Proper Definition of Spin Current in SpinOrbit Coupled Systems


 Bertha Crawford
 3 years ago
 Views:
Transcription
1 Proper Definition of Spin Current in SpinOrbit Coupled Systems Junren Shi ddd Institute of Physics Chinese Academy of Sciences March 25, 2006, Sanya Collaborators: Ping Zhang (dd) Di Xiao, Qian Niu(UTAustin ) Phys. Rev. Lett. 96, (2006)
2 Outline Introduction New definition Conclusion 1 Introduction 2 Proper definition of spin current 3 Conclusion
3 Concept of Spin Current Key concept Spin current: Spin transport Spinbased information exchange More general than the spin polarized current I I Intuitive definition of spin current: I s = I I Pure spin current: I = I I c = I + I = 0 I s = I I = 2I
4 Generating Spin Current Spin Hall Effect Generating pure spin current by applying electric field Present in nonmagnetic semiconductors Mechanisms: Extrinsic mechanism spin dependent skew scattering [Dyakonov and Perel 1972; Hirsch 1999; S. Zhang 2000] Intrinsic mechanism spin dependent anomalous velocity (Berry phase in momentum space) [Murakami et al. 2003; Sinova et al and many others]
5 Spin Accumulation Experiments Y.K. Kato, R.C. Myers, A.C. Gossard, D.D. Awschalom, Science, 306, 1910 (2004). Experiments boundary spin accumulation Theory bulk spin current J. Wunderlich, B. Kaestner, J. Sinova, T. Jungwirth, Phys. Rev. Lett. 94, (2005). Determine the spin current from the spin accumulation?
6 Spin current and spin accumulation Simplest theory: S t + J s = S τ s Sdn = J s nτ s However, spin current/spin accumulation relation is nontrivial: The relation is valid only for the specific form of spin relaxation. Boundary contribution bulk spin current is not the only source contributing to the boundary spin accumulation. Spin accumulation may not be an appropriate way to determine the spin current.
7 Spin Accumulation: Boundary or Bulk Contribution Origins of spin accumulation: Boundary effect: Boundary induced spin density wave similar to Friedel oscillation for charge density. Boundary spin torque: scattering by boundary may induce spin flipping. Bulk contribution: spins are transported to the boundary region from the bulk spin current. J s λ F /2 S z (r) S z (r) l D Spin current is only relevant to the spin accumulation contributed by the bulk.
8 Can the Spin Current Really Describe the Spin Transport? Issues: Electron is localized along xdirection by the impurity scattering. Spin current is nonzero due to the spinflip scattering The electron cannot contribute to the boundary spin accumulation even it carries nonzero spin current. The spin current is NOT continuous. The spin current does not vanish even in a localized state. The spin current cannot describe the spin transport when spin is not conserved!
9 Fundamentally Flawed Definition of Spin Current Conventional definition of spin current: J e = eυ J s = ŝ z υ However, this definition is fundamentally flawed: Not conserved in spinorbit coupled systems S z t + J s = T z 0 Not vanishing even in localized states Rashba, 2003 No conjugate force exists Not a standard flow in the sense of the nonequilibrium statistical physics. Current Conjugate force dq/dt J e E j e E J s??
10 Motivation The conventional spin current: cannot be directly measured by any known procedure; cannot descibe true spin transport. The proper definition of spin current must be: It must: describing the true spin transport. measurable as a macroscopic current. conserve: S z t + J s = 0 vanish in (Anderson) insulators be in conjugation to a force spin force
11 A Conserved Spin Current Continuity equation Assume zero spin generation in the bulk Torque dipole density S z t + J s = T z ṡ z 1 dv T z (r) = 0 V T z (r) = P τ (r) Current conserved S z t + (J s + P τ ) = 0 New definition: dv P τ = J s = J s + P τ dv ṡ z r d(sz r) J s = s z ṙ + ṡ z r = dt
12 Spin Torque Dipole Definition of Spin Torque Dipole T z (r) = P τ (r) Macroscopic average: 1 dv P τ (r) = 1 V V dv rt (r) Analogy to the charge dipole density: P(R) = 1 rρ(r) V V R
13 Effective Conserved Spin Current Operator dv P τ (r) dv J s (r) dv J s (r) = dv rt (r) dv Reψ (r) 1 { 2 dv Reψ (r) 1 { } dˆr 2 dt,ŝ z ψ(r) [ ] dv Reψ d(ˆrŝz ) (r) ψ(r) dt ˆr, dŝ z dt } ψ(r) Ĵ s = d(ˆrŝ z) dt This is not microscopic definition of the spin current operator it is an effective one defined in the macroscopic level.
14 Testing Case T T T T Spin torque density T z is nonzero spin flip process. Spin torque dipole: P τ = T l Conserved spin current: J s = J s + P τ = 0 Spin torque dipole deducts the local polarization contribution from the spin current. The resulting conserved spin current describes the true spin transport.
15 In Insulators Zero expectation value in any spatially localized states: l Ĵ s l l d(ˆrŝ z) l dt = E l E l l ˆrŝ z l = 0 i Zero spin transport coefficient in Anderson insulators: σ s = e l l f l Im l d(ˆrŝ z )/dt l l ˆυ l (ǫ l ǫ l ) 2 = e l f l l [ˆrŝ z, ˆr] l = 0
16 Conjugate Force for spin current Origin of spin force: gradient of an inhomogeneous Zeeman field spin dependent chemical potential near ferromagnetmetal interface dq dt dh 0 dt H = H 0 ŝ z ˆr F s = d(ŝ zˆr) dt F s J s F s The new definition conforms to the standard nearequilibrium transport theory.
17 Onsager Relation for Charge/Spin Transport Spin Hall effect Inverse spin Hall effect j s E j e F s J x s = σ sc xye y j y e = σ cs yxf x s Onsager Relation: σ sc xy = σ cs yx The spin transport can be connected to the charge transport.
18 Onsager Relation General theory A system under two driving forces: H = H 0 X 1 F 1 X 2 F 2 Transport coefficients defined by: Ẋ1 = σ 11 F 1 + σ 12 F 2 Ẋ2 = σ 21 F 1 + σ 22 F 2 Onsager relation σ 12 (S) = s 1 s 2 σ 21 (S ) Direct application: X 1 eˆr X 2 ŝ z ˆr
19 Direct measurement of spin current Thermodynamic method: J s = 1 F s dq dt Technique to measure the Zeeman field gradient is required. Electric method: J s = σ sc V y xy L y σ sc xy can be determined from the inverse spin Hall effect: σ sc xy = σ cs yx V y σ ss F s Ey dq/dt J s J s
20 Linear Response Theory To calculate the spin torque dipole: Calculate the spin torque response to external field at finite wave vector q: T (q) = χ ν (q)e ν (q) Spin torque dipole is related to the spin torque by: Long wave limit q 0: T (q) = iq P τ (q) iq µ σ τ µνe ν (q) σµν τ 1 = i lim χ ν (q) = i µ χ ν (q) q 0 q q 0 µ
21 Intrinsic Spin Hall Coefficients Conventional values: Rashba model: e 8π Cubedk Rashba model: 9e 8π Luttinger model: New values: Rashba model: e 8π Cubedk Rashba model: 9e 8π Luttinger model: 3eγ 1 12π 2 γ 2 (k H k L )+ e 6π 2k H γ 2 0: e 6π 2k e(γ 2 γ 1 ) 6π 2 (k H k L )+ e γ 2 6π 2k H γ 2 0: e 6π 2k
22 Disorder effect (a) Rashba model Impurity potential Born approx. Definition of spin current J s J s δ(r) 1st 0 0 higher 0 0 V p p 1st 0 0 higher 0 Finite (b) Cubic Rashba model Impurity potential Born approx. Definition of spin current J s J s δ(r) 1st Finite 0 higher Finite 0 V p p 1st Finite 0 higher Finite Finite Sugimoto, Onoda, Murakami and Nagaosa, condmat/
23 Conclusion A proper definition of spin current is established: Conserved Kirchhoff s law for spin current Vanishes in Anderson insulators True transport current Measurable Conjugate force exists d(sz r) J s = s z ṙ + ṡ z r = dt Physical consequences: (somewhat disappointing) A few widely studied semiconductor models (Rashba and cubic Rashba) turn out to have NO intrinsic spin Hall effect. There is still NO known nonmagnetic system that can generate a spin current in the presence of an electric field.
24 Thank You For Your Attention!
 develop a theory that describes the wave properties of particles correctly
Quantum Mechanics Bohr's model: BUT: In 192526: by 1930s:  one of the first ones to use idea of matter waves to solve a problem  gives good explanation of spectrum of single electron atoms, like hydrogen
More informationProf.M.Perucca CORSO DI APPROFONDIMENTO DI FISICA ATOMICA: (IIIINCONTRO) RISONANZA MAGNETICA NUCLEARE
Prof.M.Perucca CORSO DI APPROFONDIMENTO DI FISICA ATOMICA: (IIIINCONTRO) RISONANZA MAGNETICA NUCLEARE SUMMARY (I/II) Angular momentum and the spinning gyroscope stationary state equation Magnetic dipole
More informationExperimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator
Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator Chang et al., Science 340, 167 (2013). Joseph Hlevyack, Hu Jin, Mazin Khader, Edward Kim Outline: Introduction:
More informationGraphene and the Quantum Spin Hall Effect
Graphene and the Quantum Spin Hall Effect Graphene, the Quantum Spin Hall Effect and topological insulators I. Graphene II. Quantum Spin Hall Effect  Spin orbit induced energy gap in graphene A new 2D
More informationMagnetic dynamics driven by spin current
Magnetic dynamics driven by spin current Sergej O. Demokritov University of Muenster, Germany Giant magnetoresistance Spin current Group of NonLinear Magnetic Dynamics Charge current vs spin current Electron:
More information1 The basic equations of fluid dynamics
1 The basic equations of fluid dynamics The main task in fluid dynamics is to find the velocity field describing the flow in a given domain. To do this, one uses the basic equations of fluid flow, which
More informationCBE 6333, R. Levicky 1 Differential Balance Equations
CBE 6333, R. Levicky 1 Differential Balance Equations We have previously derived integral balances for mass, momentum, and energy for a control volume. The control volume was assumed to be some large object,
More informationWe consider a hydrogen atom in the ground state in the uniform electric field
Lecture 13 Page 1 Lectures 1314 Hydrogen atom in electric field. Quadratic Stark effect. Atomic polarizability. Emission and Absorption of Electromagnetic Radiation by Atoms Transition probabilities and
More informationElectrical Conductivity
Advanced Materials Science  Lab Intermediate Physics University of Ulm Solid State Physics Department Electrical Conductivity Translated by MichaelStefan Rill January 20, 2003 CONTENTS 1 Contents 1 Introduction
More informationChapter 4. Electrostatic Fields in Matter
Chapter 4. Electrostatic Fields in Matter 4.1. Polarization A neutral atom, placed in an external electric field, will experience no net force. However, even though the atom as a whole is neutral, the
More informationPerpetual motion and driven dynamics of a mobile impurity in a quantum fluid
and driven dynamics of a mobile impurity in a quantum fluid Oleg Lychkovskiy Russian Quantum Center Seminaire du LPTMS, 01.12.2015 Seminaire du LPTMS, 01.12.2015 1 / Plan of the talk 1 Perpetual motion
More informationPhysics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives
Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring
More informationDEGREE: Bachelor's Degree in Industrial Electronics and Automation COURSE: 1º TERM: 2º WEEKLY PLANNING
SESSION WEEK COURSE: Physics II DEGREE: Bachelor's Degree in Industrial Electronics and Automation COURSE: 1º TERM: 2º WEEKLY PLANNING DESCRIPTION GROUPS (mark ) Indicate YES/NO If the session needs 2
More informationSingle and Double plane pendulum
Single and Double plane pendulum Gabriela González 1 Introduction We will write down equations of motion for a single and a double plane pendulum, following Newton s equations, and using Lagrange s equations.
More informationLecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows
Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows 3. 1 Basics: equations of continuum mechanics  balance equations for mass and momentum  balance equations for the energy and the chemical
More informationCurrent, Resistance and DC Circuits
E1  Current and Current Density Chapter E Current, Resistance and DC Circuits Blinn College  Physics 2426  Terry Honan Basic Definitions If Q is the charge that passes through some surface, usually
More informationDefinition of the spin current: The angular spin current and its physical consequences
Definition of the spin current: The angular spin current an its physical consequences Qingfeng Sun 1, * an X. C. Xie 2,3 1 Beijing National Lab for Conense Matter Physics an Institute of Physics, Chinese
More informationDifferential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation
Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of
More informationarxiv:1111.4354v2 [physics.accph] 27 Oct 2014
Theory of Electromagnetic Fields Andrzej Wolski University of Liverpool, and the Cockcroft Institute, UK arxiv:1111.4354v2 [physics.accph] 27 Oct 2014 Abstract We discuss the theory of electromagnetic
More informationMath 54. Selected Solutions for Week Is u in the plane in R 3 spanned by the columns
Math 5. Selected Solutions for Week 2 Section. (Page 2). Let u = and A = 5 2 6. Is u in the plane in R spanned by the columns of A? (See the figure omitted].) Why or why not? First of all, the plane in
More informationChapter 5. Magnetostatics and Electromagnetic Induction
Chapter 5. Magnetostatics and Electromagnetic Induction 5.1 Magnetic Field of Steady Currents The Lorentz force law The magnetic force in a charge q, moving with velocity v in a magnetic field B in a magnetic
More informationRC Circuits. 1 Introduction. 2 Capacitors
1 RC Circuits Equipment DataStudio with 750 interface, RLC circuit board, 2 voltage sensors (no alligator clips), 2x35 in. leads, 12 in. lead Reading Review operation of DataStudio oscilloscope. Review
More information3. Diodes and Diode Circuits. 3. Diodes and Diode Circuits TLT8016 Basic Analog Circuits 2005/2006 1
3. Diodes and Diode Circuits 3. Diodes and Diode Circuits TLT8016 Basic Analog Circuits 2005/2006 1 3.1 Diode Characteristics SmallSignal Diodes Diode: a semiconductor device, which conduct the current
More informationStrain and deformation
Outline Strain and deformation a global overview Mark van Kraaij Seminar on Continuum Mechanics Outline Continuum mechanics Continuum mechanics Continuum mechanics is a branch of mechanics concerned with
More informationBasic Principles of Magnetic Resonance
Basic Principles of Magnetic Resonance Contents: Jorge Jovicich jovicich@mit.edu I) Historical Background II) An MR experiment  Overview  Can we scan the subject?  The subject goes into the magnet 
More informationQuantum optics with mobile spins
Quantum optics with mobile spins A new road to quantum information processing Ulrich Zuelicke u.zuelicke@massey.ac.nz Institute of Fundamental Sciences Massey University Palmerston North, New Zealand International
More informationThe Role of Electric Polarization in Nonlinear optics
The Role of Electric Polarization in Nonlinear optics Sumith Doluweera Department of Physics University of Cincinnati Cincinnati, Ohio 45221 Abstract Nonlinear optics became a very active field of research
More informationUniversity Physics 227N/232N Current and Ohm s Law, Resistors, Circuits, and Kirchoff Lab this Friday, Feb 28 So NO QUIZ this Friday!
University Physics 227N/232N Current and Ohm s Law, Resistors, Circuits, and Kirchoff Lab this Friday, Feb 28 So NO QUIZ this Friday! Dr. Todd Satogata (ODU/Jefferson Lab) and Fred Miller satogata@jlab.org
More informationInduction and Inductance
Induction and Inductance How we generate E by B, and the passive component inductor in a circuit. 1. A review of emf and the magnetic flux. 2. Faraday s Law of Induction 3. Lentz Law 4. Inductance and
More informationarxiv:0708.2412v1 [condmat.meshall] 17 Aug 2007
CurrentInduced Motion of Narrow Domain Walls and Dissipation in Ferromagnetic Metals M. Benakli, J. Hohlfeld, and A. Rebei Seagate Research Center, Pittsburgh, Pennsylvania 15222, USA (Dated: December
More informationHarmonic Oscillator Physics
Physics 34 Lecture 9 Harmonic Oscillator Physics Lecture 9 Physics 34 Quantum Mechanics I Friday, February th, 00 For the harmonic oscillator potential in the timeindependent Schrödinger equation: d ψx
More informationMOSFET DEVICE MODELING FOR ANALOG CIRCUITS DESIGN
MOSFET DEVICE MODELING FOR ANALOG CIRCUITS DESIGN Student name: Truong, Long Giang Student #: 970304580 Course: ECE1352F 1. INTRODUCTION The technological trend towards deep submicrometer dimensions,
More informationPhysics of the Atmosphere I
Physics of the Atmosphere I WS 2008/09 Ulrich Platt Institut f. Umweltphysik R. 424 Ulrich.Platt@iup.uniheidelberg.de heidelberg.de Last week The conservation of mass implies the continuity equation:
More informationfotoelektronspektroszkópia Rakyta Péter
Spinpálya kölcsönhatás grafénben, fotoelektronspektroszkópia Rakyta Péter EÖTVÖS LORÁND TUDOMÁNYEGYETEM, KOMPLEX RENDSZEREK FIZIKÁJA TANSZÉK 1 Introduction to graphene Sp 2 hybridization p z orbitals
More informationChapter 7: Polarization
Chapter 7: Polarization Joaquín Bernal Méndez Group 4 1 Index Introduction Polarization Vector The Electric Displacement Vector Constitutive Laws: Linear Dielectrics Energy in Dielectric Systems Forces
More information4 Microscopic dynamics
4 Microscopic dynamics In this section we will look at the first model that people came up with when they started to model polymers from the microscopic level. It s called the Oldroyd B model. We will
More informationChapter 11 Current Programmed Control
Chapter 11 Current Programmed Control Buck converter v g i s Q 1 D 1 L i L C v R The peak transistor current replaces the duty cycle as the converter control input. Measure switch current R f i s Clock
More informationThis chapter describes how you can model solidification and melting in FLUENT. Information is organized into the following sections:
Chapter 21. Melting Modeling Solidification and This chapter describes how you can model solidification and melting in FLUENT. Information is organized into the following sections: Section 21.1: Overview
More informationModeling solids: Finite Element Methods
Chapter 9 Modeling solids: Finite Element Methods NOTE: I found errors in some of the equations for the shear stress. I will correct them later. The static and timedependent modeling of solids is different
More informationSpectroscopic Notation
Spectroscopic Notation Most of the information we have about the universe comes to us via emission lines. However, before we can begin to understand how emission lines are formed and what they tell us,
More informationQUANTUM COMPUTER ELEMENTS BASED ON COUPLED QUANTUM WAVEGUIDES
Ó³ Ÿ. 2007.. 4, º 2(138).. 237Ä243 Š Œ œ ƒˆˆ ˆ ˆŠˆ QUANTUM COMPUTER ELEMENTS BASED ON COUPLED QUANTUM WAVEGUIDES M. I. Gavrilov, L. V. Gortinskaya, A. A. Pestov, I. Yu. Popov 1, E. S. Tesovskaya Department
More information7. DYNAMIC LIGHT SCATTERING 7.1 First order temporal autocorrelation function.
7. DYNAMIC LIGHT SCATTERING 7. First order temporal autocorrelation function. Dynamic light scattering (DLS) studies the properties of inhomogeneous and dynamic media. A generic situation is illustrated
More informationChapter 34 Faraday s Law & Electromagnetic Induction
Chapter 34 Faraday s Law & Electromagnetic Induction Faraday s Discovery (~ 1831) Faraday found that a changing magnetic field creates a current in a wire. This is an informal statement of Faraday s law.
More informationA MODEL OF VOLTAGE IN A RESISTOR CIRCUIT AND AN RC CIRCUIT
A MODEL OF VOLTAGE IN A RESISTOR CIRCUIT AND AN RC CIRCUIT ARJUN MOORJANI, DANIEL STRAUS, JENNIFER ZELENTY Abstract. We describe and model the workings of two simple electrical circuits. The circuits modeled
More informationGravity waves on water
Phys374, Spring 2006, Prof. Ted Jacobson Department of Physics, University of Maryland Gravity waves on water Waves on the surface of water can arise from the restoring force of gravity or of surface tension,
More informationSeminar Topological Insulators
Seminar Topological Insulators The SuSchriefferHeeger model 1 These slides are based on A Short Course on Topological Insulators by J. K. Asbóth, L. Oroszlány, A. Pályi; arxiv:1509.02295v1 2 Outline
More information3.6 Solving Problems Involving Projectile Motion
INTRODUCTION 12 Physics and its relation to other fields introduction of physics, its importance and scope 15 Units, standards, and the SI System description of the SI System description of base and
More informationSound. References: L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol. 2, Gas Dynamics, Chapter 8
References: Sound L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol., Gas Dynamics, Chapter 8 1 Speed of sound The phenomenon of sound waves is one that
More informationNegative Integer Exponents
7.7 Negative Integer Exponents 7.7 OBJECTIVES. Define the zero exponent 2. Use the definition of a negative exponent to simplify an expression 3. Use the properties of exponents to simplify expressions
More informationFINAL EXAM SOLUTIONS Math 21a, Spring 03
INAL EXAM SOLUIONS Math 21a, Spring 3 Name: Start by printing your name in the above box and check your section in the box to the left. MW1 Ken Chung MW1 Weiyang Qiu MW11 Oliver Knill h1 Mark Lucianovic
More informationGRAPHENE: A NEW STAR IN MATERIAL SCIENCE
GRAPHENE: A NEW STAR IN MATERIAL SCIENCE S. Sahoo 1 & A. K. Dutta 2 Department of Physics, National Institute of Technology Durgapur713209, West Bengal, India. 1 Email: sukadevsahoo@yahoo.com 2 Email:
More informationELECTROSTATICS. Ans: It is a fundamental property of matter which is responsible for all electrical effects
ELECTROSTATICS One Marks Questions with Answers: 1.What is an electric charge? Ans: It is a fundamental property of matter which is responsible for all electrical effects 2. Write the SI unit of charge?
More informationL 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has
The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:
More informationWhat will we learn in this chapter?
Chapter 19: Current, resistance, circuits What will we learn in this chapter? What are currents? Resistance and Ohm s law (no, there are no 3 laws). Circuits and electric power. Resistors in series and
More informationContents. Goldstone Bosons in 3HeA Soft Modes Dynamics and Lie Algebra of Group G:
... Vlll Contents 3. Textures and Supercurrents in Superfluid Phases of 3He 3.1. Textures, Gradient Energy and Rigidity 3.2. Why Superfuids are Superfluid 3.3. Superfluidity and Response to a Transverse
More informationAMPLIFICATION OF ATOMIC WAVES BY STIMULATED EMISSION OF ATOMS. Christian J. Borde
AMPLIFIATION OF ATOMI WAVES BY STIMULATED EMISSION OF ATOMS hristian J. Borde Laboratoire de Physique des Lasers, NRS/URA 8, Universite ParisNord, Villetaneuse, France. INTRODUTION: The recent development
More informationANDRES ALEJANDRO REYNOSO. Phone: 00542944524932 00542944445100 ext.5350 andres.a.reynoso at gmail.com reynoso at cab.cnea.gov.
CV ANDRES ALEJANDRO REYNOSO 1 PERSONAL DATA Name: ANDRES ALEJANDRO REYNOSO Birth date: 9/3/1977 Birth place: NECOCHEA, BUENOS AIRES, ARGENTINA Personal Address: RIVADAVIA 170 1 A CP: 8400 BARILOCHE Phone:
More informationBranislav K. Nikolić
Monte Carlo Simulations in Statistical Physics: Magnetic PhaseTransitions in the Ising Model Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, U.S.A. PHYS 460/660: Computational
More informationModeling ionic diffusion in magnetic systems
PHYSICAL REVIEW B VOLUME 58, NUMBER 17 1 NOVEMBER 1998I Modeling ionic diffusion in magnetic systems.. Torres, P. L. Garrido, and. Marro Institute Carlos I for Theoretical and Computational Physics, Facultad
More informationLecture 5 Motion of a charged particle in a magnetic field
Lecture 5 Motion of a charged particle in a magnetic field Charged particle in a magnetic field: Outline 1 Canonical quantization: lessons from classical dynamics 2 Quantum mechanics of a particle in a
More informationMatrices in Statics and Mechanics
Matrices in Statics and Mechanics Casey Pearson 3/19/2012 Abstract The goal of this project is to show how linear algebra can be used to solve complex, multivariable statics problems as well as illustrate
More informationIntroduction to SME and Scattering Theory. Don Colladay. New College of Florida Sarasota, FL, 34243, U.S.A.
June 2012 Introduction to SME and Scattering Theory Don Colladay New College of Florida Sarasota, FL, 34243, U.S.A. This lecture was given at the IUCSS summer school during June of 2012. It contains a
More informationFundamentals of grain boundaries and grain boundary migration
1. Fundamentals of grain boundaries and grain boundary migration 1.1. Introduction The properties of crystalline metallic materials are determined by their deviation from a perfect crystal lattice, which
More informationIsaac Newton s (16421727) Laws of Motion
Big Picture 1 2.003J/1.053J Dynamics and Control I, Spring 2007 Professor Thomas Peacock 2/7/2007 Lecture 1 Newton s Laws, Cartesian and Polar Coordinates, Dynamics of a Single Particle Big Picture First
More informationGenerally Covariant Quantum Mechanics
Chapter 15 Generally Covariant Quantum Mechanics by Myron W. Evans, Alpha Foundation s Institutute for Advance Study (AIAS). (emyrone@oal.com, www.aias.us, www.atomicprecision.com) Dedicated to the Late
More informationDIFFUSION IN SOLIDS. Materials often heat treated to improve properties. Atomic diffusion occurs during heat treatment
DIFFUSION IN SOLIDS WHY STUDY DIFFUSION? Materials often heat treated to improve properties Atomic diffusion occurs during heat treatment Depending on situation higher or lower diffusion rates desired
More informationCompressible Fluids. Faith A. Morrison Associate Professor of Chemical Engineering Michigan Technological University November 4, 2004
94 c 2004 Faith A. Morrison, all rights reserved. Compressible Fluids Faith A. Morrison Associate Professor of Chemical Engineering Michigan Technological University November 4, 2004 Chemical engineering
More informationFaraday s Law & Maxwell s Equations (Griffiths Chapter 7: Sections 23) B t da = S
Dr. Alain Brizard Electromagnetic Theory I PY 3 Faraday s Law & Maxwell s Equations Griffiths Chapter 7: Sections 3 Electromagnetic Induction The flux rule states that a changing magnetic flux Φ B = S
More informationBASICS OF LASER COOLING THEORY. Y. Castin, LKB  ENS, Paris OUTLINE
BASICS OF LASER COOLING THEORY Y. Castin, LKB  ENS, Paris OUTLINE Motivation lightshifts and excitation rates the mean force Doppler cooling the magnetooptical trap Sisyphus cooling Below the recoil
More informationNuclear Magnetic Resonance
Nuclear Magnetic Resonance Introduction Atomic magnetism Nuclear magnetic resonance refers to the behaviour of atomic nuclei in the presence of a magnetic field. The first principle required to understand
More informationg 0 = 3 ev Linear a = 0.246nm. constant velocity g 0 ~ 3 ev 0.334nm Interlayer g 1 ~ 0.4 ev Massive Effective mass: Graphene monolayerbilayer junction Theoretical studies Nakanishi, Koshino, Ando, PRB
More informationInductance and Magnetic Energy
Chapter 11 Inductance and Magnetic Energy 11.1 Mutual Inductance... 113 Example 11.1 Mutual Inductance of Two Concentric Coplanar Loops... 115 11. SelfInductance... 115 Example 11. SelfInductance
More informationLecture 13. Magnetic Field, Magnetic Forces on Moving Charges. Outline:
Lecture 13. Magnetic Field, Magnetic Forces on Moving Charges. Outline: Intro to Magnetostatics. Magnetic Field Flux, Absence of Magnetic Monopoles. Force on charges moving in magnetic field. 1 Intro to
More informationChapter 8 Conservation of Linear Momentum. Conservation of Linear Momentum
Chapter 8 Conservation of Linear Momentum Physics 201 October 22, 2009 Conservation of Linear Momentum Definition of linear momentum, p p = m v Linear momentum is a vector. Units of linear momentum are
More informationQuantum Computation with BoseEinstein Condensation and. Capable of Solving NPComplete and #P Problems. Abstract
Quantum Computation with BoseEinstein Condensation and Capable of Solving NPComplete and #P Problems Yu Shi Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom Abstract It
More informationJ. Szantyr Lecture No. 2 Principles of the Theory of Turbomachinery
J. Szantyr Lecture No. 2 Principles of the Theory of Turbomachinery a) Axial ventilator or pump b) Diagonal (mixed flow) ventilator or pump c) Centrifugal compressor or pump d) Axialradial water turbine
More informationThermal transport in the anisotropic Heisenberg chain with S = 1/2 and nearestneighbor interactions
Thermal transport in the anisotropic Heisenberg chain with S = 1/2 and nearestneighbor interactions D. L. Huber Department of Physics, University of WisconsinMadison, Madison, WI 53706 Abstract The purpose
More informationAP R Physics C Electricity and Magnetism Syllabus
AP R Physics C Electricity and Magnetism Syllabus 1 Prerequisites and Purposes of AP R C E & M AP R Physics C Electricity and Magnetism is the second course in a twocourse sequence. It is offered in the
More informationAnderson localization: Metallic behavior in two dimensions?
Anderson localization: Metallic behavior in two dimensions? Vladimir Kuzovkov Institute of Solid State Physics University of Latvia 8 Kengaraga Str., LV1063, RIGA, Latvia September 13, 2005 Page 1 of
More informationInductive and Magnetic Sensors
Chapter 12 Inductive and Magnetic Sensors 12.1 Inductive Sensors A number of the actuators developed in previous chapters depend on the variation of reluctance with changes in angle or displacement. Since
More informationChapter 22 The Hamiltonian and Lagrangian densities. from my book: Understanding Relativistic Quantum Field Theory. Hans de Vries
Chapter 22 The Hamiltonian and Lagrangian densities from my book: Understanding Relativistic Quantum Field Theory Hans de Vries January 2, 2009 2 Chapter Contents 22 The Hamiltonian and Lagrangian densities
More informationUNIT I: INTRFERENCE & DIFFRACTION Div. B Div. D Div. F INTRFERENCE
107002: EngineeringPhysics Teaching Scheme: Lectures: 4 Hrs/week Practicals2 Hrs./week T.W.25 marks Examination Scheme: Paper50 marks (2 hrs) Online 50marks Prerequisite: Basics till 12 th Standard
More informationSOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve
SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives
More informationSpinflip excitation spectroscopy with STM excitation of allowed transition adds an inelastic contribution (group of Andreas Heinrich, IBM Almaden)
Magnetism at the atomic scale by Scanning Probe Techniques Kirsten von Bergmann Institute of Applied Physics Magnetism with SPM Spinpolarized scanning tunneling microscopy SPSTM density of states of
More informationMthSc 206 Summer1 13 Goddard
16.1 Vector Fields A vector field is a function that assigns to each point a vector. A vector field might represent the wind velocity at each point. For example, F(x, y) = y i+x j represents spinning around
More informationStanford Rock Physics Laboratory  Gary Mavko. Basic Geophysical Concepts
Basic Geophysical Concepts 14 Body wave velocities have form: velocity= V P = V S = V E = K + (4 /3)µ ρ µ ρ E ρ = λ + µ ρ where ρ density K bulk modulus = 1/compressibility µ shear modulus λ Lamé's coefficient
More informationComputer lab: Density functional perturbation theory. theory for lattice dynamics
Computer lab: density functional perturbation theory for lattice dynamics SISSA and DEMOCRITOS Trieste (Italy) Outline 1 The dynamical matrix 2 3 4 5 Dynamical matrix We want to write a small computer
More informationLecture Notes: ECS 203 Basic Electrical Engineering Semester 1/2010. Dr.Prapun Suksompong 1 June 16, 2010
Sirindhorn International Institute of Technology Thammasat University School of Information, Computer and Communication Technology Lecture Notes: ECS 203 Basic Electrical Engineering Semester 1/2010 Dr.Prapun
More informationApplied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur
Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture  7 Ideal Gas Laws, Different Processes Let us continue
More informationRadiation reaction for inspiralling binary systems with spinspin
Radiation reaction for inspiralling binary systems with spinspin coupling 1 Institute of Theoretical Physics, FriedrichSchillerUniversity Jena December 3, 2007 1 H. Wang and C. M. Will, Phys. Rev. D,
More informationRLC Circuits and Resonant Circuits
P517/617 Lec4, P1 RLC Circuits and Resonant Circuits Consider the following RLC series circuit What's R? Simplest way to solve for is to use voltage divider equation in complex notation. X L X C in 0
More informationSyllabus for Chem 359: Atomic and Molecular Spectroscopy
Syllabus for Chem 359: Atomic and Molecular Spectroscopy Instructors: Dr. Reinhard Schweitzer Stenner and Ms. Siobhan E. Toal Of#ice: Disque 605/Disque 306 Tel: (215) 8952268 Email: rschweitzer stenner@drexel.edu
More informationPhysics 202, Lecture 11. Exam 1 Results
Physics 202, Lecture 11 Today s Topics Exam 1 Result Magnetic ields and orces (Ch. 29) Magnetic materials Magnetic forces on moving point charges Magnetic forces on currents, current loops Motion of charge
More informationTHE CLAUSIUS INEQUALITY
Part IV Entropy In Part III, we introduced the second law of thermodynamics and applied it to cycles and cyclic devices. In this part, we apply the second law to processes. he first law of thermodynamics
More informationF en = mω 0 2 x. We should regard this as a model of the response of an atom, rather than a classical model of the atom itself.
The Electron Oscillator/Lorentz Atom Consider a simple model of a classical atom, in which the electron is harmonically bound to the nucleus n x e F en = mω 0 2 x origin resonance frequency Note: We should
More information2 A bank account for electricity II: flows and taxes
PHYS 189 Lecture problems outline Feb 3, 2014 Resistors and Circuits Having introduced capacitors, we now expand our focus to another very important component of a circuit resistors. This entails more
More informationLecture 6 BlackScholes PDE
Lecture 6 BlackScholes PDE Lecture Notes by Andrzej Palczewski Computational Finance p. 1 Pricing function Let the dynamics of underlining S t be given in the riskneutral measure Q by If the contingent
More informationLecture L20  Energy Methods: Lagrange s Equations
S. Widnall 6.07 Dynamics Fall 009 Version 3.0 Lecture L0  Energy Methods: Lagrange s Equations The motion of particles and rigid bodies is governed by ewton s law. In this section, we will derive an alternate
More informationAngular Momentum Problems Challenge Problems
Angular Momentum Problems Challenge Problems Problem 1: Toy Locomotive A toy locomotive of mass m L runs on a horizontal circular track of radius R and total mass m T. The track forms the rim of an otherwise
More information(a) We have x = 3 + 2t, y = 2 t, z = 6 so solving for t we get the symmetric equations. x 3 2. = 2 y, z = 6. t 2 2t + 1 = 0,
Name: Solutions to Practice Final. Consider the line r(t) = 3 + t, t, 6. (a) Find symmetric equations for this line. (b) Find the point where the first line r(t) intersects the surface z = x + y. (a) We
More information