Proper Definition of Spin Current in SpinOrbit Coupled Systems


 Bertha Crawford
 1 years ago
 Views:
Transcription
1 Proper Definition of Spin Current in SpinOrbit Coupled Systems Junren Shi ddd Institute of Physics Chinese Academy of Sciences March 25, 2006, Sanya Collaborators: Ping Zhang (dd) Di Xiao, Qian Niu(UTAustin ) Phys. Rev. Lett. 96, (2006)
2 Outline Introduction New definition Conclusion 1 Introduction 2 Proper definition of spin current 3 Conclusion
3 Concept of Spin Current Key concept Spin current: Spin transport Spinbased information exchange More general than the spin polarized current I I Intuitive definition of spin current: I s = I I Pure spin current: I = I I c = I + I = 0 I s = I I = 2I
4 Generating Spin Current Spin Hall Effect Generating pure spin current by applying electric field Present in nonmagnetic semiconductors Mechanisms: Extrinsic mechanism spin dependent skew scattering [Dyakonov and Perel 1972; Hirsch 1999; S. Zhang 2000] Intrinsic mechanism spin dependent anomalous velocity (Berry phase in momentum space) [Murakami et al. 2003; Sinova et al and many others]
5 Spin Accumulation Experiments Y.K. Kato, R.C. Myers, A.C. Gossard, D.D. Awschalom, Science, 306, 1910 (2004). Experiments boundary spin accumulation Theory bulk spin current J. Wunderlich, B. Kaestner, J. Sinova, T. Jungwirth, Phys. Rev. Lett. 94, (2005). Determine the spin current from the spin accumulation?
6 Spin current and spin accumulation Simplest theory: S t + J s = S τ s Sdn = J s nτ s However, spin current/spin accumulation relation is nontrivial: The relation is valid only for the specific form of spin relaxation. Boundary contribution bulk spin current is not the only source contributing to the boundary spin accumulation. Spin accumulation may not be an appropriate way to determine the spin current.
7 Spin Accumulation: Boundary or Bulk Contribution Origins of spin accumulation: Boundary effect: Boundary induced spin density wave similar to Friedel oscillation for charge density. Boundary spin torque: scattering by boundary may induce spin flipping. Bulk contribution: spins are transported to the boundary region from the bulk spin current. J s λ F /2 S z (r) S z (r) l D Spin current is only relevant to the spin accumulation contributed by the bulk.
8 Can the Spin Current Really Describe the Spin Transport? Issues: Electron is localized along xdirection by the impurity scattering. Spin current is nonzero due to the spinflip scattering The electron cannot contribute to the boundary spin accumulation even it carries nonzero spin current. The spin current is NOT continuous. The spin current does not vanish even in a localized state. The spin current cannot describe the spin transport when spin is not conserved!
9 Fundamentally Flawed Definition of Spin Current Conventional definition of spin current: J e = eυ J s = ŝ z υ However, this definition is fundamentally flawed: Not conserved in spinorbit coupled systems S z t + J s = T z 0 Not vanishing even in localized states Rashba, 2003 No conjugate force exists Not a standard flow in the sense of the nonequilibrium statistical physics. Current Conjugate force dq/dt J e E j e E J s??
10 Motivation The conventional spin current: cannot be directly measured by any known procedure; cannot descibe true spin transport. The proper definition of spin current must be: It must: describing the true spin transport. measurable as a macroscopic current. conserve: S z t + J s = 0 vanish in (Anderson) insulators be in conjugation to a force spin force
11 A Conserved Spin Current Continuity equation Assume zero spin generation in the bulk Torque dipole density S z t + J s = T z ṡ z 1 dv T z (r) = 0 V T z (r) = P τ (r) Current conserved S z t + (J s + P τ ) = 0 New definition: dv P τ = J s = J s + P τ dv ṡ z r d(sz r) J s = s z ṙ + ṡ z r = dt
12 Spin Torque Dipole Definition of Spin Torque Dipole T z (r) = P τ (r) Macroscopic average: 1 dv P τ (r) = 1 V V dv rt (r) Analogy to the charge dipole density: P(R) = 1 rρ(r) V V R
13 Effective Conserved Spin Current Operator dv P τ (r) dv J s (r) dv J s (r) = dv rt (r) dv Reψ (r) 1 { 2 dv Reψ (r) 1 { } dˆr 2 dt,ŝ z ψ(r) [ ] dv Reψ d(ˆrŝz ) (r) ψ(r) dt ˆr, dŝ z dt } ψ(r) Ĵ s = d(ˆrŝ z) dt This is not microscopic definition of the spin current operator it is an effective one defined in the macroscopic level.
14 Testing Case T T T T Spin torque density T z is nonzero spin flip process. Spin torque dipole: P τ = T l Conserved spin current: J s = J s + P τ = 0 Spin torque dipole deducts the local polarization contribution from the spin current. The resulting conserved spin current describes the true spin transport.
15 In Insulators Zero expectation value in any spatially localized states: l Ĵ s l l d(ˆrŝ z) l dt = E l E l l ˆrŝ z l = 0 i Zero spin transport coefficient in Anderson insulators: σ s = e l l f l Im l d(ˆrŝ z )/dt l l ˆυ l (ǫ l ǫ l ) 2 = e l f l l [ˆrŝ z, ˆr] l = 0
16 Conjugate Force for spin current Origin of spin force: gradient of an inhomogeneous Zeeman field spin dependent chemical potential near ferromagnetmetal interface dq dt dh 0 dt H = H 0 ŝ z ˆr F s = d(ŝ zˆr) dt F s J s F s The new definition conforms to the standard nearequilibrium transport theory.
17 Onsager Relation for Charge/Spin Transport Spin Hall effect Inverse spin Hall effect j s E j e F s J x s = σ sc xye y j y e = σ cs yxf x s Onsager Relation: σ sc xy = σ cs yx The spin transport can be connected to the charge transport.
18 Onsager Relation General theory A system under two driving forces: H = H 0 X 1 F 1 X 2 F 2 Transport coefficients defined by: Ẋ1 = σ 11 F 1 + σ 12 F 2 Ẋ2 = σ 21 F 1 + σ 22 F 2 Onsager relation σ 12 (S) = s 1 s 2 σ 21 (S ) Direct application: X 1 eˆr X 2 ŝ z ˆr
19 Direct measurement of spin current Thermodynamic method: J s = 1 F s dq dt Technique to measure the Zeeman field gradient is required. Electric method: J s = σ sc V y xy L y σ sc xy can be determined from the inverse spin Hall effect: σ sc xy = σ cs yx V y σ ss F s Ey dq/dt J s J s
20 Linear Response Theory To calculate the spin torque dipole: Calculate the spin torque response to external field at finite wave vector q: T (q) = χ ν (q)e ν (q) Spin torque dipole is related to the spin torque by: Long wave limit q 0: T (q) = iq P τ (q) iq µ σ τ µνe ν (q) σµν τ 1 = i lim χ ν (q) = i µ χ ν (q) q 0 q q 0 µ
21 Intrinsic Spin Hall Coefficients Conventional values: Rashba model: e 8π Cubedk Rashba model: 9e 8π Luttinger model: New values: Rashba model: e 8π Cubedk Rashba model: 9e 8π Luttinger model: 3eγ 1 12π 2 γ 2 (k H k L )+ e 6π 2k H γ 2 0: e 6π 2k e(γ 2 γ 1 ) 6π 2 (k H k L )+ e γ 2 6π 2k H γ 2 0: e 6π 2k
22 Disorder effect (a) Rashba model Impurity potential Born approx. Definition of spin current J s J s δ(r) 1st 0 0 higher 0 0 V p p 1st 0 0 higher 0 Finite (b) Cubic Rashba model Impurity potential Born approx. Definition of spin current J s J s δ(r) 1st Finite 0 higher Finite 0 V p p 1st Finite 0 higher Finite Finite Sugimoto, Onoda, Murakami and Nagaosa, condmat/
23 Conclusion A proper definition of spin current is established: Conserved Kirchhoff s law for spin current Vanishes in Anderson insulators True transport current Measurable Conjugate force exists d(sz r) J s = s z ṙ + ṡ z r = dt Physical consequences: (somewhat disappointing) A few widely studied semiconductor models (Rashba and cubic Rashba) turn out to have NO intrinsic spin Hall effect. There is still NO known nonmagnetic system that can generate a spin current in the presence of an electric field.
24 Thank You For Your Attention!
 develop a theory that describes the wave properties of particles correctly
Quantum Mechanics Bohr's model: BUT: In 192526: by 1930s:  one of the first ones to use idea of matter waves to solve a problem  gives good explanation of spectrum of single electron atoms, like hydrogen
More informationProf.M.Perucca CORSO DI APPROFONDIMENTO DI FISICA ATOMICA: (IIIINCONTRO) RISONANZA MAGNETICA NUCLEARE
Prof.M.Perucca CORSO DI APPROFONDIMENTO DI FISICA ATOMICA: (IIIINCONTRO) RISONANZA MAGNETICA NUCLEARE SUMMARY (I/II) Angular momentum and the spinning gyroscope stationary state equation Magnetic dipole
More informationExperimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator
Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator Chang et al., Science 340, 167 (2013). Joseph Hlevyack, Hu Jin, Mazin Khader, Edward Kim Outline: Introduction:
More informationCBE 6333, R. Levicky 1 Differential Balance Equations
CBE 6333, R. Levicky 1 Differential Balance Equations We have previously derived integral balances for mass, momentum, and energy for a control volume. The control volume was assumed to be some large object,
More informationGraphene and the Quantum Spin Hall Effect
Graphene and the Quantum Spin Hall Effect Graphene, the Quantum Spin Hall Effect and topological insulators I. Graphene II. Quantum Spin Hall Effect  Spin orbit induced energy gap in graphene A new 2D
More informationMagnetic dynamics driven by spin current
Magnetic dynamics driven by spin current Sergej O. Demokritov University of Muenster, Germany Giant magnetoresistance Spin current Group of NonLinear Magnetic Dynamics Charge current vs spin current Electron:
More information1 The basic equations of fluid dynamics
1 The basic equations of fluid dynamics The main task in fluid dynamics is to find the velocity field describing the flow in a given domain. To do this, one uses the basic equations of fluid flow, which
More informationElectrical Conductivity
Advanced Materials Science  Lab Intermediate Physics University of Ulm Solid State Physics Department Electrical Conductivity Translated by MichaelStefan Rill January 20, 2003 CONTENTS 1 Contents 1 Introduction
More informationChapter 4. Electrostatic Fields in Matter
Chapter 4. Electrostatic Fields in Matter 4.1. Polarization A neutral atom, placed in an external electric field, will experience no net force. However, even though the atom as a whole is neutral, the
More informationPerpetual motion and driven dynamics of a mobile impurity in a quantum fluid
and driven dynamics of a mobile impurity in a quantum fluid Oleg Lychkovskiy Russian Quantum Center Seminaire du LPTMS, 01.12.2015 Seminaire du LPTMS, 01.12.2015 1 / Plan of the talk 1 Perpetual motion
More informationDEGREE: Bachelor's Degree in Industrial Electronics and Automation COURSE: 1º TERM: 2º WEEKLY PLANNING
SESSION WEEK COURSE: Physics II DEGREE: Bachelor's Degree in Industrial Electronics and Automation COURSE: 1º TERM: 2º WEEKLY PLANNING DESCRIPTION GROUPS (mark ) Indicate YES/NO If the session needs 2
More informationPhysics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives
Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring
More informationLecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows
Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows 3. 1 Basics: equations of continuum mechanics  balance equations for mass and momentum  balance equations for the energy and the chemical
More informationRC Circuits. 1 Introduction. 2 Capacitors
1 RC Circuits Equipment DataStudio with 750 interface, RLC circuit board, 2 voltage sensors (no alligator clips), 2x35 in. leads, 12 in. lead Reading Review operation of DataStudio oscilloscope. Review
More informationDefinition of the spin current: The angular spin current and its physical consequences
Definition of the spin current: The angular spin current an its physical consequences Qingfeng Sun 1, * an X. C. Xie 2,3 1 Beijing National Lab for Conense Matter Physics an Institute of Physics, Chinese
More informationChapter 11 Current Programmed Control
Chapter 11 Current Programmed Control Buck converter v g i s Q 1 D 1 L i L C v R The peak transistor current replaces the duty cycle as the converter control input. Measure switch current R f i s Clock
More informationDifferential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation
Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of
More information3. Diodes and Diode Circuits. 3. Diodes and Diode Circuits TLT8016 Basic Analog Circuits 2005/2006 1
3. Diodes and Diode Circuits 3. Diodes and Diode Circuits TLT8016 Basic Analog Circuits 2005/2006 1 3.1 Diode Characteristics SmallSignal Diodes Diode: a semiconductor device, which conduct the current
More informationBasic Principles of Magnetic Resonance
Basic Principles of Magnetic Resonance Contents: Jorge Jovicich jovicich@mit.edu I) Historical Background II) An MR experiment  Overview  Can we scan the subject?  The subject goes into the magnet 
More informationThe Role of Electric Polarization in Nonlinear optics
The Role of Electric Polarization in Nonlinear optics Sumith Doluweera Department of Physics University of Cincinnati Cincinnati, Ohio 45221 Abstract Nonlinear optics became a very active field of research
More informationarxiv:0708.2412v1 [condmat.meshall] 17 Aug 2007
CurrentInduced Motion of Narrow Domain Walls and Dissipation in Ferromagnetic Metals M. Benakli, J. Hohlfeld, and A. Rebei Seagate Research Center, Pittsburgh, Pennsylvania 15222, USA (Dated: December
More informationMOSFET DEVICE MODELING FOR ANALOG CIRCUITS DESIGN
MOSFET DEVICE MODELING FOR ANALOG CIRCUITS DESIGN Student name: Truong, Long Giang Student #: 970304580 Course: ECE1352F 1. INTRODUCTION The technological trend towards deep submicrometer dimensions,
More informationContents. Goldstone Bosons in 3HeA Soft Modes Dynamics and Lie Algebra of Group G:
... Vlll Contents 3. Textures and Supercurrents in Superfluid Phases of 3He 3.1. Textures, Gradient Energy and Rigidity 3.2. Why Superfuids are Superfluid 3.3. Superfluidity and Response to a Transverse
More informationChapter 7: Polarization
Chapter 7: Polarization Joaquín Bernal Méndez Group 4 1 Index Introduction Polarization Vector The Electric Displacement Vector Constitutive Laws: Linear Dielectrics Energy in Dielectric Systems Forces
More informationfotoelektronspektroszkópia Rakyta Péter
Spinpálya kölcsönhatás grafénben, fotoelektronspektroszkópia Rakyta Péter EÖTVÖS LORÁND TUDOMÁNYEGYETEM, KOMPLEX RENDSZEREK FIZIKÁJA TANSZÉK 1 Introduction to graphene Sp 2 hybridization p z orbitals
More informationarxiv:1111.4354v2 [physics.accph] 27 Oct 2014
Theory of Electromagnetic Fields Andrzej Wolski University of Liverpool, and the Cockcroft Institute, UK arxiv:1111.4354v2 [physics.accph] 27 Oct 2014 Abstract We discuss the theory of electromagnetic
More information4 Microscopic dynamics
4 Microscopic dynamics In this section we will look at the first model that people came up with when they started to model polymers from the microscopic level. It s called the Oldroyd B model. We will
More informationPhysics of the Atmosphere I
Physics of the Atmosphere I WS 2008/09 Ulrich Platt Institut f. Umweltphysik R. 424 Ulrich.Platt@iup.uniheidelberg.de heidelberg.de Last week The conservation of mass implies the continuity equation:
More informationQUANTUM COMPUTER ELEMENTS BASED ON COUPLED QUANTUM WAVEGUIDES
Ó³ Ÿ. 2007.. 4, º 2(138).. 237Ä243 Š Œ œ ƒˆˆ ˆ ˆŠˆ QUANTUM COMPUTER ELEMENTS BASED ON COUPLED QUANTUM WAVEGUIDES M. I. Gavrilov, L. V. Gortinskaya, A. A. Pestov, I. Yu. Popov 1, E. S. Tesovskaya Department
More informationIntroduction to SME and Scattering Theory. Don Colladay. New College of Florida Sarasota, FL, 34243, U.S.A.
June 2012 Introduction to SME and Scattering Theory Don Colladay New College of Florida Sarasota, FL, 34243, U.S.A. This lecture was given at the IUCSS summer school during June of 2012. It contains a
More informationGenerally Covariant Quantum Mechanics
Chapter 15 Generally Covariant Quantum Mechanics by Myron W. Evans, Alpha Foundation s Institutute for Advance Study (AIAS). (emyrone@oal.com, www.aias.us, www.atomicprecision.com) Dedicated to the Late
More informationThis chapter describes how you can model solidification and melting in FLUENT. Information is organized into the following sections:
Chapter 21. Melting Modeling Solidification and This chapter describes how you can model solidification and melting in FLUENT. Information is organized into the following sections: Section 21.1: Overview
More informationA MODEL OF VOLTAGE IN A RESISTOR CIRCUIT AND AN RC CIRCUIT
A MODEL OF VOLTAGE IN A RESISTOR CIRCUIT AND AN RC CIRCUIT ARJUN MOORJANI, DANIEL STRAUS, JENNIFER ZELENTY Abstract. We describe and model the workings of two simple electrical circuits. The circuits modeled
More informationNegative Integer Exponents
7.7 Negative Integer Exponents 7.7 OBJECTIVES. Define the zero exponent 2. Use the definition of a negative exponent to simplify an expression 3. Use the properties of exponents to simplify expressions
More informationSound. References: L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol. 2, Gas Dynamics, Chapter 8
References: Sound L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol., Gas Dynamics, Chapter 8 1 Speed of sound The phenomenon of sound waves is one that
More informationGRAPHENE: A NEW STAR IN MATERIAL SCIENCE
GRAPHENE: A NEW STAR IN MATERIAL SCIENCE S. Sahoo 1 & A. K. Dutta 2 Department of Physics, National Institute of Technology Durgapur713209, West Bengal, India. 1 Email: sukadevsahoo@yahoo.com 2 Email:
More informationFINAL EXAM SOLUTIONS Math 21a, Spring 03
INAL EXAM SOLUIONS Math 21a, Spring 3 Name: Start by printing your name in the above box and check your section in the box to the left. MW1 Ken Chung MW1 Weiyang Qiu MW11 Oliver Knill h1 Mark Lucianovic
More information7. DYNAMIC LIGHT SCATTERING 7.1 First order temporal autocorrelation function.
7. DYNAMIC LIGHT SCATTERING 7. First order temporal autocorrelation function. Dynamic light scattering (DLS) studies the properties of inhomogeneous and dynamic media. A generic situation is illustrated
More informationLecture Notes: ECS 203 Basic Electrical Engineering Semester 1/2010. Dr.Prapun Suksompong 1 June 16, 2010
Sirindhorn International Institute of Technology Thammasat University School of Information, Computer and Communication Technology Lecture Notes: ECS 203 Basic Electrical Engineering Semester 1/2010 Dr.Prapun
More informationANDRES ALEJANDRO REYNOSO. Phone: 00542944524932 00542944445100 ext.5350 andres.a.reynoso at gmail.com reynoso at cab.cnea.gov.
CV ANDRES ALEJANDRO REYNOSO 1 PERSONAL DATA Name: ANDRES ALEJANDRO REYNOSO Birth date: 9/3/1977 Birth place: NECOCHEA, BUENOS AIRES, ARGENTINA Personal Address: RIVADAVIA 170 1 A CP: 8400 BARILOCHE Phone:
More informationL 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has
The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:
More informationAP R Physics C Electricity and Magnetism Syllabus
AP R Physics C Electricity and Magnetism Syllabus 1 Prerequisites and Purposes of AP R C E & M AP R Physics C Electricity and Magnetism is the second course in a twocourse sequence. It is offered in the
More informationStanford Rock Physics Laboratory  Gary Mavko. Basic Geophysical Concepts
Basic Geophysical Concepts 14 Body wave velocities have form: velocity= V P = V S = V E = K + (4 /3)µ ρ µ ρ E ρ = λ + µ ρ where ρ density K bulk modulus = 1/compressibility µ shear modulus λ Lamé's coefficient
More informationLecture 5 Motion of a charged particle in a magnetic field
Lecture 5 Motion of a charged particle in a magnetic field Charged particle in a magnetic field: Outline 1 Canonical quantization: lessons from classical dynamics 2 Quantum mechanics of a particle in a
More informationBasic Laws Circuit Theorems Methods of Network Analysis NonLinear Devices and Simulation Models
EE Modul 1: Electric Circuits Theory Basic Laws Circuit Theorems Methods of Network Analysis NonLinear Devices and Simulation Models EE Modul 1: Electric Circuits Theory Current, Voltage, Impedance Ohm
More informationFundamentals of grain boundaries and grain boundary migration
1. Fundamentals of grain boundaries and grain boundary migration 1.1. Introduction The properties of crystalline metallic materials are determined by their deviation from a perfect crystal lattice, which
More informationIsaac Newton s (16421727) Laws of Motion
Big Picture 1 2.003J/1.053J Dynamics and Control I, Spring 2007 Professor Thomas Peacock 2/7/2007 Lecture 1 Newton s Laws, Cartesian and Polar Coordinates, Dynamics of a Single Particle Big Picture First
More informationInductance and Magnetic Energy
Chapter 11 Inductance and Magnetic Energy 11.1 Mutual Inductance... 113 Example 11.1 Mutual Inductance of Two Concentric Coplanar Loops... 115 11. SelfInductance... 115 Example 11. SelfInductance
More informationDIFFUSION IN SOLIDS. Materials often heat treated to improve properties. Atomic diffusion occurs during heat treatment
DIFFUSION IN SOLIDS WHY STUDY DIFFUSION? Materials often heat treated to improve properties Atomic diffusion occurs during heat treatment Depending on situation higher or lower diffusion rates desired
More informationQuantum Computation with BoseEinstein Condensation and. Capable of Solving NPComplete and #P Problems. Abstract
Quantum Computation with BoseEinstein Condensation and Capable of Solving NPComplete and #P Problems Yu Shi Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom Abstract It
More informationg 0 = 3 ev Linear a = 0.246nm. constant velocity g 0 ~ 3 ev 0.334nm Interlayer g 1 ~ 0.4 ev Massive Effective mass: Graphene monolayerbilayer junction Theoretical studies Nakanishi, Koshino, Ando, PRB
More informationCompressible Fluids. Faith A. Morrison Associate Professor of Chemical Engineering Michigan Technological University November 4, 2004
94 c 2004 Faith A. Morrison, all rights reserved. Compressible Fluids Faith A. Morrison Associate Professor of Chemical Engineering Michigan Technological University November 4, 2004 Chemical engineering
More informationAnderson localization: Metallic behavior in two dimensions?
Anderson localization: Metallic behavior in two dimensions? Vladimir Kuzovkov Institute of Solid State Physics University of Latvia 8 Kengaraga Str., LV1063, RIGA, Latvia September 13, 2005 Page 1 of
More informationChapter 8 Conservation of Linear Momentum. Conservation of Linear Momentum
Chapter 8 Conservation of Linear Momentum Physics 201 October 22, 2009 Conservation of Linear Momentum Definition of linear momentum, p p = m v Linear momentum is a vector. Units of linear momentum are
More informationThermal transport in the anisotropic Heisenberg chain with S = 1/2 and nearestneighbor interactions
Thermal transport in the anisotropic Heisenberg chain with S = 1/2 and nearestneighbor interactions D. L. Huber Department of Physics, University of WisconsinMadison, Madison, WI 53706 Abstract The purpose
More informationVessel holding water. Charged capacitor. Questions. Question 1
ELEN236 Capacitors This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
More informationComputer lab: Density functional perturbation theory. theory for lattice dynamics
Computer lab: density functional perturbation theory for lattice dynamics SISSA and DEMOCRITOS Trieste (Italy) Outline 1 The dynamical matrix 2 3 4 5 Dynamical matrix We want to write a small computer
More informationParametric Curves. (Com S 477/577 Notes) YanBin Jia. Oct 8, 2015
Parametric Curves (Com S 477/577 Notes) YanBin Jia Oct 8, 2015 1 Introduction A curve in R 2 (or R 3 ) is a differentiable function α : [a,b] R 2 (or R 3 ). The initial point is α[a] and the final point
More informationUNIT I: INTRFERENCE & DIFFRACTION Div. B Div. D Div. F INTRFERENCE
107002: EngineeringPhysics Teaching Scheme: Lectures: 4 Hrs/week Practicals2 Hrs./week T.W.25 marks Examination Scheme: Paper50 marks (2 hrs) Online 50marks Prerequisite: Basics till 12 th Standard
More informationSOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve
SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives
More informationSpinflip excitation spectroscopy with STM excitation of allowed transition adds an inelastic contribution (group of Andreas Heinrich, IBM Almaden)
Magnetism at the atomic scale by Scanning Probe Techniques Kirsten von Bergmann Institute of Applied Physics Magnetism with SPM Spinpolarized scanning tunneling microscopy SPSTM density of states of
More informationRadiation reaction for inspiralling binary systems with spinspin
Radiation reaction for inspiralling binary systems with spinspin coupling 1 Institute of Theoretical Physics, FriedrichSchillerUniversity Jena December 3, 2007 1 H. Wang and C. M. Will, Phys. Rev. D,
More informationSyllabus for Chem 359: Atomic and Molecular Spectroscopy
Syllabus for Chem 359: Atomic and Molecular Spectroscopy Instructors: Dr. Reinhard Schweitzer Stenner and Ms. Siobhan E. Toal Of#ice: Disque 605/Disque 306 Tel: (215) 8952268 Email: rschweitzer stenner@drexel.edu
More informationAMPLIFICATION OF ATOMIC WAVES BY STIMULATED EMISSION OF ATOMS. Christian J. Borde
AMPLIFIATION OF ATOMI WAVES BY STIMULATED EMISSION OF ATOMS hristian J. Borde Laboratoire de Physique des Lasers, NRS/URA 8, Universite ParisNord, Villetaneuse, France. INTRODUTION: The recent development
More informationApplied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur
Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture  7 Ideal Gas Laws, Different Processes Let us continue
More information2 A bank account for electricity II: flows and taxes
PHYS 189 Lecture problems outline Feb 3, 2014 Resistors and Circuits Having introduced capacitors, we now expand our focus to another very important component of a circuit resistors. This entails more
More informationF en = mω 0 2 x. We should regard this as a model of the response of an atom, rather than a classical model of the atom itself.
The Electron Oscillator/Lorentz Atom Consider a simple model of a classical atom, in which the electron is harmonically bound to the nucleus n x e F en = mω 0 2 x origin resonance frequency Note: We should
More informationOrbital angular momentum and orbital dynamics: 3HeA and the Bose liquid
Orbital angular momentum and orbital dynamics: 3HeA and the Bose liquid G. E. Volovik and V. P. Mineev L. D. Landau Institute of Theoretical Physics, Academy of Sciences of the USSR (Submitted 3 March
More informationLecture 6 BlackScholes PDE
Lecture 6 BlackScholes PDE Lecture Notes by Andrzej Palczewski Computational Finance p. 1 Pricing function Let the dynamics of underlining S t be given in the riskneutral measure Q by If the contingent
More informationSize effects. Lecture 6 OUTLINE
Size effects 1 MTX9100 Nanomaterials Lecture 6 OUTLINE Why does size influence the material s properties? How does size influence the material s performance? Why are properties of nanoscale objects
More informationTHE CLAUSIUS INEQUALITY
Part IV Entropy In Part III, we introduced the second law of thermodynamics and applied it to cycles and cyclic devices. In this part, we apply the second law to processes. he first law of thermodynamics
More information6 J  vector electric current density (A/m2 )
Determination of Antenna Radiation Fields Using Potential Functions Sources of Antenna Radiation Fields 6 J  vector electric current density (A/m2 ) M  vector magnetic current density (V/m 2 ) Some problems
More informationHigh Speed Aerodynamics Prof. K. P. Sinhamahapatra Department of Aerospace Engineering Indian Institute of Technology, Kharagpur
High Speed Aerodynamics Prof. K. P. Sinhamahapatra Department of Aerospace Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 06 Onedimensional Gas Dynamics (Contd.) We
More informationDoes BlackScholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem
Does BlackScholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem Gagan Deep Singh Assistant Vice President Genpact Smart Decision Services Financial
More informationIntroduction to Complex Numbers in Physics/Engineering
Introduction to Complex Numbers in Physics/Engineering ference: Mary L. Boas, Mathematical Methods in the Physical Sciences Chapter 2 & 14 George Arfken, Mathematical Methods for Physicists Chapter 6 The
More information(a) We have x = 3 + 2t, y = 2 t, z = 6 so solving for t we get the symmetric equations. x 3 2. = 2 y, z = 6. t 2 2t + 1 = 0,
Name: Solutions to Practice Final. Consider the line r(t) = 3 + t, t, 6. (a) Find symmetric equations for this line. (b) Find the point where the first line r(t) intersects the surface z = x + y. (a) We
More informationSensitivity analysis of utility based prices and risktolerance wealth processes
Sensitivity analysis of utility based prices and risktolerance wealth processes Dmitry Kramkov, Carnegie Mellon University Based on a paper with Mihai Sirbu from Columbia University Math Finance Seminar,
More informationLecture 3: Optical Properties of Bulk and Nano. 5 nm
Lecture 3: Optical Properties of Bulk and Nano 5 nm The Previous Lecture Origin frequency dependence of χ in real materials Lorentz model (harmonic oscillator model) 0 e  n( ) n' n '' n ' = 1 + Nucleus
More informationSeparable First Order Differential Equations
Separable First Order Differential Equations Form of Separable Equations which take the form = gx hy or These are differential equations = gxĥy, where gx is a continuous function of x and hy is a continuously
More informationGeneral Theory of Differential Equations Sections 2.8, 3.13.2, 4.1
A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics General Theory of Differential Equations Sections 2.8, 3.13.2, 4.1 Dr. John Ehrke Department of Mathematics Fall 2012 Questions
More informationAntenna A mean for radiating and receiving radio waves Transitional structure between freespace and a guiding device. Application: Radiation
Antenna A mean for radiating and receiving radio waves Transitional structure between freespace and a guiding device Application: adiation Introduction An antenna is designed to radiate or receive electromagnetic
More informationSpecific Intensity. I ν =
Specific Intensity Initial question: A number of active galactic nuclei display jets, that is, long, nearly linear, structures that can extend for hundreds of kiloparsecs. Many have two oppositelydirected
More informationJim Lambers MAT 169 Fall Semester 200910 Lecture 25 Notes
Jim Lambers MAT 169 Fall Semester 00910 Lecture 5 Notes These notes correspond to Section 10.5 in the text. Equations of Lines A line can be viewed, conceptually, as the set of all points in space that
More informationChapter 22 The Hamiltonian and Lagrangian densities. from my book: Understanding Relativistic Quantum Field Theory. Hans de Vries
Chapter 22 The Hamiltonian and Lagrangian densities from my book: Understanding Relativistic Quantum Field Theory Hans de Vries January 2, 2009 2 Chapter Contents 22 The Hamiltonian and Lagrangian densities
More informationThe Fundamentals of Thermoelectrics
The Fundamentals of Thermoelectrics A bachelor s laboratory practical Contents 1 An introduction to thermoelectrics 1 2 The thermocouple 4 3 The Peltier device 5 3.1 n and ptype Peltier elements..................
More informationVector or Pseudovector?
Vector or Pseudovector? Jeffrey A. Phillips Loyola Marymount University Los Angeles, CA 90045 By using a corner reflector it is possible to perform an inversion or improper transformation thereby identifying
More informationPhysics of fusion power. Lecture 6: Conserved quantities / Mirror device / tokamak
Physics of fusion power Lecture 6: Conserved quantities / Mirror device / tokamak Reminder Perpendicular forces lead to drifts of the particles Electric field acceleration Inertia connected with a change
More informationIntroduction to Schrödinger Equation: Harmonic Potential
Introduction to Schrödinger Equation: Harmonic Potential ChiaChun Chou May 2, 2006 Introduction to Schrödinger Equation: Harmonic Potential TimeDependent Schrödinger Equation For a nonrelativistic particle
More informationTentamen i GRUNDLÄGGANDE MATEMATISK FYSIK
Karlstads Universitet Fysik Tentamen i GRUNDLÄGGANDE MATEMATISK FYSIK [ VT 2008, FYGB05] Datum: 20080326 Tid: 8.15 13.15 Lärare: Jürgen Fuchs c/o Carl Stigner Tel: 054700 1815 Total poäng: 28 Godkänd:
More informationPermeability and Dispersion Coefficients in Rocks with Fracture Network  14156
Permeability and Dispersion Coefficients in Rocks with Fracture Network  14156 C.K. LEE, M.Z. Htway* Handong Global University 3 Namsongri, Heunghaeeub, Bukgu, Pohang, Kyungbuk, 791708 Republic of
More informationReflection Positivity of the Free Overlap Fermions
Yoshio Kikukawa Institute of Physics, the University of Tokyo, Tokyo 1538902, Japan Email: kikukawa@hep1.c.utokyo.ac.jp Department of Physics, the University of Tokyo 1130033, Japan Institute for the
More informationOperations with Algebraic Expressions: Multiplication of Polynomials
Operations with Algebraic Expressions: Multiplication of Polynomials The product of a monomial x monomial To multiply a monomial times a monomial, multiply the coefficients and add the on powers with the
More informationElectromagnetism  Lecture 2. Electric Fields
Electromagnetism  Lecture 2 Electric Fields Review of Vector Calculus Differential form of Gauss s Law Poisson s and Laplace s Equations Solutions of Poisson s Equation Methods of Calculating Electric
More informationProblem 1 (25 points)
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2012 Exam Three Solutions Problem 1 (25 points) Question 1 (5 points) Consider two circular rings of radius R, each perpendicular
More informationFLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions
FLUID DYNAMICS Intrinsic properties of fluids Fluids behavior under various conditions Methods by which we can manipulate and utilize the fluids to produce desired results TYPES OF FLUID FLOW Laminar or
More informationphysics 111N electric potential and capacitance
physics 111N electric potential and capacitance electric potential energy consider a uniform electric field (e.g. from parallel plates) note the analogy to gravitational force near the surface of the Earth
More informationPartial Fraction Decomposition for Inverse Laplace Transform
Partial Fraction Decomposition for Inverse Laplace Transform Usually partial fractions method starts with polynomial long division in order to represent a fraction as a sum of a polynomial and an another
More informationChapter 30 Inductance
Chapter 30 Inductance  Mutual Inductance  SelfInductance and Inductors  MagneticField Energy  The R Circuit  The C Circuit  The RC Series Circuit . Mutual Inductance  A changing current in
More informationPHY101 Electricity and Magnetism I Course Summary
TOPIC 1 ELECTROSTTICS PHY11 Electricity an Magnetism I Course Summary Coulomb s Law The magnitue of the force between two point charges is irectly proportional to the prouct of the charges an inversely
More informationPhysics 1A Lecture 10C
Physics 1A Lecture 10C "If you neglect to recharge a battery, it dies. And if you run full speed ahead without stopping for water, you lose momentum to finish the race. Oprah Winfrey Static Equilibrium
More information