7 and y = 3 3 A: Solving a Sstem of Linear Equations b Graphing What is a sstem of Linear Equations? A sstem of linear equations is a list of two linear equations that each represents the graph of a line. Eamples

More information

DETAILED SOLUTIONS AND CONCEPTS ALGEBRAIC REPRESENTATIONS OF LINEAR EQUATIONS IN TWO VARIABLES

DETAILED SOLUTIONS AND CONCEPTS ALGEBRAIC REPRESENTATIONS OF LINEAR EQUATIONS IN TWO VARIABLES DETAILED SOLUTIONS AND CONCEPTS ALGEBRAIC REPRESENTATIONS OF LINEAR EQUATIONS IN TWO VARIABLES Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu.

More information

Solving Systems of Linear Equations Graphing

Solving Systems of Linear Equations Graphing Solving Systems of Linear Equations Graphing Outcome (learning objective) Students will accurately solve a system of equations by graphing. Student/Class Goal Students thinking about continuing their academic

More information

Warm Up Solve each equatio Holt McDougal Algebra 1

Warm Up Solve each equatio   Holt McDougal Algebra 1 Warm Up Solve each equation. 1. 5x + 0 = 10 2 2. 33 = 0 + 3y 11 3. 1 4. 2x + 14 = 3x + 4 2 5. 5y 1 = 7y + 5 Objectives Find x- and y-intercepts and interpret their meanings in real-world situations. Use

More information

Study Guide and Review - Chapter 4

Study Guide and Review - Chapter 4 State whether each sentence is true or false. If false, replace the underlined term to make a true sentence. 1. The y-intercept is the y-coordinate of the point where the graph crosses the y-axis. The

More information

Pre-AP Algebra 2 Lesson 2-5 Graphing linear inequalities & systems of inequalities

Pre-AP Algebra 2 Lesson 2-5 Graphing linear inequalities & systems of inequalities Lesson 2-5 Graphing linear inequalities & systems of inequalities Objectives: The students will be able to - graph linear functions in slope-intercept and standard form, as well as vertical and horizontal

More information

on the left graph below.

on the left graph below. 3.1 Graphing Linear Inequalities Graphing linear inequalities in two variables: The solution set for an inequality in two variables is shown on the Cartesian coordinate system. Boundary lines divide the

More information

7.5 Systems of Linear Inequalities

7.5 Systems of Linear Inequalities 7.5 Systems of Linear Inequalities In chapter 6 we discussed linear equations and then saw linear inequalities, so since here, in chapter 7, we are talking about systems of linear equations, it makes sense

More information

Linear Equations. Find the domain and the range of the following set. {(4,5), (7,8), (-1,3), (3,3), (2,-3)}

Linear Equations. Find the domain and the range of the following set. {(4,5), (7,8), (-1,3), (3,3), (2,-3)} Linear Equations Domain and Range Domain refers to the set of possible values of the x-component of a point in the form (x,y). Range refers to the set of possible values of the y-component of a point in

More information

Graphing Module II. Table of Contents. UCCS Physics Labs

Graphing Module II. Table of Contents. UCCS Physics Labs Graphing Module II UCCS Physics Labs Table of Contents Error bars 2 Equation of Straight line 3 Best-fit line with error bars 7 Plotting an equation 7 FYI FYI On average, 100 people choke to death on ball-point

More information

Chapter 1. The Cartesian Coordinate System. Section 2 Graphs and Lines. The Cartesian Coordinate System (continued) Linear Equations in Two Variables

Chapter 1. The Cartesian Coordinate System. Section 2 Graphs and Lines. The Cartesian Coordinate System (continued) Linear Equations in Two Variables Chapter 1 Linear Equations and Graphs Section 2 Graphs and Lines The Cartesian Coordinate System The Cartesian coordinate system was named after René Descartes. It consists of two real number lines, the

More information

Section 7.1 Solving Linear Systems by Graphing. System of Linear Equations: Two or more equations in the same variables, also called a.

Section 7.1 Solving Linear Systems by Graphing. System of Linear Equations: Two or more equations in the same variables, also called a. Algebra 1 Chapter 7 Notes Name Section 7.1 Solving Linear Systems by Graphing System of Linear Equations: Two or more equations in the same variables, also called a. Solution of a System of Linear Equations:

More information

Vocabulary & Definitions Algebra 1 Midterm Project

Vocabulary & Definitions Algebra 1 Midterm Project Vocabulary & Definitions Algebra 1 Midterm Project 2014 15 Associative Property When you are only adding or only multiplying, you can group any of the numbers together without changing the value of the

More information

Section 2.1: Rectangular Coordinates, Distance, Midpoint Formulas I. Graphs of Equations The linking of algebra and geometry:

Section 2.1: Rectangular Coordinates, Distance, Midpoint Formulas I. Graphs of Equations The linking of algebra and geometry: Section 2.1: Rectangular Coordinates, Distance, Midpoint Formulas I. Graphs of Equations The linking of algebra and geometry: 1 (René Descartes 1596-1650) Rectangular Cartesian Coordinate System Terms:

More information

Intermediate Algebra Section 4.1 Systems of Linear Equations in Two Variables

Intermediate Algebra Section 4.1 Systems of Linear Equations in Two Variables Intermediate Algebra Section 4.1 Systems of Linear Equations in Two Variables A system of equations involves more than one variable and more than one equation. In this section we will focus on systems

More information

Lesson 22: Solution Sets to Simultaneous Equations

Lesson 22: Solution Sets to Simultaneous Equations Student Outcomes Students identify solutions to simultaneous equations or inequalities; they solve systems of linear equations and inequalities either algebraically or graphically. Classwork Opening Exercise

More information

MAT 171 Dr. Claude Moore, CFCC

MAT 171 Dr. Claude Moore, CFCC MAT 171 Dr. Claude Moore, CFCC CHAPTER 1: Graphs, Functions, and Models 1.1 Introduction to Graphing 1.2 Functions and Graphs 1.3 Linear Functions, Slope, and Applications 1.4 Equations of Lines and Modeling

More information

Summer Job (Scaffolding Task)

Summer Job (Scaffolding Task) Summer Job (Scaffolding Task) Introduction In this task, students will write a model for an inequality from the context of a word problem using real life situations. The students will then graph the inequality

More information

Algebra Chapter 6 Notes Systems of Equations and Inequalities. Lesson 6.1 Solve Linear Systems by Graphing System of linear equations:

Algebra Chapter 6 Notes Systems of Equations and Inequalities. Lesson 6.1 Solve Linear Systems by Graphing System of linear equations: Algebra Chapter 6 Notes Systems of Equations and Inequalities Lesson 6.1 Solve Linear Systems by Graphing System of linear equations: Solution of a system of linear equations: Consistent independent system:

More information

Lesson 3 Practice Problems

Lesson 3 Practice Problems Name: Date: Lesson 3 Section 3.1: Linear Equations and Functions 1. Find the slope of the line that passes through the given points. Then determine if the line is increasing, decreasing or constant. Increasing,

More information

Chapter 8 Graphs and Functions:

Chapter 8 Graphs and Functions: Chapter 8 Graphs and Functions: Cartesian axes, coordinates and points 8.1 Pictorially we plot points and graphs in a plane (flat space) using a set of Cartesian axes traditionally called the x and y axes

More information

Name Period Date MATHLINKS GRADE 8 STUDENT PACKET 9 SYSTEMS OF LINEAR EQUATIONS

Name Period Date MATHLINKS GRADE 8 STUDENT PACKET 9 SYSTEMS OF LINEAR EQUATIONS Name Period Date 8-9 STUDENT PACKET MATHLINKS GRADE 8 STUDENT PACKET 9 SYSTEMS OF LINEAR EQUATIONS 9.1 Solving Linear Systems by Graphing Define a system of linear equations in two variables. Understand

More information

2. The pattern in this table continues. Which equation below relates the figure number n, to the perimeter of the figure P?

2. The pattern in this table continues. Which equation below relates the figure number n, to the perimeter of the figure P? Master 4.20 Extra Practice 1 Lesson 4.1: Writing Equations to Describe Patterns 1. In each equation, determine the value of A when n is 3. a) A = 2n + 1 b) A = 3n 2 c) A = 4n + 3 d) A = 30 2n 2. The pattern

More information

Lines That Pass Through Regions

Lines That Pass Through Regions : Student Outcomes Given two points in the coordinate plane and a rectangular or triangular region, students determine whether the line through those points meets the region, and if it does, they describe

More information

Inequalities Review for Chapter Test

Inequalities Review for Chapter Test Inequalities Review for Chapter Test Part 1: Understanding Inequalities (Lesson 1) Write an inequality that represents each situation. 1. An Olympic heavy weight boxer must weigh more than 91 kg. Write

More information

Solving Systems of Linear Equations

Solving Systems of Linear Equations Solving Systems of Linear Equations What is a system of equations? A set of equations, for example, two equations with two unknowns, for which a common solution is sought is called a system of equations.

More information

Equations of Lines Derivations

Equations of Lines Derivations Equations of Lines Derivations If you know how slope is defined mathematically, then deriving equations of lines is relatively simple. We will start off with the equation for slope, normally designated

More information

GRAPHING LINEAR EQUATIONS IN TWO VARIABLES

GRAPHING LINEAR EQUATIONS IN TWO VARIABLES GRAPHING LINEAR EQUATIONS IN TWO VARIABLES The graphs of linear equations in two variables are straight lines. Linear equations may be written in several forms: Slope-Intercept Form: y = mx+ b In an equation

More information

Unit 4 Analyze and Graph Linear Equations, Functions and Relations First Edition

Unit 4 Analyze and Graph Linear Equations, Functions and Relations First Edition Unit 4 Analyze and Graph Linear Equations, Functions and Relations First Edition Lesson 1 Graphing Linear Equations TOPICS 4.1.1 Rate of Change and Slope 1 Calculate the rate of change or slope of a linear

More information

What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b.

What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b. PRIMARY CONTENT MODULE Algebra - Linear Equations & Inequalities T-37/H-37 What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of

More information

Project 6.2: Exploring Parallel and Perpendicular Lines

Project 6.2: Exploring Parallel and Perpendicular Lines Project 6.2: Exploring Parallel and Perpendicular Lines Name: Date: The project provides an opportunity for students to explore various aspects of Parallel and Perpendicular Lines. Project Scoring Section

More information

Alex and Morgan were asked to graph the equation y = 2x + 1

Alex and Morgan were asked to graph the equation y = 2x + 1 Which is better? Ale and Morgan were asked to graph the equation = 2 + 1 Ale s make a table of values wa Morgan s use the slope and -intercept wa First, I made a table. I chose some -values, then plugged

More information

Campus Academic Resource Program Interpretation and Definition of the Linear Regression Equation

Campus Academic Resource Program Interpretation and Definition of the Linear Regression Equation Linear regression equations in the form of y = mx + B have statistical applications. It can be daunting to apply concepts learned in algebra regarding lines to practical statistical applications. This

More information

L-13. Graph Linear Inequalities in Two Variables. Objective: TLW Graph Linear Inequalities with two variables

L-13. Graph Linear Inequalities in Two Variables. Objective: TLW Graph Linear Inequalities with two variables L-13 Graph Linear Inequalities in Two Variables Objective: TLW Graph Linear Inequalities with two variables The x-intercept of a line is the point at which the line crosses the x axis. ( i.e. where the

More information

P.1 Solving Equations

P.1 Solving Equations P.1 Solving Equations Definition P.1. A linear equation in one variable is an equation that can be written in the standard form ax+b = 0 where a and b are real numbers and a 0. The most fundamental type

More information

College Prep Algebra II Summer Packet

College Prep Algebra II Summer Packet Name: College Prep Algebra II Summer Packet Please complete and bring this packet to class on the first day of school. Show ALL work! There will be a test soon after. Remember: When simplifying fractions

More information

2. Simplify. College Algebra Student Self-Assessment of Mathematics (SSAM) Answer Key. Use the distributive property to remove the parentheses

2. Simplify. College Algebra Student Self-Assessment of Mathematics (SSAM) Answer Key. Use the distributive property to remove the parentheses College Algebra Student Self-Assessment of Mathematics (SSAM) Answer Key 1. Multiply 2 3 5 1 Use the distributive property to remove the parentheses 2 3 5 1 2 25 21 3 35 31 2 10 2 3 15 3 2 13 2 15 3 2

More information

Using Intercepts. Using Intercepts. Warm Up Lesson Presentation Lesson Quiz

Using Intercepts. Using Intercepts. Warm Up Lesson Presentation Lesson Quiz Using Intercepts Warm Up Lesson Presentation Lesson Quiz Holt Algebra McDougal 1 Algebra 1 Warm Up Solve each equation. 1. 5x + 0 = 10 2 2. 33 = 0 + 3y 11 3. 1 4. 2x + 14 = 3x + 4 2 5. 5y 1 = 7y + 5 Objectives

More information

Moving Straight Ahead: Homework Examples from ACE

Moving Straight Ahead: Homework Examples from ACE Moving Straight Ahead: Homework Examples from ACE Investigation 1: Walking Rates, ACE #4 Investigation 2: Exploring Linear Relationships With Graphs and Tables, ACE #6 Investigation 3: Solving Equations,

More information

Activity 2. Tracing Paper Inequalities. Objective. Introduction. Problem. Exploration

Activity 2. Tracing Paper Inequalities. Objective. Introduction. Problem. Exploration Objective Graph systems of linear inequalities in two variables in the Cartesian coordinate plane Activity 2 Introduction A set of two or more linear equations is called a system of equations. A set of

More information

Objective: In this lesson you learn how to find and use the slope of a line to write and graph linear equations.

Objective: In this lesson you learn how to find and use the slope of a line to write and graph linear equations. Chapter Functions and Their Graphs Section. Lines in the Plane Objective: In this lesson you learn how to find and use the slope of a line to write and graph linear equations. Important Vocabulary Slope

More information

Math 103 Section 1.2: Linear Equations and Graphing

Math 103 Section 1.2: Linear Equations and Graphing Math 103 Section 1.2: Linear Equations and Graphing Linear Equations in two variables Graphing Ax + By = C Slope of a line Special Forms of a linear equation More applications The Price-demand equation

More information

COMPARING LINEAR AND NONLINEAR FUNCTIONS

COMPARING LINEAR AND NONLINEAR FUNCTIONS 1 COMPARING LINEAR AND NONLINEAR FUNCTIONS LEARNING MAP INFORMATION STANDARDS 8.F.2 Compare two s, each in a way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example,

More information

Algebra 1 Chapter 3 Vocabulary. equivalent - Equations with the same solutions as the original equation are called.

Algebra 1 Chapter 3 Vocabulary. equivalent - Equations with the same solutions as the original equation are called. Chapter 3 Vocabulary equivalent - Equations with the same solutions as the original equation are called. formula - An algebraic equation that relates two or more real-life quantities. unit rate - A rate

More information

Graphs, Linear Equations, and Inequalities in Two Variables; Functions Unit 3 Unit Planner

Graphs, Linear Equations, and Inequalities in Two Variables; Functions Unit 3 Unit Planner MAT 100 Armstrong/Pierson Graphs, Linear Equations, and Inequalities in Two Variables; Functions Unit 3 Unit Planner 3.1 Graphing Using the Rectangular Coordinate System Read pages 212-217 p. 218-222 3.2

More information

Exam 2 Review , :Coordinate Geometry

Exam 2 Review , :Coordinate Geometry Exam 2 Review 2.1-2.5, 3.1-3.4 1 2.1:Coordinate Geometry Memorize 2 formulas for two points (x 1, y 1 ) and (x 2, y 2 ): Midpoint formula: ( x1 + x 2, y ) 1 + y 2 2 2 Distance formula: d = (x 2 x 1 ) 2

More information

6.5 Equations of Lines

6.5 Equations of Lines 6.5 Equations of Lines Now that we have given a full treatment to finding the graph of a line when given its equation, we want to, in a sense, work that idea backwards. That is to say, we want to be able

More information

Sect The Slope-Intercept Form

Sect The Slope-Intercept Form Concepts # and # Sect. - The Slope-Intercept Form Slope-Intercept Form of a line Recall the following definition from the beginning of the chapter: Let a, b, and c be real numbers where a and b are not

More information

Reasoning with Equations and Inequalities

Reasoning with Equations and Inequalities Reasoning with Equations and Inequalities Instruction Goal: To provide opportunities for students to develop concepts and skills related to solving systems of linear equations using substitution Common

More information

Lines, Lines, Lines!!! Point-Slope Form ~ Lesson Plan

Lines, Lines, Lines!!! Point-Slope Form ~ Lesson Plan Lines, Lines, Lines!!! Point-Slope Form ~ Lesson Plan I. Topic: Point-Slope Form II. III. Goals and Objectives: A. The students will understand the difference between slope-intercept and point-slope form.

More information

The Point-Slope Form

The Point-Slope Form 7. The Point-Slope Form 7. OBJECTIVES 1. Given a point and a slope, find the graph of a line. Given a point and the slope, find the equation of a line. Given two points, find the equation of a line y Slope

More information

Packet: Lines (Part 1) Standards covered:

Packet: Lines (Part 1) Standards covered: Packet: Lines (Part 1) Standards covered: *(2)MA.912.A.3.8 Graph a line given any of the following information: a table of values, the x and y- intercepts, two points, the slope and a point, the equation

More information

Chapter 4. Section 4.1: Solving Systems of Linear Equations by Graphing

Chapter 4. Section 4.1: Solving Systems of Linear Equations by Graphing Chapter 4 Section 4.1: Solving Systems of Linear Equations by Graphing Objectives: 1. Decide whether a given ordered pair is a solution of a system. 2. Solve linear systems by graphing. 3. Solve special

More information

Lesson 2-5: Graphing Linear Inequalities in Two Variables

Lesson 2-5: Graphing Linear Inequalities in Two Variables Inequalities on a graph Last chapter we worked with inequalities on a number line. We used a number line because the equations only had one variable. Today we will extend that thinking a bit from the number

More information

Chapter 1: Number Systems and Fundamental Concepts of Algebra. If n is negative, the number is small; if n is positive, the number is large

Chapter 1: Number Systems and Fundamental Concepts of Algebra. If n is negative, the number is small; if n is positive, the number is large Final Exam Review Chapter 1: Number Systems and Fundamental Concepts of Algebra Scientific Notation: Numbers written as a x 10 n where 1 < a < 10 and n is an integer If n is negative, the number is small;

More information

A linear equation is the equation of a line because its graph forms a line. So, the statement is true.

A linear equation is the equation of a line because its graph forms a line. So, the statement is true. State whether each sentence is true or false. If false, replace the underlined word or number to make a true sentence. The x-coordinate of the point at which the graph of an equation crosses the x-axis

More information

Section 2 1: Slope Introduction

Section 2 1: Slope Introduction Section 2 1: Slope Introduction We use the term Slope to describe how steep a line is as ou move between an two points on the line. The slope or steepness is a ratio of the vertical change in (rise) compared

More information

Graphing Lines Information Packet:

Graphing Lines Information Packet: Table of Contents: Graphing Lines Information Packet: Graphing Ordered Pairs p. 1 Slope p. 2-4 Horizontal/Vertical Lines p. 5 Graphing Linear Equations p. 6-8 Make a Table p. 6 Intercepts p. 7 Slope Intercept

More information

Unit 1 Test Review 1

Unit 1 Test Review 1 Unit 1 Test Review 1 Section B.1 Review: The Cartesian Plane Point Plotting Be prepared to correctly plot points on the Cartesian Plane (x, y plane) Plot the following points on the Cartesian Plane (1,

More information