PRESSURE DROP OF PIPE FLOW IN A MANIFOLD BLOCK

Size: px
Start display at page:

Download "PRESSURE DROP OF PIPE FLOW IN A MANIFOLD BLOCK"

Transcription

1 PRESSURE DROP OF PIPE FLOW IN A MANIFOLD BLOCK Osamu ABE*, Tetsuhiro TSUKIJI*, Takeshi HARA*, and Kazutoshi YASUNAGA** * Faculty of Science and Technology Sophia University 7- Kioi-cho, Chiyoda-ku, Tokyo, -8 Japan ( t-tukiji@sophia.ac.jp) ** TOKYO KEIKI INC. ABSTRACT We deal with a solid manifold block and a laminated manifold block that are used for connecting hydraulic components. They are useful for reducing the space and weight of hydraulic systems. We investigate pressure drops of their pipe flow with computational fluid dynamics (CFD) and compare those of two types. The majority of all pressure drops in both types is pressure drop at corners. In solid type, pressure drop is affected by the distance between two corners and angle of corner against upstream corner. Solid type has round sectional area,but laminated type has a square one. So, pressure drop of laminated type is smaller than that of solid type. By experiment of visualization with an acrylic manifold block and comparison of pressure drop of CFD results with experimental results, the validity of CFD results is proved unless heavy cavitation occurs. KEY WORDS Manifold block, Pressure drop, CFD, Pipe flow NOMENCLATURE ρ : Density ν : Kinetic viscosity Q : Volumetric flow rate p : Pressure pe : Pressure at exit θ : Angle L : Length ζ : Pressure loss coefficient p all : All pressure loss p A : Pressure loss at corner A p B : Pressure loss at corner B p f : Friction loss of pipe flow u : Flow velocity d : Pipe diameter INTRODUCTION Hydraulic machines have many valves and piping parts. So there are problems that much space is needed and plumbing is more troublesome. Recently, as one of the methods to reduce the space and piping parts, manifold system is developed. This system is the method of connecting valves and actuators by using steel blocks that have pipelines inside. These blocks are called 'Manifold Block'. It is said that pressure drop of pipe flow in the block because it has many curved section. However, pipe flow in the block has hardly been researched ever though curved pipe flow such as bend or elbow is researched by many workers. Manifold block is generally classified into two types by way of machining. One is a solid manifold block (solid type) that has some holes by drilling as shown in figure.

2 The other is a laminated manifold block (laminated type) that is composed of some blocks grooved and drilled in advance. In solid type, design of pipeline is relatively simple since its pipeline only connects some holes, but it is impossible to design pipeline freely. On the other hand, in laminated type, it is possible to design pipeline freely because it has pipes of rectangular groove, but it is difficult to weld blocks. So it takes much time to manufacture laminated type. converter of laminated type (laminated ). This is composed of three blocks shown in figure (b). In the same, figures 6(a), (b) show flow channels in the block (laminated -T and laminated -P, respectively). Unlike solid type, it is possible to connect ports by curved channel. To compare with solid type, we deal with flow channels that are the same length as solid type channel as shown in figures 7(a), (b) (laminated -T and laminated -P, respectively). Cross section of groove is 6[mm] square. Figure Solid manifold blocks This study focuses on estimating pressure drop of pipe flow in two types as follows with CFD. And by using these results, we aim obtainment of guidelines for pipeline design in a manifold block. Furthermore, we also verify the validity of the CFD results by comparison of CFD results with pressure measurement. In this paper, however, we deal with a manifold block as port converter in case of substituting a valve as shown in figure (a) for another valve as shown in figure (b) when we compare two types. Figure Port converter of solid manifold block (a) Solid-T (b) Solid-P Figure Flow channels in solid manifold block (a) One port of valve (b) Another port of valve (a) Block after attached Figure Port standard of valves NUMERICAL ANALYSIS Objects of Analysis Figure shows a port converter of solid type. And figures (a), (b) show flow channels in the block connecting T with T (solid-t) and P with P (solid-p). These channels go around because they must avoid tapped holes for attachment and other channels. Pipe diameter is 6[mm], partially [mm]. Red arrows in figures show flow direction. Figure (a) shows a port (b) Three blocks before attached Figure Port converter of laminated manifold block (laminated )

3 (a) Laminated -T (b) Laminated -P Figure 6 Flow channels in laminated p-pe [MPa] a b c d e.... Distance of central axis[m] (a) Pressure of flow channels T f solid-t laminated -T laminated -T (a) Laminated -T (b) Laminated -P Figure 7 Flow channels in laminated (like solid type) Analysis objects are the above six flow channels. In this paper, we analyze them by FLUENT6.. SST k-ω model is used for turbulence model along the lines of the study in last year []. Inflow boundary condition is set to velocity inlet (uniform flow), and outflow boundary condition is set to pressure outlet ([MPa]). Those flow channels contain tetrahedral and hexahedral cells. Properties of working fluid is ρ=87[kg/m ], and ν is =[mm /s] where T=7[K] ( degrees). Results of Analysis Figures 8 (a), (b) show pressure on central axis of flow channel in Q=[L/min]. The vertical axis shows the remainder of pressure (p) on central axis and outlet pressure (pe). Central axis of solid type is shown in figures 9 (a), (b). From figures, pressure drop at corners is the majority of pressure drop of flow channel in all types. Pressure drop of solid type at corners is different from each other, so it is found that the distance to previous corner and the bend angle of previous corner affect pressure drop in solid type. Laminated and have less pressure drop than solid type. When laminated is compared with solid type, pressure drops of laminated at corners are smaller than that of solid type. This is because laminated type has lager sectional area than solid type even if their flow channels have the same width. p-pe [MPa] a b c solid-p laminated -P laminated -P.... Distance of central axis[m] (b) Pressure of flow channels P Figure 8 Pressure on central axis of flow channels (a) solid-t (b) solid-p Figure 9 Central axis of solid type Figures (a), (b) show velocity vectors of entire flow channels of solid type in Q=[L/min]. Figures (a), (b) show velocity vectors on cross sections of corner d and e in figure (a). Figures. (a), (b) also show velocity vectors on cross sections of corner b and d in figure (b). d e

4 (a) Velocity vectors of solid-t (a) Cross section P (b) Cross section P Figure Velocity vectors on cross section of solid-p (b) Velocity vectors of solid-p Figure Velocity vectors of solid type It is found that there are regions of large velocity (red regions in figures) after corners from figure, and velocity vectors like vortex are seen in figure (a), figure (a), but not seen in figure (b), figure (b). This is because the distance from corner c to d is shorter than the distance from corner d to e in Solid-T, and the bend angle of upstream corner is different from each other in corners b and d of Solid-P. Influence of the upstream corner on pressure drop at the downstream To investigate the influence of the upstream corner on flow pattern described above, we propose three flow channels as shown in figure. These channels have two corners. In this paper, the upstream corner is named corner A and the downstream corner is named corner B. They are different from the angle θ between inlet and outlet pipeline. Moreover, by varying the length L between corner A and B, we examine the influence of θ and L on pressure drop at corner B, where volumetric flow rate is Q=[L/min] and all pipe diameter is d=6[mm]. (a) Cross section b (b) Cross section d Figure Velocity vectors on cross section of solid-t

5 where ρ is the density of fluid (oil), u is the mean flow velocity, and u=9.7[m/s] for volumetric flow rate Q=[L/min] and pipe diameter d=6[mm]. (a) θ= Figure Relations between ζ and L/d for each θ (b) θ=9 (c) θ=8 Figure Flow channels with two corners To evaluate the influence of θ and L on pressure drop, pressure drop at corner B p B is defined as follows. p B =p all -(p A +p f ) () The results is shown in figure. Horizontal axis L/d shows ratio between L and d. From figure, it is found that the transition of ζ differ by θ, especially in case of L/d<,and ζ approach a constant value for L/d> in any θ. In case of θ=9 and 8, ζ is minimized for L/d 6, while, in case of θ=, the smaller L/d is, the smaller ζ is. EXPERIMENT Experimental Apparatus and Method We manufacture port converter of manifold blocks (test piece) that have the same flow channel that is used in CFD analysis, and prepare experimental apparatus for measuring pressure shown in figures. (a), (b). These manifold blocks are attached to blocks for connecting electronic pressure sensors, a block for returning oil flow from B to T or from P to A, electronic pressure sensors, A/D converter, and [V] power supply. Data of voltage are transmitted from pressure sensor to A/D converter and converted to pressure data. In this paper, pressure drop of each flow channel is defined as the pressure gap of upstream data and downstream data. By comparing with experimental results, we verify the validity of the CFD results. Temperature of working oil is about degree to fit condition of CFD analysis. where p all is the pressure loss of all pipeline, p A is the pressure loss at corner A, p B is the pressure loss at corner B, and p f is the friction loss of pipeline. Furthermore, pressure loss coefficient ζ, which is dimensionless quantity, is defined as follows. ζ=p B /{(/)ρu } ()

6 Pressure drop[mpa] 6 solid T (Experiment) solid T (CFD) (a) Pressure measurement of flow channels of T 6 8 (a) Solid-T 6 solid P (Experiment) solid P (CFD) Pressure drop[mpa] (b) Pressure measurement of flow channels of P Figure Experimental apparatus for measuring pressure Comparison of Analysis with Experiment Figures 6 (a), (b) show the relations between volumetric flow rate and pressure drop of solid type. Figures 6 (c), (d) show the relations between flow rate and pressure drop of laminated type. In solid type, there is a tendency that experimental values are about percent smaller than CFD results from [L/min] (Reynolds number is about,) to 7[L/min] (Reynolds number is about 7,7). Reynolds number is based on pipe diameter, the mean velocity of flow, and kinetic viscosity. So it is found that it is possible to regard pipe flow in solid type as turbulent flow even if Reynolds number is small in case flow channel has many corners. In laminated type, experimental values show good agreement with CFD results except laminated -T. In laminated -T, the more the flow rate increase, the larger the error between experimental values and CFD results. Pressure drop[mpa] Pressure drop[mpa] 6 8 (b) Solid-P laminated -T (Experiment) laminated -T (CFD) laminated -T (Experiment) laminated -T (CFD) 6 8 (c) Laminated -T and -T laminated -P (Experiment) laminated -P (CFD) laminated -P (Experiment) laminated -P (CFD) 6 8 (d) Laminated -P and -P Figure 6 Relations between flow rate and pressure drop 6

7 So when we manufacture an acrylic test piece of laminated and observe oil flow in laminated to investigate factors, luminescence by heavy cavitation [] is seen at a red circle in figures 7(a), (b) in case of more than [L/min]. This is the factor of the error. Figure 7 (a) shows a direction for visualization of laminated -T. A picture of cavitation is shown in figure 7 (b). estimate of pressure drop with CFD is valid by comparison with experimental results. REFERENCES. Takeshi Hara, Research on pipe flow in a manifold block, The Proceedings on Spring Conference of Fluid Power System Society,, pp -6.. T. G.LEIGHTON, M.FARHAT, J. E.FIELD and F.AVELLAN, Cavitation luminescence from flow over a hydrofoil in a cavitation tunnel, Journal of Fluid Mechanics, No.8, pp.-6 () (a) Direction for visualization of laminated -T (b) Picture of cavitation Figure 7 Luminescence by heavy cavitation CONCLUSIONS This paper focuses on estimation of pressure drop of pipe flow in two types of manifold block with CFD analysis, verification of the validity of CFD results by comparison with experimental results, and obtainment of guidelines for pipeline design in a manifold block. Also, we investigate pipe flow from velocity vectors, pressure distribution, and pressure drop. The conclusions of this paper are as given below. () Pressure drop at corners is the majority of pressure drop of pipe flow in manifold block. () At corners of solid type, pipe flow pattern is varied by the distance L and the angle θ, which affect pressure drop at corners. () Pressure drop of laminated type is smaller than that of solid type because laminated type has lager sectional area than solid type even if their flow channels have the same width. () Unless heavy cavitation occurs, it is proved that 7

Experiment 3 Pipe Friction

Experiment 3 Pipe Friction EML 316L Experiment 3 Pipe Friction Laboratory Manual Mechanical and Materials Engineering Department College of Engineering FLORIDA INTERNATIONAL UNIVERSITY Nomenclature Symbol Description Unit A cross-sectional

More information

MODELING OF CAVITATION FLOW ON NACA 0015 HYDROFOIL

MODELING OF CAVITATION FLOW ON NACA 0015 HYDROFOIL Engineering MECHANICS, Vol. 16, 2009, No. 6, p. 447 455 447 MODELING OF CAVITATION FLOW ON NACA 0015 HYDROFOIL Jaroslav Štigler*, Jan Svozil* This paper is concerning with simulations of cavitation flow

More information

DEVELOPMENT OF HIGH SPEED RESPONSE LAMINAR FLOW METER FOR AIR CONDITIONING

DEVELOPMENT OF HIGH SPEED RESPONSE LAMINAR FLOW METER FOR AIR CONDITIONING DEVELOPMENT OF HIGH SPEED RESPONSE LAMINAR FLOW METER FOR AIR CONDITIONING Toshiharu Kagawa 1, Yukako Saisu 2, Riki Nishimura 3 and Chongho Youn 4 ABSTRACT In this paper, we developed a new laminar flow

More information

Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine

Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine HEFAT2012 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 16 18 July 2012 Malta Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine Dr MK

More information

Dimensional analysis is a method for reducing the number and complexity of experimental variables that affect a given physical phenomena.

Dimensional analysis is a method for reducing the number and complexity of experimental variables that affect a given physical phenomena. Dimensional Analysis and Similarity Dimensional analysis is very useful for planning, presentation, and interpretation of experimental data. As discussed previously, most practical fluid mechanics problems

More information

Using CFD to improve the design of a circulating water channel

Using CFD to improve the design of a circulating water channel 2-7 December 27 Using CFD to improve the design of a circulating water channel M.G. Pullinger and J.E. Sargison School of Engineering University of Tasmania, Hobart, TAS, 71 AUSTRALIA Abstract Computational

More information

Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids

Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids Dr. J. M. Meyers Dr. D. G. Fletcher Dr. Y. Dubief 1. Introduction Last lab you investigated flow loss in a pipe due to the roughness

More information

COMPUTATIONAL FLOW MODEL OF WESTFALL'S 4000 OPEN CHANNEL MIXER 411527-1R1. By Kimbal A. Hall, PE. Submitted to: WESTFALL MANUFACTURING COMPANY

COMPUTATIONAL FLOW MODEL OF WESTFALL'S 4000 OPEN CHANNEL MIXER 411527-1R1. By Kimbal A. Hall, PE. Submitted to: WESTFALL MANUFACTURING COMPANY COMPUTATIONAL FLOW MODEL OF WESTFALL'S 4000 OPEN CHANNEL MIXER 411527-1R1 By Kimbal A. Hall, PE Submitted to: WESTFALL MANUFACTURING COMPANY FEBRUARY 2012 ALDEN RESEARCH LABORATORY, INC. 30 Shrewsbury

More information

A LAMINAR FLOW ELEMENT WITH A LINEAR PRESSURE DROP VERSUS VOLUMETRIC FLOW. 1998 ASME Fluids Engineering Division Summer Meeting

A LAMINAR FLOW ELEMENT WITH A LINEAR PRESSURE DROP VERSUS VOLUMETRIC FLOW. 1998 ASME Fluids Engineering Division Summer Meeting TELEDYNE HASTINGS TECHNICAL PAPERS INSTRUMENTS A LAMINAR FLOW ELEMENT WITH A LINEAR PRESSURE DROP VERSUS VOLUMETRIC FLOW Proceedings of FEDSM 98: June -5, 998, Washington, DC FEDSM98 49 ABSTRACT The pressure

More information

FLUID FLOW Introduction General Description

FLUID FLOW Introduction General Description FLUID FLOW Introduction Fluid flow is an important part of many processes, including transporting materials from one point to another, mixing of materials, and chemical reactions. In this experiment, you

More information

THE THERMAL FLOW METER, A GAS METER FOR ENERGY MEASUREMENT

THE THERMAL FLOW METER, A GAS METER FOR ENERGY MEASUREMENT THE THERMAL FLOW METER, A GAS METER FOR ENERGY MEASUREMENT Kazuto Otakane, Tokyo Gas Co., Ltd Katsuhito Sakai, Tokyo Gas Co., Ltd Minoru Seto, Tokyo Gas Co., Ltd 1. INTRODUCTION Tokyo Gas s new gas meter,

More information

NUMERICAL ANALYSIS OF WELLS TURBINE FOR WAVE POWER CONVERSION

NUMERICAL ANALYSIS OF WELLS TURBINE FOR WAVE POWER CONVERSION Engineering Review Vol. 32, Issue 3, 141-146, 2012. 141 NUMERICAL ANALYSIS OF WELLS TURBINE FOR WAVE POWER CONVERSION Z. 1* L. 1 V. 2 M. 1 1 Department of Fluid Mechanics and Computational Engineering,

More information

Experiment (13): Flow channel

Experiment (13): Flow channel Introduction: An open channel is a duct in which the liquid flows with a free surface exposed to atmospheric pressure. Along the length of the duct, the pressure at the surface is therefore constant and

More information

Practice Problems on Pumps. Answer(s): Q 2 = 1850 gpm H 2 = 41.7 ft W = 24.1 hp. C. Wassgren, Purdue University Page 1 of 16 Last Updated: 2010 Oct 29

Practice Problems on Pumps. Answer(s): Q 2 = 1850 gpm H 2 = 41.7 ft W = 24.1 hp. C. Wassgren, Purdue University Page 1 of 16 Last Updated: 2010 Oct 29 _02 A centrifugal with a 12 in. diameter impeller requires a power input of 60 hp when the flowrate is 3200 gpm against a 60 ft head. The impeller is changed to one with a 10 in. diameter. Determine the

More information

PRESSURE DROP ANALYSIS OF INLET PIPE WITH REDUCER AND WITHOUT REDUCER USING CFD ANALYSIS

PRESSURE DROP ANALYSIS OF INLET PIPE WITH REDUCER AND WITHOUT REDUCER USING CFD ANALYSIS International Journal of Mechanical Engineering (IJME) ISSN(P): 2319-2240; ISSN(E): 2319-2259 Vol. 4, Issue 3, Apr - May 2015, 85-92 IASET PRESSURE DROP ANALYSIS OF INLET PIPE WITH REDUCER AND WITHOUT

More information

Hydraulic losses in pipes

Hydraulic losses in pipes Hydraulic losses in pipes Henryk Kudela Contents 1 Viscous flows in pipes 1 1.1 Moody Chart.................................... 2 1.2 Types of Fluid Flow Problems........................... 5 1.3 Minor

More information

Fluid Dynamics Basics

Fluid Dynamics Basics Fluid Dynamics Basics Bernoulli s Equation A very important equation in fluid dynamics is the Bernoulli equation. This equation has four variables: velocity ( ), elevation ( ), pressure ( ), and density

More information

Experimentation and Computational Fluid Dynamics Modelling of Roughness Effects in Flexible Pipelines

Experimentation and Computational Fluid Dynamics Modelling of Roughness Effects in Flexible Pipelines Experimentation and Computational Fluid Dynamics Modelling of Roughness Effects in Flexible Pipelines Sophie Yin Jeremy Leggoe School of Mechanical and Chemical Engineering Daniel Teng Paul Pickering CEED

More information

CEE 370 Fall 2015. Laboratory #3 Open Channel Flow

CEE 370 Fall 2015. Laboratory #3 Open Channel Flow CEE 70 Fall 015 Laboratory # Open Channel Flow Objective: The objective of this experiment is to measure the flow of fluid through open channels using a V-notch weir and a hydraulic jump. Introduction:

More information

A MTR FUEL ELEMENT FLOW DISTRIBUTION MEASUREMENT PRELIMINARY RESULTS

A MTR FUEL ELEMENT FLOW DISTRIBUTION MEASUREMENT PRELIMINARY RESULTS A MTR FUEL ELEMENT FLOW DISTRIBUTION MEASUREMENT PRELIMINARY RESULTS W. M. Torres, P. E. Umbehaun, D. A. Andrade and J. A. B. Souza Centro de Engenharia Nuclear Instituto de Pesquisas Energéticas e Nucleares

More information

Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics

Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics Lecture 6 - Boundary Conditions Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Outline Overview. Inlet and outlet boundaries.

More information

FLOW CONDITIONER DESIGN FOR IMPROVING OPEN CHANNEL FLOW MEASUREMENT ACCURACY FROM A SONTEK ARGONAUT-SW

FLOW CONDITIONER DESIGN FOR IMPROVING OPEN CHANNEL FLOW MEASUREMENT ACCURACY FROM A SONTEK ARGONAUT-SW FLOW CONDITIONER DESIGN FOR IMPROVING OPEN CHANNEL FLOW MEASUREMENT ACCURACY FROM A SONTEK ARGONAUT-SW Daniel J. Howes, P.E. 1 Charles M. Burt, Ph.D., P.E. 2 Brett F. Sanders, Ph.D. 3 ABSTRACT Acoustic

More information

APPENDIX A CONTROL VALVE TESTING PROCEDURES AND EQUATIONS FOR LIQUID FLOWS

APPENDIX A CONTROL VALVE TESTING PROCEDURES AND EQUATIONS FOR LIQUID FLOWS APPENDIX A CONTROL VALVE TESTING PROCEDURES AND EQUATIONS FOR LIQUID FLOWS Section A.1. Flow Coefficients Definition The flow coefficient or pressure loss coefficient is used to relate the pressure loss

More information

Chapter 8: Flow in Pipes

Chapter 8: Flow in Pipes Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks

More information

08.09. Triple Service Valve Assembly

08.09. Triple Service Valve Assembly SEE VICTAULIC PUBLICATION 10.01 FOR DETAILS Victaulic Tri-Service valve is an assembly (shipped as individual components) of a standard Victaulic butterfly or Vic-Plug valve and a check valve. This combination

More information

XI / PHYSICS FLUIDS IN MOTION 11/PA

XI / PHYSICS FLUIDS IN MOTION 11/PA Viscosity It is the property of a liquid due to which it flows in the form of layers and each layer opposes the motion of its adjacent layer. Cause of viscosity Consider two neighboring liquid layers A

More information

How To Use A Flowmeter

How To Use A Flowmeter INLINE flowmeter for continuous flow measurement Economic integration in pipe systems without any additional piping 3-wire frequency pulse version to directly interface with PLC s (both PNP and NPN) Connection

More information

HEAVY OIL FLOW MEASUREMENT CHALLENGES

HEAVY OIL FLOW MEASUREMENT CHALLENGES HEAVY OIL FLOW MEASUREMENT CHALLENGES 1 INTRODUCTION The vast majority of the world s remaining oil reserves are categorised as heavy / unconventional oils (high viscosity). Due to diminishing conventional

More information

HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi

HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi 2 Rajesh Dudi 1 Scholar and 2 Assistant Professor,Department of Mechanical Engineering, OITM, Hisar (Haryana)

More information

Flow Measurement Options for Pipeline and Open Channel Flow

Flow Measurement Options for Pipeline and Open Channel Flow Flow Measurement Options for Pipeline and Open Channel Flow October 2013 Presented by Molly Skorpik - 2013 Montana Association of Dam and Canal Systems Conference Irrigation Training and Research Center

More information

Backwater Rise and Drag Characteristics of Bridge Piers under Subcritical

Backwater Rise and Drag Characteristics of Bridge Piers under Subcritical European Water 36: 7-35, 11. 11 E.W. Publications Backwater Rise and Drag Characteristics of Bridge Piers under Subcritical Flow Conditions C.R. Suribabu *, R.M. Sabarish, R. Narasimhan and A.R. Chandhru

More information

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: jozef.simicek@stuba.sk Research field: Statics and Dynamics Fluids mechanics

More information

Unit 24: Applications of Pneumatics and Hydraulics

Unit 24: Applications of Pneumatics and Hydraulics Unit 24: Applications of Pneumatics and Hydraulics Unit code: J/601/1496 QCF level: 4 Credit value: 15 OUTCOME 2 TUTORIAL 3 HYDRAULIC AND PNEUMATIC MOTORS The material needed for outcome 2 is very extensive

More information

SIZING AND CAPACITIES OF GAS PIPING

SIZING AND CAPACITIES OF GAS PIPING APPENDIX A (IFGS) SIZING AND CAPACITIES OF GAS PIPING (This appendix is informative and is not part of the code.) A.1 General. To determine the size of piping used in a gas piping system, the following

More information

du u U 0 U dy y b 0 b

du u U 0 U dy y b 0 b BASIC CONCEPTS/DEFINITIONS OF FLUID MECHANICS (by Marios M. Fyrillas) 1. Density (πυκνότητα) Symbol: 3 Units of measure: kg / m Equation: m ( m mass, V volume) V. Pressure (πίεση) Alternative definition:

More information

FREESTUDY HEAT TRANSFER TUTORIAL 3 ADVANCED STUDIES

FREESTUDY HEAT TRANSFER TUTORIAL 3 ADVANCED STUDIES FREESTUDY HEAT TRANSFER TUTORIAL ADVANCED STUDIES This is the third tutorial in the series on heat transfer and covers some of the advanced theory of convection. The tutorials are designed to bring the

More information

Unit 24: Applications of Pneumatics and Hydraulics

Unit 24: Applications of Pneumatics and Hydraulics Unit 24: Applications of Pneumatics and Hydraulics Unit code: J/601/1496 QCF level: 4 Credit value: 15 OUTCOME 2 TUTORIAL 2 HYDRAULIC AND PNEUMATIC CYLINDERS The material needed for outcome 2 is very extensive

More information

Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22

Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22 BL_01 A thin flat plate 55 by 110 cm is immersed in a 6 m/s stream of SAE 10 oil at 20 C. Compute the total skin friction drag if the stream is parallel to (a) the long side and (b) the short side. D =

More information

Open Channel Flow. M. Siavashi. School of Mechanical Engineering Iran University of Science and Technology

Open Channel Flow. M. Siavashi. School of Mechanical Engineering Iran University of Science and Technology M. Siavashi School of Mechanical Engineering Iran University of Science and Technology W ebpage: webpages.iust.ac.ir/msiavashi Email: msiavashi@iust.ac.ir Landline: +98 21 77240391 Fall 2013 Introduction

More information

Module 9: Basics of Pumps and Hydraulics Instructor Guide

Module 9: Basics of Pumps and Hydraulics Instructor Guide Module 9: Basics of Pumps and Hydraulics Instructor Guide Activities for Unit 1 Basic Hydraulics Activity 1.1: Convert 45 psi to feet of head. 45 psis x 1 ft. = 103.8 ft 0.433 psi Activity 1.2: Determine

More information

Experimental Evaluation of the Discharge Coefficient of a Centre-Pivot Roof Window

Experimental Evaluation of the Discharge Coefficient of a Centre-Pivot Roof Window Experimental Evaluation of the Discharge Coefficient of a Centre-Pivot Roof Window Ahsan Iqbal #1, Alireza Afshari #2, Per Heiselberg *3, Anders Høj **4 # Energy and Environment, Danish Building Research

More information

THE USE OF AIR ATOMIZING NOZZLES TO PRODUCE SPRAYS WITH FINE DROPLETS

THE USE OF AIR ATOMIZING NOZZLES TO PRODUCE SPRAYS WITH FINE DROPLETS 14th International Water Mist Conference THE USE OF AIR ATOMIZING NOZZLES TO PRODUCE SPRAYS WITH FINE DROPLETS Dr.Gökhan BALIK Etik Muhendislik Danismanlik Tasarim ve Egitim Hizmetleri Ltd.Şti. Istanbul

More information

Numerical Investigation of Heat Transfer Characteristics in A Square Duct with Internal RIBS

Numerical Investigation of Heat Transfer Characteristics in A Square Duct with Internal RIBS merical Investigation of Heat Transfer Characteristics in A Square Duct with Internal RIBS Abhilash Kumar 1, R. SaravanaSathiyaPrabhahar 2 Mepco Schlenk Engineering College, Sivakasi, Tamilnadu India 1,

More information

Use of OpenFoam in a CFD analysis of a finger type slug catcher. Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands

Use of OpenFoam in a CFD analysis of a finger type slug catcher. Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands Use of OpenFoam in a CFD analysis of a finger type slug catcher Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands Agenda Project background Analytical analysis of two-phase flow regimes

More information

Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module No. # 04 Convective Heat Transfer Lecture No. # 03 Heat Transfer Correlation

More information

The Unique Accelabar Flow Meter

The Unique Accelabar Flow Meter The Unique Accelabar Flow Meter The Accelabar is a new and unique flow meter that combines two differential pressure technologies to produce operating ranges never before attainable in a single flow meter.

More information

Control ball valves for severe services. Author: Michele Ferrante, PARCOL S.p.A., Italy

Control ball valves for severe services. Author: Michele Ferrante, PARCOL S.p.A., Italy Control ball valves for severe services Author: Michele Ferrante, PARCOL S.p.A., Italy Control valves are primarily classified according to the type of their obturator motion which can be linear or rotary.

More information

Study of Snowdrift around Buildings of Antarctica using Numerical Analysis

Study of Snowdrift around Buildings of Antarctica using Numerical Analysis The 14th International Workshop on Atmospheric Icing of Structures, Chongqing, China, May 8 - May 13, 2011 Study of Snowdrift around Buildings of Antarctica using Numerical Analysis Y. Yamagishi* 1, S.

More information

Minor losses include head losses through/past hydrants, couplers, valves,

Minor losses include head losses through/past hydrants, couplers, valves, Lecture 10 Minor Losses & Pressure Requirements I. Minor Losses Minor (or fitting, or local ) hydraulic losses along pipes can often be estimated as a function of the velocity head of the water within

More information

Chapter 10. Flow Rate. Flow Rate. Flow Measurements. The velocity of the flow is described at any

Chapter 10. Flow Rate. Flow Rate. Flow Measurements. The velocity of the flow is described at any Chapter 10 Flow Measurements Material from Theory and Design for Mechanical Measurements; Figliola, Third Edition Flow Rate Flow rate can be expressed in terms of volume flow rate (volume/time) or mass

More information

Chapter 13 OPEN-CHANNEL FLOW

Chapter 13 OPEN-CHANNEL FLOW Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010 Lecture slides by Mehmet Kanoglu Copyright The McGraw-Hill Companies, Inc. Permission required

More information

Grant Agreement No. 228296 SFERA. Solar Facilities for the European Research Area SEVENTH FRAMEWORK PROGRAMME. Capacities Specific Programme

Grant Agreement No. 228296 SFERA. Solar Facilities for the European Research Area SEVENTH FRAMEWORK PROGRAMME. Capacities Specific Programme Grant Agreement No. 228296 SFERA Solar Facilities for the European Research Area SEVENTH FRAMEWORK PROGRAMME Capacities Specific Programme Research Infrastructures Integrating Activity - Combination of

More information

Abaqus/CFD Sample Problems. Abaqus 6.10

Abaqus/CFD Sample Problems. Abaqus 6.10 Abaqus/CFD Sample Problems Abaqus 6.10 Contents 1. Oscillatory Laminar Plane Poiseuille Flow 2. Flow in Shear Driven Cavities 3. Buoyancy Driven Flow in Cavities 4. Turbulent Flow in a Rectangular Channel

More information

L r = L m /L p. L r = L p /L m

L r = L m /L p. L r = L p /L m NOTE: In the set of lectures 19/20 I defined the length ratio as L r = L m /L p The textbook by Finnermore & Franzini defines it as L r = L p /L m To avoid confusion let's keep the textbook definition,

More information

measurement, but almost any pipe elbow can be calibrated Elbow meters are not as potentially accurate as venturi,

measurement, but almost any pipe elbow can be calibrated Elbow meters are not as potentially accurate as venturi, Lecture 14 Flow Measurement in Pipes I. Elbow Meters An elbow in a pipe can be used as a flow measuring device much in the same way as a venturi or orifice plate The head differential across the elbow

More information

Averaging Pitot Tubes; Fact and Fiction

Averaging Pitot Tubes; Fact and Fiction Averaging Pitot Tubes; Fact and Fiction Abstract An experimental investigation has been undertaken to elucidate effects of averaging stagnation pressures on estimated velocities for pressure averaging

More information

Heat Transfer Enhancement in a Heat Exchanger using Punched and V-cut Twisted Tape Inserts

Heat Transfer Enhancement in a Heat Exchanger using Punched and V-cut Twisted Tape Inserts Heat Transfer Enhancement in a Heat Exchanger using Punched and V-cut Twisted Tape Inserts Imran Quazi#1, Prof. V.R.Mohite#2 #1DPCOE-Mechanical Department, SPP University Pune, India imranqu azi198 7@gmail.com

More information

SEPARATING DUST PARTICLES USING AN AERODYNAMIC DEDUSTER

SEPARATING DUST PARTICLES USING AN AERODYNAMIC DEDUSTER SEPARATING DUST PARTICLES USING AN AERODYNAMIC DEDUSTER DEVELOPMENT OF AN AERODYNAMIC DEDUSTER FOR LIVESTOCK BUILDINGS G.A. Zhao, Y. Zhang Summary Dust is among the major pollutants that have a detrimental

More information

Open channel flow Basic principle

Open channel flow Basic principle Open channel flow Basic principle INTRODUCTION Flow in rivers, irrigation canals, drainage ditches and aqueducts are some examples for open channel flow. These flows occur with a free surface and the pressure

More information

How To Model A Horseshoe Vortex

How To Model A Horseshoe Vortex Comparison of CFD models for multiphase flow evolution in bridge scour processes A. Bayón-Barrachina, D. Valero, F.J. Vallès Morán, P. A. López-Jiménez Dept. of Hydraulic and Environmental Engineering

More information

CFD SUPPORTED EXAMINATION OF BUOY DESIGN FOR WAVE ENERGY CONVERSION

CFD SUPPORTED EXAMINATION OF BUOY DESIGN FOR WAVE ENERGY CONVERSION CFD SUPPORTED EXAMINATION OF BUOY DESIGN FOR WAVE ENERGY CONVERSION Nadir Yilmaz, Geoffrey E. Trapp, Scott M. Gagan, Timothy R. Emmerich Department of Mechanical Engineering, New Mexico Institute of Mining

More information

OpenFOAM simulations of the Turbulent Flow in a Rod Bundle with Mixing Vanes

OpenFOAM simulations of the Turbulent Flow in a Rod Bundle with Mixing Vanes OpenFOAM simulations of the Turbulent Flow in a Rod Bundle with Mixing Vanes ABSTRACT Blaž Mikuž Reactor Engineering Division, Jozef Stefan Institute, Jamova cesta 39 SI-1000 Ljubljana, Slovenia blaz.mikuz@ijs.si

More information

FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER

FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER VISUAL PHYSICS School of Physics University of Sydney Australia FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER? What type of fluid flow is observed? The above pictures show how the effect

More information

Michael Montgomery Marketing Product Manager Rosemount Inc. Russ Evans Manager of Engineering and Design Rosemount Inc.

Michael Montgomery Marketing Product Manager Rosemount Inc. Russ Evans Manager of Engineering and Design Rosemount Inc. ASGMT / Averaging Pitot Tube Flow Measurement Michael Montgomery Marketing Product Manager Rosemount Inc. Russ Evans Manager of Engineering and Design Rosemount Inc. Averaging Pitot Tube Meters Introduction

More information

ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts

ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts ME 305 Fluid Mechanics I Part 8 Viscous Flow in Pipes and Ducts These presentations are prepared by Dr. Cüneyt Sert Mechanical Engineering Department Middle East Technical University Ankara, Turkey csert@metu.edu.tr

More information

Navier-Stokes Equation Solved in Comsol 4.1. Copyright Bruce A. Finlayson, 2010 See also Introduction to Chemical Engineering Computing, Wiley (2006).

Navier-Stokes Equation Solved in Comsol 4.1. Copyright Bruce A. Finlayson, 2010 See also Introduction to Chemical Engineering Computing, Wiley (2006). Introduction to Chemical Engineering Computing Copyright, Bruce A. Finlayson, 2004 1 Navier-Stokes Equation Solved in Comsol 4.1. Copyright Bruce A. Finlayson, 2010 See also Introduction to Chemical Engineering

More information

What is the most obvious difference between pipe flow and open channel flow????????????? (in terms of flow conditions and energy situation)

What is the most obvious difference between pipe flow and open channel flow????????????? (in terms of flow conditions and energy situation) OPEN CHANNEL FLOW 1 3 Question What is the most obvious difference between pipe flow and open channel flow????????????? (in terms of flow conditions and energy situation) Typical open channel shapes Figure

More information

Open center control block in monoblock design MO-40

Open center control block in monoblock design MO-40 Open center control block in monoblock design MO-40 RE 64370 Edition: 02.2015 Replaces: 02.1985 Size 40 Series 1X Maximum working pressure on pump side 350 bar on consumer side 420 bar Maximum flow 680

More information

Pipe Flow-Friction Factor Calculations with Excel

Pipe Flow-Friction Factor Calculations with Excel Pipe Flow-Friction Factor Calculations with Excel Course No: C03-022 Credit: 3 PDH Harlan H. Bengtson, PhD, P.E. Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 10980

More information

Battery Thermal Management System Design Modeling

Battery Thermal Management System Design Modeling Battery Thermal Management System Design Modeling Gi-Heon Kim, Ph.D Ahmad Pesaran, Ph.D (ahmad_pesaran@nrel.gov) National Renewable Energy Laboratory, Golden, Colorado, U.S.A. EVS October -8, 8, 006 Yokohama,

More information

Lecture 5 Hemodynamics. Description of fluid flow. The equation of continuity

Lecture 5 Hemodynamics. Description of fluid flow. The equation of continuity 1 Lecture 5 Hemodynamics Description of fluid flow Hydrodynamics is the part of physics, which studies the motion of fluids. It is based on the laws of mechanics. Hemodynamics studies the motion of blood

More information

GEOMETRIC, THERMODYNAMIC AND CFD ANALYSES OF A REAL SCROLL EXPANDER FOR MICRO ORC APPLICATIONS

GEOMETRIC, THERMODYNAMIC AND CFD ANALYSES OF A REAL SCROLL EXPANDER FOR MICRO ORC APPLICATIONS 2 nd International Seminar on ORC Power Systems October 7 th & 8 th, 213 De Doelen, Rotterdam, NL GEOMETRIC, THERMODYNAMIC AND CFD ANALYSES OF A REAL SCROLL EXPANDER FOR MICRO ORC APPLICATIONS M. Morini,

More information

Experiment # 3: Pipe Flow

Experiment # 3: Pipe Flow ME 05 Mechanical Engineering Lab Page ME 05 Mechanical Engineering Laboratory Spring Quarter 00 Experiment # 3: Pipe Flow Objectives: a) Calibrate a pressure transducer and two different flowmeters (paddlewheel

More information

WATER MEASUREMENT USING TWO INCH (50 mm) DRAIN TESTS

WATER MEASUREMENT USING TWO INCH (50 mm) DRAIN TESTS GAP.14.1.2.2 A Publication of Global Asset Protection Services LLC WATER MEASUREMENT USING TWO INCH (50 mm) DRAIN TESTS INTRODUCTION A hydrant or other large-volume flow test is necessary for proper water

More information

CHAPTER 9 CHANNELS APPENDIX A. Hydraulic Design Equations for Open Channel Flow

CHAPTER 9 CHANNELS APPENDIX A. Hydraulic Design Equations for Open Channel Flow CHAPTER 9 CHANNELS APPENDIX A Hydraulic Design Equations for Open Channel Flow SEPTEMBER 2009 CHAPTER 9 APPENDIX A Hydraulic Design Equations for Open Channel Flow Introduction The Equations presented

More information

INTERNATIONAL JOURNAL OF RESEARCH IN AERONAUTICAL AND MECHANICAL ENGINEERING

INTERNATIONAL JOURNAL OF RESEARCH IN AERONAUTICAL AND MECHANICAL ENGINEERING ISSN (ONLINE): 2321-3051 INTERNATIONAL JOURNAL OF RESEARCH IN AERONAUTICAL AND MECHANICAL ENGINEERING Study of forced convection heat transfer With DAQ & ANSYS First Authors Moopanar karthikeyan 1, Raote

More information

CFD SIMULATION OF IPR-R1 TRIGA SUBCHANNELS FLUID FLOW

CFD SIMULATION OF IPR-R1 TRIGA SUBCHANNELS FLUID FLOW 2013 International Nuclear Atlantic Conference - INAC 2013 Recife, PE, Brazil, November 24-29, 2013 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-05-2 CFD SIMULATION OF IPR-R1 TRIGA

More information

IPACK2005-73273 DISTRIBUTED LEAKAGE FLOW IN RAISED-FLOOR DATA CENTERS

IPACK2005-73273 DISTRIBUTED LEAKAGE FLOW IN RAISED-FLOOR DATA CENTERS Proceedings of IPACK5 ASME InterPACK '5 July 17-, San Francisco, California, USA IPACK5-7373 DISTRIBUTED LEAKAGE FLOW IN RAISED-FLOOR DATA CENTERS Amir Radmehr Innovative Research, Inc. Plymouth, MN, USA

More information

Instructions Manual. Electromagnetic sensor Series FLOMID FX. instrumentation for fluids. R-MI-FlomidFX Rev.: 0 English version

Instructions Manual. Electromagnetic sensor Series FLOMID FX. instrumentation for fluids. R-MI-FlomidFX Rev.: 0 English version instrumentation for fluids Electromagnetic sensor Series FLOMID FX Instructions Manual! Conforms with the Pressure Equipment Directive 97/23/EC. 0830 This equipment is considered as being a pressure accessory

More information

Pressure drop in pipes...

Pressure drop in pipes... Pressure drop in pipes... PRESSURE DROP CALCULATIONS Pressure drop or head loss, occurs in all piping systems because of elevation changes, turbulence caused by abrupt changes in direction, and friction

More information

Civil Engineering Hydraulics Open Channel Flow. Adult: Where s your costume? What are you supposed to be?

Civil Engineering Hydraulics Open Channel Flow. Adult: Where s your costume? What are you supposed to be? Civil Engineering Hydraulics Calvin: Trick or treat! Adult: Where s your costume? What are you supposed to be? Calvin: I m yet another resource-consuming kid in an overpopulated planet, raised to an alarming

More information

Making 3D Threads in Feature Based Solid Modelers

Making 3D Threads in Feature Based Solid Modelers Making 3D Threads in Feature Based Solid Modelers THREAD BASICS Making true geometric threads in feature-based solid modelers is a fairly straightforward process and can be handled using several different

More information

Electrical supply to the pump motor is via a switch and RCD mounted in the recess on the front of the bench.

Electrical supply to the pump motor is via a switch and RCD mounted in the recess on the front of the bench. FLUID MECHANICS LAB EQUIPMENTS 1. HYDRAULIC BENCH The hydraulics bench consists of a moulded plastic sump tank which supports GRP bench top incorporating a flow channel and volumetric measuring tank. A

More information

The INSEAN E779a Propeller Test Case: a Database For CFD Validation

The INSEAN E779a Propeller Test Case: a Database For CFD Validation The INSEAN E779a Propeller Test Case: a Database For CFD Validation G.Calcagno,F. Di Felice, M. Felli,S. Franchi, F.Pereira, F.Salvatore INSEAN (Italian Ship Model Basin), via di Vallerano 139, 00128 Rome,

More information

Chapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations

Chapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations Chapter 2. Derivation of the Equations of Open Channel Flow 2.1 General Considerations Of interest is water flowing in a channel with a free surface, which is usually referred to as open channel flow.

More information

For Multi-Parameter Meters see mvx

For Multi-Parameter Meters see mvx BULLETIN BULLETIN EM20607 VORTEX IN-LINE FLOW METERS Design Features For Multi-Parameter Meters see m Principles of Operation n No moving parts to wear or fail. n Electronics can be remotely mounted up

More information

! WARNING. Before using product, read and understand instructions.

! WARNING. Before using product, read and understand instructions. McDonnell & Miller Installation & Maintenance Instructions MM-600G) Series FS8-W General Purpose Liquid Flow Switch OPERATION This control is an independently mounted water flow sensing device that makes

More information

Numerical Simulation of Thermal Stratification in Cold Legs by Using OpenFOAM

Numerical Simulation of Thermal Stratification in Cold Legs by Using OpenFOAM Progress in NUCLEAR SCIENCE and TECHNOLOGY, Vol. 2, pp.107-113 (2011) ARTICLE Numerical Simulation of Thermal Stratification in Cold Legs by Using OpenFOAM Jiejin CAI *, and Tadashi WATANABE Japan Atomic

More information

Do-It-Yourself- Hydraulic Press Make Your Own, by Marshel Rossow

Do-It-Yourself- Hydraulic Press Make Your Own, by Marshel Rossow Do-It-Yourself- Hydraulic Press Make Your Own, by Marshel Rossow This press can be built from readily available metal. Materials and dimensions need not be exactly what is shown here. Much of the material

More information

SIZING AND CAPACITIES OF GAS PIPING (Not Adopted by the State of Oregon)

SIZING AND CAPACITIES OF GAS PIPING (Not Adopted by the State of Oregon) (IFGS) SIZING AND CAPACITIES OF GAS PIPING (Not Adopted by the State of Oregon) (This appendix is informative and is not part of the code. This appendix is an excerpt from the 2006 International Fuel Gas

More information

Flow distribution and turbulent heat transfer in a hexagonal rod bundle experiment

Flow distribution and turbulent heat transfer in a hexagonal rod bundle experiment Flow distribution and turbulent heat transfer in a hexagonal rod bundle experiment K. Litfin, A. Batta, A. G. Class,T. Wetzel, R. Stieglitz Karlsruhe Institute of Technology Institute for Nuclear and Energy

More information

2.0 BASIC CONCEPTS OF OPEN CHANNEL FLOW MEASUREMENT

2.0 BASIC CONCEPTS OF OPEN CHANNEL FLOW MEASUREMENT 2.0 BASIC CONCEPTS OF OPEN CHANNEL FLOW MEASUREMENT Open channel flow is defined as flow in any channel where the liquid flows with a free surface. Open channel flow is not under pressure; gravity is the

More information

Appendix 4-C. Open Channel Theory

Appendix 4-C. Open Channel Theory 4-C-1 Appendix 4-C Open Channel Theory 4-C-2 Appendix 4.C - Table of Contents 4.C.1 Open Channel Flow Theory 4-C-3 4.C.2 Concepts 4-C-3 4.C.2.1 Specific Energy 4-C-3 4.C.2.2 Velocity Distribution Coefficient

More information

Understanding Plastics Engineering Calculations

Understanding Plastics Engineering Calculations Natti S. Rao Nick R. Schott Understanding Plastics Engineering Calculations Hands-on Examples and Case Studies Sample Pages from Chapters 4 and 6 ISBNs 978--56990-509-8-56990-509-6 HANSER Hanser Publishers,

More information

Ravi Kumar Singh*, K. B. Sahu**, Thakur Debasis Mishra***

Ravi Kumar Singh*, K. B. Sahu**, Thakur Debasis Mishra*** Ravi Kumar Singh, K. B. Sahu, Thakur Debasis Mishra / International Journal of Engineering Research and Applications (IJERA) ISSN: 48-96 www.ijera.com Vol. 3, Issue 3, May-Jun 3, pp.766-77 Analysis of

More information

TYPE E Main Valve Sizes 3 /8 through 12

TYPE E Main Valve Sizes 3 /8 through 12 SD 3001F PRINTED IN U.S.A. SD 3001F/0707 A B TYPE E MAIN VALVE C D E TYPE E Main Valve Sizes 3 /8 through 12 The Spence Type E Main Valve is of normally closed, single seat design featuring packless construction,

More information

HEAT TRANSFER ENHANCEMENT AND FRICTION FACTOR ANALYSIS IN TUBE USING CONICAL SPRING INSERT

HEAT TRANSFER ENHANCEMENT AND FRICTION FACTOR ANALYSIS IN TUBE USING CONICAL SPRING INSERT HEAT TRANSFER ENHANCEMENT AND FRICTION FACTOR ANALYSIS IN TUBE USING CONICAL SPRING INSERT Rahul M. Gupta 1, Bhushan C. Bissa 2 1 Research Scholar, Department of Mechanical Engineering, Shri Ramdeobaba

More information

VAL-MATIC VALVE AND MANUFACTURING CORP. 905 RIVERSIDE DRIVE, ELMHURST, IL 60126 TEL. (630) 941-7600 FAX.

VAL-MATIC VALVE AND MANUFACTURING CORP. 905 RIVERSIDE DRIVE, ELMHURST, IL 60126 TEL. (630) 941-7600 FAX. Cavitation in Valves VAL-MATIC VALVE AND MANUFACTURING CORP. 905 RIVERSIDE DRIVE, ELMHURST, IL 60126 TEL. (630) 941-7600 FAX. (630) 941-8042 www.valmatic.com CAVITATION IN VALVES INTRODUCTION Cavitation

More information