Elastic VM for Rapid and Optimum Virtualized
|
|
|
- Charlotte Miller
- 10 years ago
- Views:
Transcription
1 Elastic VM for Rapid and Optimum Virtualized Resources Allocation Wesam Dawoud PhD. Student Hasso Plattner Institute Potsdam, Germany 5th International DMTF Academic Alliance Workshop on Systems and Virtualization Management: Standards and the Cloud 24 October, 2011 Paris, France
2 Motivation million servers in the USA in Most of those machines run at 15% capacity or less * Virtualized Datacenters rise server utilization rates to as high as 80 percent ** Idle server consumes 50% of the power consumed by a highly utilized server Virtulized Datacenter Virtual Machies (VMs) * **
3 Elastic VM 3 Elastic VM is a VM benefits from virtualization technology features to enable on-the-fly resources scaling without interrupting the service or rebooting the system The hosting hypervisor is extended with interfaces that enable modifying i VMs resources
4 Elastic VM 4 Elastic VM is a VM runs a modified kernel supports on-the-fly resources scaling feature without interrupting the service or rebooting the system The hosting hypervisor is extended with interfaces that enable modifying i VMs resources
5 Current Cloud Computing Elasticity 5 Multi-instances scaling * 1. Coarse-grained scaling 2.It is not the best scalability solution for all applications (e.g., Databases, Load balancers, and Applications with expensive licenses) 2. Scaling-down can interrupt sessions-based applications 3. Scale-out overhead causes SLO violation *
6 Objectives 6 Optimize resources allocation (i.e., fine grained dynamic scale-up) Reduce the power consumption (i.e., run less physical hosts) Reduce current scale-out overhead Maintain Service Level Objectives (SLOs)
7 Elastic VM 7 Multi-instances scaling Elastic VM scaling 1. Coarse-grained scaling 2.It is not the best scalability solution for all applications 3.Scaling-down can interrupt sessions-based web connections 4.Scale-out overhead causes SLO violation 1. Fine-grained scaling 2.Applicable to any tier 3.Supports sessions-based web connections 4.Reduces the scaling-up overhead and mitigates SLO violation
8 Mutli-instances v.s. Elastic VM scaling 8 Performance:* Mutli-instances scale by adding more Four queues instances Elastic VM scales by adding more cores (s) 80 req/sec Single queue 320 req/sec 80 req/sec 320 req/sec 320 req/sec 80 req/sec 80 req/sec Each instance modeld as M/M/1 One instance with many cores modeld as M/M/c * Wesam Dawoud, Ibrahim Takouna and Christoph Meinel, Elastic Virtual Machine for Fine-grained Cloud Resource Provisioning, ObCom 2011, Vellore, TN, India, Springer Berlin Heidelberg (2011)
9 Mutli-instances v.s. Elastic VM scaling 9 Performance: Mutli-instances scale by adding more Four queues instances Elastic VM scales by adding more cores (s) 80 req/sec Single queue 320 req/sec 80 req/sec 320 req/sec 320 req/sec 80 req/sec 80 req/sec Each instance modeld as M/M/1 One instance with many cores modeld as M/M/c Power:* 26 watts 17 watts Same workload Same throughput 50% less power consumption * I. Takouna, W. Dawoud, and C. Meinel. Accurate Mutlicore Processor Power Models for Power-Aware Resource Management, In Proceedings of the International Conference on Cloud and Green Computing (CGC 2011), December 2011
10 Evaluation 10 Table 1: Most significant parameters that control Amazon Scaling Model The workload is generated by RuBBoS * * Amza, C., Cecchet, E., Ch, A., Cox, A.L., Elnikety, S., Gil, R., Marguerite, J., Rajamani, K., Zwaenepoel, W.: Bottleneck Characterization of Dynamic Web Site Benchmarks (2002)
11 Evaluation: Multi-instances architecture implemented into web-tier 11
12 Evaluation: Elastic VM implemented into web-tier 12
13 Evaluation : Mutli-instances throughput degradation 13 Table 2: Throughput degradation in Multi-instances architecture
14 Evaluation: Multi-instances architecture implemented into database-tier 14
15 Evaluation: Elastic VM implemented into database-tier 15
16 Challenges 16 Not all applications are aware of on-the-fly resources scaling Solution: Most applications have performance metrics * Elastic VM scalability is limited to one physical machine Solutions: 1-VMs migration 2-Hybrid architecture (i.e. Multi-instances instances integrated with Elastic VM architecture) Variant sizes of instances increase the bin-packing algorithm complexity * W. Dawoud, I. Takouna, and C. Meinel, Elastic VM for Cloud Resources Provisioning Optimization, Eds. Springer Berlin Heidelberg, 2011
17 Who can use Elastic VM? 17 Web hosting service providers IaaS Providers Large EC2 Instance costs $0.34 per hour Large to Extra Large Elastic EC2 Instance costs $0.40 per hour Extra Large EC2 Instance costs $0.68 per hour Tele-Lab ( Tele-Lab resources Users Time During the day Lab time Night time
18 Conclusion & Future work 18 Conclusion: Experiment results confirm the theoretical analysis and show that proposed Elastic VM: Mitigates SLOs violation Maintains a higher throughput Elastic VM supports scaling applications, such as databases and expensive license software, with lower cost and complexity
19 Conclusion & Future work 19 Future work: Go over the current challenges: One physical host Bin-packing of variant size VMs Integrate Elastic VM with other managment techniques (e.g., VMs migration and workload redirection) Implemet Elastic VM into Tele-Lab (
20 References 20 [1] Iqbal, W., Dailey, M.N., Carrera, D.: SLA-Driven Dynamic Resource Management for Multi-tier Web Applications in a Cloud. In: th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing. pp CCGRID '10,IEEE, Washington (2010) [2] Bhuvan Urgaonkar, G.P.: An analytical model for multi-tier internet services and its applications. In: In Proc. of the ACM SIGMETRICS2005. pp (2005) [3] Dawoud, W., Takouna, I., Meinel, C.: Elastic VM for Cloud Resources Provisioning Optimization, Communications in Computer and Information Science, vol Springer Berlin Heidelberg (2011) [4] Takouna, I., Dawoud W., and Meinel C. Efficient Virtual Machine Scheduling-policy for Virtualized Heterogeneous Multicore Systems, In Proceedings of the 2011 International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA 2011), July [5] Hellerstein, J.L., Diao, Y., Parekh, S., Tilbury, D.M.: Feedback Control of Computing Systems. John Wiley & Sons (2004) [6] Dubey, A., Mehrotra, R., Abdelwahed, S., Tantawi, A.: Performance modeling of distributed multi-tier enterprise systems. ACM SIGMETRICS Performance Evaluation Review 37(2), 9 (Oct 2009) [7] Padala, P., Hou, K.Y., Shin, K.G., Zhu, X., Uysal, M., Wang, Z., Singhal, S., Merchant, A.: Automated control of multiple virtualized resources. European Conference on Computer Systems pp (2009) [8] Heo, J., Zhu, X., Padala, P. Wang, Z.: Memory Overbooking and Dynamic Control of Xen Virtual Machines in Consolidated Environments. In: Proceedings of IFIP-IEEE Symposium on Integrated Management IM09 miniconference. pp IEEE (2009) [9] Dawoud, W., Takouna, I., Meinel, C., Elastic Virtual Machine for Fine-grained Cloud Resource Provisioning, ObCom 2011, Vellore, TN, India, Springer Berlin Heidelberg (2011)
21 21 Thanks! Contact:
USING VIRTUAL MACHINE REPLICATION FOR DYNAMIC CONFIGURATION OF MULTI-TIER INTERNET SERVICES
USING VIRTUAL MACHINE REPLICATION FOR DYNAMIC CONFIGURATION OF MULTI-TIER INTERNET SERVICES Carlos Oliveira, Vinicius Petrucci, Orlando Loques Universidade Federal Fluminense Niterói, Brazil ABSTRACT In
PERFORMANCE ANALYSIS OF PaaS CLOUD COMPUTING SYSTEM
PERFORMANCE ANALYSIS OF PaaS CLOUD COMPUTING SYSTEM Akmal Basha 1 Krishna Sagar 2 1 PG Student,Department of Computer Science and Engineering, Madanapalle Institute of Technology & Science, India. 2 Associate
Low Cost Quality Aware Multi-tier Application Hosting on the Amazon Cloud
Low Cost Quality Aware Multi-tier Application Hosting on the Amazon Cloud Waheed Iqbal, Matthew N. Dailey, David Carrera Punjab University College of Information Technology, University of the Punjab, Lahore,
Variations in Performance and Scalability when Migrating n-tier Applications to Different Clouds
Variations in Performance and Scalability when Migrating n-tier Applications to Different Clouds Deepal Jayasinghe, Simon Malkowski, Qingyang Wang, Jack Li, Pengcheng Xiong, Calton Pu Outline Motivation
Infrastructure as a Service (IaaS)
Infrastructure as a Service (IaaS) (ENCS 691K Chapter 4) Roch Glitho, PhD Associate Professor and Canada Research Chair My URL - http://users.encs.concordia.ca/~glitho/ References 1. R. Moreno et al.,
Heterogeneous Workload Consolidation for Efficient Management of Data Centers in Cloud Computing
Heterogeneous Workload Consolidation for Efficient Management of Data Centers in Cloud Computing Deep Mann ME (Software Engineering) Computer Science and Engineering Department Thapar University Patiala-147004
Figure 1. The cloud scales: Amazon EC2 growth [2].
- Chung-Cheng Li and Kuochen Wang Department of Computer Science National Chiao Tung University Hsinchu, Taiwan 300 [email protected], [email protected] Abstract One of the most important issues
An Experimental Study of Load Balancing of OpenNebula Open-Source Cloud Computing Platform
An Experimental Study of Load Balancing of OpenNebula Open-Source Cloud Computing Platform A B M Moniruzzaman 1, Kawser Wazed Nafi 2, Prof. Syed Akhter Hossain 1 and Prof. M. M. A. Hashem 1 Department
A Dynamic Resource Management with Energy Saving Mechanism for Supporting Cloud Computing
A Dynamic Resource Management with Energy Saving Mechanism for Supporting Cloud Computing Liang-Teh Lee, Kang-Yuan Liu, Hui-Yang Huang and Chia-Ying Tseng Department of Computer Science and Engineering,
IaaS Cloud Architectures: Virtualized Data Centers to Federated Cloud Infrastructures
IaaS Cloud Architectures: Virtualized Data Centers to Federated Cloud Infrastructures Dr. Sanjay P. Ahuja, Ph.D. 2010-14 FIS Distinguished Professor of Computer Science School of Computing, UNF Introduction
Green Cloud Computing 班 級 : 資 管 碩 一 組 員 :710029011 黃 宗 緯 710029021 朱 雅 甜
Green Cloud Computing 班 級 : 資 管 碩 一 組 員 :710029011 黃 宗 緯 710029021 朱 雅 甜 Outline Introduction Proposed Schemes VM configuration VM Live Migration Comparison 2 Introduction (1/2) In 2006, the power consumption
Group Based Load Balancing Algorithm in Cloud Computing Virtualization
Group Based Load Balancing Algorithm in Cloud Computing Virtualization Rishi Bhardwaj, 2 Sangeeta Mittal, Student, 2 Assistant Professor, Department of Computer Science, Jaypee Institute of Information
This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ Eprints ID : 12902
Open Archive TOULOUSE Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited
Energy Conscious Virtual Machine Migration by Job Shop Scheduling Algorithm
Energy Conscious Virtual Machine Migration by Job Shop Scheduling Algorithm Shanthipriya.M 1, S.T.Munusamy 2 ProfSrinivasan. R 3 M.Tech (IT) Student, Department of IT, PSV College of Engg & Tech, Krishnagiri,
Keywords Distributed Computing, On Demand Resources, Cloud Computing, Virtualization, Server Consolidation, Load Balancing
Volume 5, Issue 1, January 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Survey on Load
INCREASING SERVER UTILIZATION AND ACHIEVING GREEN COMPUTING IN CLOUD
INCREASING SERVER UTILIZATION AND ACHIEVING GREEN COMPUTING IN CLOUD M.Rajeswari 1, M.Savuri Raja 2, M.Suganthy 3 1 Master of Technology, Department of Computer Science & Engineering, Dr. S.J.S Paul Memorial
Two-Level Cooperation in Autonomic Cloud Resource Management
Two-Level Cooperation in Autonomic Cloud Resource Management Giang Son Tran, Laurent Broto, and Daniel Hagimont ENSEEIHT University of Toulouse, Toulouse, France Email: {giang.tran, laurent.broto, daniel.hagimont}@enseeiht.fr
International Journal of Digital Application & Contemporary research Website: www.ijdacr.com (Volume 2, Issue 9, April 2014)
Green Cloud Computing: Greedy Algorithms for Virtual Machines Migration and Consolidation to Optimize Energy Consumption in a Data Center Rasoul Beik Islamic Azad University Khomeinishahr Branch, Isfahan,
Migration of Virtual Machines for Better Performance in Cloud Computing Environment
Migration of Virtual Machines for Better Performance in Cloud Computing Environment J.Sreekanth 1, B.Santhosh Kumar 2 PG Scholar, Dept. of CSE, G Pulla Reddy Engineering College, Kurnool, Andhra Pradesh,
An Autonomic Auto-scaling Controller for Cloud Based Applications
An Autonomic Auto-scaling Controller for Cloud Based Applications Jorge M. Londoño-Peláez Escuela de Ingenierías Universidad Pontificia Bolivariana Medellín, Colombia Carlos A. Florez-Samur Netsac S.A.
Exploring Resource Provisioning Cost Models in Cloud Computing
Exploring Resource Provisioning Cost Models in Cloud Computing P.Aradhya #1, K.Shivaranjani *2 #1 M.Tech, CSE, SR Engineering College, Warangal, Andhra Pradesh, India # Assistant Professor, Department
International Journal of Advance Research in Computer Science and Management Studies
Volume 3, Issue 6, June 2015 ISSN: 2321 7782 (Online) International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online
LOAD BALANCING AS A STRATEGY LEARNING TASK
LOAD BALANCING AS A STRATEGY LEARNING TASK 1 K.KUNGUMARAJ, 2 T.RAVICHANDRAN 1 Research Scholar, Karpagam University, Coimbatore 21. 2 Principal, Hindusthan Institute of Technology, Coimbatore 32. ABSTRACT
EPOBF: ENERGY EFFICIENT ALLOCATION OF VIRTUAL MACHINES IN HIGH PERFORMANCE COMPUTING CLOUD
Journal of Science and Technology 51 (4B) (2013) 173-182 EPOBF: ENERGY EFFICIENT ALLOCATION OF VIRTUAL MACHINES IN HIGH PERFORMANCE COMPUTING CLOUD Nguyen Quang-Hung, Nam Thoai, Nguyen Thanh Son Faculty
Energy Constrained Resource Scheduling for Cloud Environment
Energy Constrained Resource Scheduling for Cloud Environment 1 R.Selvi, 2 S.Russia, 3 V.K.Anitha 1 2 nd Year M.E.(Software Engineering), 2 Assistant Professor Department of IT KSR Institute for Engineering
Resource usage monitoring for KVM based virtual machines
2012 18th International Conference on Adavanced Computing and Communications (ADCOM) Resource usage monitoring for KVM based virtual machines Ankit Anand, Mohit Dhingra, J. Lakshmi, S. K. Nandy CAD Lab,
Affinity Aware VM Colocation Mechanism for Cloud
Affinity Aware VM Colocation Mechanism for Cloud Nilesh Pachorkar 1* and Rajesh Ingle 2 Received: 24-December-2014; Revised: 12-January-2015; Accepted: 12-January-2015 2014 ACCENTS Abstract The most of
Scalability and Performance Management of Internet Applications in the Cloud
Hasso-Plattner-Institut University of Potsdam Internet Technology and Systems Group Scalability and Performance Management of Internet Applications in the Cloud A thesis submitted for the degree of "Doktors
Elastic Management of Cluster based Services in the Cloud
First Workshop on Automated Control for Datacenters and Clouds (ACDC09) June 19th, Barcelona, Spain Elastic Management of Cluster based Services in the Cloud Rafael Moreno Vozmediano, Ruben S. Montero,
Li Sheng. [email protected]. Nowadays, with the booming development of network-based computing, more and more
36326584 Li Sheng Virtual Machine Technology for Cloud Computing Li Sheng [email protected] Abstract: Nowadays, with the booming development of network-based computing, more and more Internet service vendors
Multifaceted Resource Management for Dealing with Heterogeneous Workloads in Virtualized Data Centers
Multifaceted Resource Management for Dealing with Heterogeneous Workloads in Virtualized Data Centers Íñigo Goiri, J. Oriol Fitó, Ferran Julià, Ramón Nou, Josep Ll. Berral, Jordi Guitart and Jordi Torres
Dynamic resource management for energy saving in the cloud computing environment
Dynamic resource management for energy saving in the cloud computing environment Liang-Teh Lee, Kang-Yuan Liu, and Hui-Yang Huang Department of Computer Science and Engineering, Tatung University, Taiwan
AN EFFICIENT LOAD BALANCING ALGORITHM FOR A DISTRIBUTED COMPUTER SYSTEM. Dr. T.Ravichandran, B.E (ECE), M.E(CSE), Ph.D., MISTE.,
AN EFFICIENT LOAD BALANCING ALGORITHM FOR A DISTRIBUTED COMPUTER SYSTEM K.Kungumaraj, M.Sc., B.L.I.S., M.Phil., Research Scholar, Principal, Karpagam University, Hindusthan Institute of Technology, Coimbatore
Energy Optimized Virtual Machine Scheduling Schemes in Cloud Environment
Abstract Energy Optimized Virtual Machine Scheduling Schemes in Cloud Environment (14-18) Energy Optimized Virtual Machine Scheduling Schemes in Cloud Environment Ghanshyam Parmar a, Dr. Vimal Pandya b
Environments, Services and Network Management for Green Clouds
Environments, Services and Network Management for Green Clouds Carlos Becker Westphall Networks and Management Laboratory Federal University of Santa Catarina MARCH 3RD, REUNION ISLAND IARIA GLOBENET 2012
GUEST OPERATING SYSTEM BASED PERFORMANCE COMPARISON OF VMWARE AND XEN HYPERVISOR
GUEST OPERATING SYSTEM BASED PERFORMANCE COMPARISON OF VMWARE AND XEN HYPERVISOR ANKIT KUMAR, SAVITA SHIWANI 1 M. Tech Scholar, Software Engineering, Suresh Gyan Vihar University, Rajasthan, India, Email:
Dynamic Resource allocation in Cloud
Dynamic Resource allocation in Cloud ABSTRACT: Cloud computing allows business customers to scale up and down their resource usage based on needs. Many of the touted gains in the cloud model come from
Keywords Cloud computing, virtual machines, migration approach, deployment modeling
Volume 3, Issue 8, August 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Effective Scheduling
Multilevel Communication Aware Approach for Load Balancing
Multilevel Communication Aware Approach for Load Balancing 1 Dipti Patel, 2 Ashil Patel Department of Information Technology, L.D. College of Engineering, Gujarat Technological University, Ahmedabad 1
Survey on Models to Investigate Data Center Performance and QoS in Cloud Computing Infrastructure
Survey on Models to Investigate Data Center Performance and QoS in Cloud Computing Infrastructure Chandrakala Department of Computer Science and Engineering Srinivas School of Engineering, Mukka Mangalore,
What Is It? Business Architecture Research Challenges Bibliography. Cloud Computing. Research Challenges Overview. Carlos Eduardo Moreira dos Santos
Research Challenges Overview May 3, 2010 Table of Contents I 1 What Is It? Related Technologies Grid Computing Virtualization Utility Computing Autonomic Computing Is It New? Definition 2 Business Business
Multi-dimensional Affinity Aware VM Placement Algorithm in Cloud Computing
Multi-dimensional Affinity Aware VM Placement Algorithm in Cloud Computing Nilesh Pachorkar 1, Rajesh Ingle 2 Abstract One of the challenging problems in cloud computing is the efficient placement of virtual
Energy Efficient Resource Management in Virtualized Cloud Data Centers
2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing Energy Efficient Resource Management in Virtualized Cloud Data Centers Anton Beloglazov* and Rajkumar Buyya Cloud Computing
International Journal of Computer & Organization Trends Volume21 Number1 June 2015 A Study on Load Balancing in Cloud Computing
A Study on Load Balancing in Cloud Computing * Parveen Kumar * Er.Mandeep Kaur Guru kashi University,Talwandi Sabo Guru kashi University,Talwandi Sabo Abstract: Load Balancing is a computer networking
Effective Resource Allocation For Dynamic Workload In Virtual Machines Using Cloud Computing
Effective Resource Allocation For Dynamic Workload In Virtual Machines Using Cloud Computing J.Stalin, R.Kanniga Devi Abstract In cloud computing, the business class customers perform scale up and scale
Auto-Scaling Model for Cloud Computing System
Auto-Scaling Model for Cloud Computing System Che-Lun Hung 1*, Yu-Chen Hu 2 and Kuan-Ching Li 3 1 Dept. of Computer Science & Communication Engineering, Providence University 2 Dept. of Computer Science
NetworkCloudSim: Modelling Parallel Applications in Cloud Simulations
2011 Fourth IEEE International Conference on Utility and Cloud Computing NetworkCloudSim: Modelling Parallel Applications in Cloud Simulations Saurabh Kumar Garg and Rajkumar Buyya Cloud Computing and
Datacenters and Cloud Computing. Jia Rao Assistant Professor in CS http://cs.uccs.edu/~jrao/cs5540/spring2014/index.html
Datacenters and Cloud Computing Jia Rao Assistant Professor in CS http://cs.uccs.edu/~jrao/cs5540/spring2014/index.html What is Cloud Computing? A model for enabling ubiquitous, convenient, ondemand network
Automated clustering of VMs for scalable cloud monitoring and management
Automated clustering of VMs for scalable cloud monitoring and management Claudia Canali, Riccardo Lancellotti Department of Information Engineering University of Modena and Reggio Emilia {claudia.canali,
Load Balancing and Maintaining the Qos on Cloud Partitioning For the Public Cloud
Load Balancing and Maintaining the Qos on Cloud Partitioning For the Public Cloud 1 S.Karthika, 2 T.Lavanya, 3 G.Gokila, 4 A.Arunraja 5 S.Sarumathi, 6 S.Saravanakumar, 7 A.Gokilavani 1,2,3,4 Student, Department
Evaluate the Performance and Scalability of Image Deployment in Virtual Data Center
Evaluate the Performance and Scalability of Image Deployment in Virtual Data Center Kejiang Ye, Xiaohong Jiang, Qinming He, Xing Li, Jianhai Chen College of Computer Science, Zhejiang University, Zheda
Monitoring Elastic Cloud Services
Monitoring Elastic Cloud Services [email protected] Advanced School on Service Oriented Computing (SummerSoc 2014) 30 June 5 July, Hersonissos, Crete, Greece Presentation Outline Elasticity in Cloud
International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 36 ISSN 2229-5518
International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 36 An Efficient Approach for Load Balancing in Cloud Environment Balasundaram Ananthakrishnan Abstract Cloud computing
CPET 581 Cloud Computing: Technologies and Enterprise IT Strategies. Virtualization of Clusters and Data Centers
CPET 581 Cloud Computing: Technologies and Enterprise IT Strategies Lecture 4 Virtualization of Clusters and Data Centers Text Book: Distributed and Cloud Computing, by K. Hwang, G C. Fox, and J.J. Dongarra,
Real- Time Mul,- Core Virtual Machine Scheduling in Xen
Real- Time Mul,- Core Virtual Machine Scheduling in Xen Sisu Xi 1, Meng Xu 2, Chenyang Lu 1, Linh Phan 2, Chris Gill 1, Oleg Sokolsky 2, Insup Lee 2 1 Washington University in St. Louis 2 University of
Dynamic Resource management with VM layer and Resource prediction algorithms in Cloud Architecture
Dynamic Resource management with VM layer and Resource prediction algorithms in Cloud Architecture 1 Shaik Fayaz, 2 Dr.V.N.Srinivasu, 3 Tata Venkateswarlu #1 M.Tech (CSE) from P.N.C & Vijai Institute of
A Survey on Load Balancing Technique for Resource Scheduling In Cloud
A Survey on Load Balancing Technique for Resource Scheduling In Cloud Heena Kalariya, Jignesh Vania Dept of Computer Science & Engineering, L.J. Institute of Engineering & Technology, Ahmedabad, India
A Taxonomy and Survey of Energy-Efficient Data Centers and Cloud Computing Systems
A Taxonomy and Survey of Energy-Efficient Data Centers and Cloud Computing Systems Anton Beloglazov, Rajkumar Buyya, Young Choon Lee, and Albert Zomaya Present by Leping Wang 1/25/2012 Outline Background
Efficient and Enhanced Load Balancing Algorithms in Cloud Computing
, pp.9-14 http://dx.doi.org/10.14257/ijgdc.2015.8.2.02 Efficient and Enhanced Load Balancing Algorithms in Cloud Computing Prabhjot Kaur and Dr. Pankaj Deep Kaur M. Tech, CSE P.H.D [email protected],
Energetic Resource Allocation Framework Using Virtualization in Cloud
Energetic Resource Allocation Framework Using Virtualization in Ms.K.Guna *1, Ms.P.Saranya M.E *2 1 (II M.E(CSE)) Student Department of Computer Science and Engineering, 2 Assistant Professor Department
Enhancing the Scalability of Virtual Machines in Cloud
Enhancing the Scalability of Virtual Machines in Cloud Chippy.A #1, Ashok Kumar.P #2, Deepak.S #3, Ananthi.S #4 # Department of Computer Science and Engineering, SNS College of Technology Coimbatore, Tamil
Performance Modeling and Analysis of a Database Server with Write-Heavy Workload
Performance Modeling and Analysis of a Database Server with Write-Heavy Workload Manfred Dellkrantz, Maria Kihl 2, and Anders Robertsson Department of Automatic Control, Lund University 2 Department of
Private Cloud Database Consolidation with Exadata. Nitin Vengurlekar Technical Director/Cloud Evangelist
Private Cloud Database Consolidation with Exadata Nitin Vengurlekar Technical Director/Cloud Evangelist Agenda Private Cloud vs. Public Cloud Business Drivers for Private Cloud Database Architectures for
Dynamic Load Balancing of Virtual Machines using QEMU-KVM
Dynamic Load Balancing of Virtual Machines using QEMU-KVM Akshay Chandak Krishnakant Jaju Technology, College of Engineering, Pune. Maharashtra, India. Akshay Kanfade Pushkar Lohiya Technology, College
Round Robin with Server Affinity: A VM Load Balancing Algorithm for Cloud Based Infrastructure
J Inf Process Syst, Vol.9, No.3, September 2013 pissn 1976-913X eissn 2092-805X http://dx.doi.org/10.3745/jips.2013.9.3.379 Round Robin with Server Affinity: A VM Load Balancing Algorithm for Cloud Based
AN IMPLEMENTATION OF E- LEARNING SYSTEM IN PRIVATE CLOUD
AN IMPLEMENTATION OF E- LEARNING SYSTEM IN PRIVATE CLOUD M. Lawanya Shri 1, Dr. S. Subha 2 1 Assistant Professor,School of Information Technology and Engineering, Vellore Institute of Technology, Vellore-632014
The public-cloud-computing market has
View from the Cloud Editor: George Pallis [email protected] Comparing Public- Cloud Providers Ang Li and Xiaowei Yang Duke University Srikanth Kandula and Ming Zhang Microsoft Research As cloud computing
RESOURCE MANAGEMENT IN CLOUD COMPUTING ENVIRONMENT
RESOURCE MANAGEMENT IN CLOUD COMPUTING ENVIRONMENT A.Chermaraj 1, Dr.P.Marikkannu 2 1 PG Scholar, 2 Assistant Professor, Department of IT, Anna University Regional Centre Coimbatore, Tamilnadu (India)
A Survey of Energy Efficient Data Centres in a Cloud Computing Environment
A Survey of Energy Efficient Data Centres in a Cloud Computing Environment Akshat Dhingra 1, Sanchita Paul 2 Department of Computer Science and Engineering, Birla Institute of Technology, Ranchi, India
Keywords: Cloudsim, MIPS, Gridlet, Virtual machine, Data center, Simulation, SaaS, PaaS, IaaS, VM. Introduction
Vol. 3 Issue 1, January-2014, pp: (1-5), Impact Factor: 1.252, Available online at: www.erpublications.com Performance evaluation of cloud application with constant data center configuration and variable
OpenNebula An Innovative Open Source Toolkit for Building Cloud Solutions
Cloud Computing and its Applications 20th October 2009 OpenNebula An Innovative Open Source Toolkit for Building Cloud Solutions Distributed Systems Architecture Research Group Universidad Complutense
Service allocation in Cloud Environment: A Migration Approach
Service allocation in Cloud Environment: A Migration Approach Pardeep Vashist 1, Arti Dhounchak 2 M.Tech Pursuing, Assistant Professor R.N.C.E.T. Panipat, B.I.T. Sonepat, Sonipat, Pin no.131001 1 [email protected],
VIRTUALIZATION 101. Brainstorm Conference 2013 PRESENTER INTRODUCTIONS
VIRTUALIZATION 101 Brainstorm Conference 2013 PRESENTER INTRODUCTIONS Timothy Leerhoff Senior Consultant TIES 21+ years experience IT consulting 12+ years consulting in Education experience 1 THE QUESTION
