# CHANCE HELICAL ANCHOR/PILE BEARING CAPACITY

Save this PDF as:

Size: px
Start display at page:

## Transcription

2 The approach taken herein assumes that the soil failure mechanism will follow the theory of general bearing capacity failure. This theory suggests that the capacity of a helical anchor/pile is equal to the sum of the capacities of the individual helix plates. The helix capacity is determined by calculating the unit bearing capacity of the soil at each helix and then multiplying the result by the individual helix s projected area. Friction along the central shaft is typically not used to determine capacity, but may be included when the central shaft is round and at least 3-1/2 (89 mm) in diameter. Refer to Calculating Helical Pile Frictional Capacity later in this section. A necessary condition for this method to work is that the helix plates be spaced far enough apart to avoid overlapping of their individual pressure bulbs, i.e., stress zones in the soil. This will prevent one helix from significantly influencing the performance of another. CHANCE Civil Construction has determined that the optimum spacing between any two helical plates on a helical anchor/pile is three times the diameter of the lower helix. This is consistent with the findings of others (Bassett, 1977) for multi-belled concrete piers. For example, the distance between a 10 inch (254 mm) and 12 inch (305 mm) helix is three times the diameter of the lower helix, or 10 x 3 = 30 inches (762 mm). The following is Terzaghi s general bearing capacity equation, which allows determination of the ultimate capacity of the soil. This equation and its use will be discussed in this section, as it forms the basis of determining helix capacity in soil. Q ult = A h ( cn c + q'n q 'BN ) (Equation 5-6) where: Q ult = Ultimate capacity of the soil A h = Projected helix area c = Soil cohesion q' = Effective overburden pressure B = Footing width (base width) ' = Effective unit weight of the soil and Nc, Nq, and N are bearing capacity factors Following is quoted from Bowles (1988) concerning Equation 5-6 where the various terms of the bearing capacity equation are distinguished. 1. The cohesion term predominates in cohesive soil. 2. The depth term (q'n q ) predominates in cohesionless soil. Only a small D (vertical depth to footing or helix plate increases Q ult substantially. 3. The base width term 0.5 ' BN provides some increase in bearing capacity for both cohesive and cohesionless soils. In cases where B < 3 to 4 m this term could be neglected with little error. The base width term of the bearing capacity equation is not used when dealing with the helical anchors/piles because as Bowles indicates, the resulting value of that term is quite small. NOTE The effective overburden pressure (q', of consequence for cohesionless soils) is the product of depth and the effective unit weight of the soil. The water table location may cause a reduction in the soil bearing capacity. The effective unit weight of the soil is its in-situ unit weight when it is above the water table. However, the effective unit weight of soil below the water table is its in-situ unit weight less the unit weight of water. Concern can develop when a helical anchor/pile installation is terminated above the water table with the likelihood that the water table will rise with time to be above the helix plates. In this situation, the helical anchor/pile lead section configuration and depth should be determined with the water at its highest anticipated level. Then the capacity of the same helical anchor/pile should be determined in the same soil with the water level below the helical anchor/pile, which will typically produce higher load capacities All Rights Reserved 5-4 Oct/2006

3 and a more difficult installation, i.e., it will require more installation torque. It is sometimes the case that a larger helical anchor/pile product series, i.e., one with greater torque capacity, must be used in order to facilitate installation into the dry conditions. Provided that helix spacing on the helical anchor/pile shaft is 3 helix diameters, the capacity of individual helices on a multi-helix anchor/pile may be summed to obtain the total ultimate capacity of a specific helical anchor/pile thusly: Q t = Q h (Equation 5-7) where: Q t = Total ultimate multi-helix anchor/pile capacity Q h = Individual helix capacity The ultimate capacity of an individual helix may be evaluated as per the following equation. An upper limit for this capacity is based on helix strength that can be obtained from the manufacturer. See Tables 7-5 and 7-7 in Section 7 of this Technical Design Manual for the mechanical strengths of helices. Q h = A h (cn c + q'n q ) Q s (Equation 5-8) Q s = Capacity upper limit, determined by the helix mechanical strength Non-Cohesive Soil Determination of helix capacity in a noncohesive or granular soil can be accomplished with Equation 5-9 in which the cohesion term has been eliminated. The bearing capacity factor N q is dependent on the angle of internal friction ( ) of the cohesionless soil. When a value is provided for the friction angle, Figure 5-4 (Nq vs ) may be used to determine the value for Nq. When the angle of internal friction is not known, it may be estimated using blow counts obtained from the Standard Penetration Test per ASTM D Equation 5-10 allows an estimate of the angle of internal friction. This equation is based on empirical data given by Bowles (1968) and its results should be used with caution. Angle of Internal Friction (Degrees) Figure 5-4 The graph in Figure 5-4 allows the determination of N q for a specific angle of internal friction when measured in degrees. This curve was adapted from work by Meyerhof (1976). Equation 5-11 was written for the curve shown in Figure 5-4, which is Myerhof's N q values divided by 2 for long term applications. All Rights Reserved 5-5 Oct/2006

4 Q h = A h q'n q = A h 'DN q (Equation 5-9) D = Vertical depth to helix plate N q = Bearing capacity factor for non-cohesive component of soil ' = Effective unit weight of the soil = 0.28 N (Equation 5-10) where: = Angle of internal friction N = Blow count per ASTM D 1586 Standard Penetration Test N q = 0.5 ( 12 x ) /54 (Equation 5-11) where: N q = Bearing capacity factor for non-cohesive component of soil = Angle of internal friction Cohesive Soil Determination of helix capacity in a cohesive or fine-grained soil can be accomplished with Equation 5-8 with the second term eliminated. When this equation is applied to helical anchors/piles, the N c factor is taken to be 9, as it is in other deep applications, provided the installation depth below grade is greater than five times the diameter of the top most helix. Q h = A h cn c = A h c9 (Equation 5-12) c = Cohesion N c = Bearing capacity factor for cohesive component of soil = 9 In the event that cohesion values are not available, the following equation can be used to obtain estimated values when blow counts from ASTM D 1586 Standard Penetration Tests are available. This equation is based on empirical values and is offered only as a guide when cohesion values are otherwise not available. It is suggested that results be used with caution. The reader is urged to seek cohesion values obtained by other means. c (ksf) = N / 8 (Equation 5-13) where: c = Cohesion N = Blow count value per ASTM D 1586 Standard Penetration Test Mixed or c - Soil The determination of the bearing capacity of a mixed soil, one that exhibits both cohesion and friction properties, is accomplished by use of Equation 5-8. This is fairly uncomplicated when accurate values are available for both the cohesion and friction terms of the equation. Unless the designer is quite familiar with the project soil conditions, it is recommended that another approach be taken when accurate values are not available for both terms of the equation. One suggestion is to first consider the soil as cohesive and determine capacity. Then consider the same soil as cohesionless and determine capacity. Finally, take the lower of the two results and use that as the soil bearing capacity and apply appropriate Factors of Safety, etc. All Rights Reserved 5-6 Oct/2006

### Comprehensive Design Example 2: Foundations for Bulk Storage Facility

Comprehensive Design Example 2: Foundations for Bulk Storage Facility Problem The project consists of building several dry product storage silos near an existing rail siding in an open field presently

### System. Stability. Security. Integrity. 150 Helical Anchor

Model 150 HELICAL ANCHOR System PN #MBHAT Stability. Security. Integrity. 150 Helical Anchor System About Foundation Supportworks is a network of the most experienced and knowledgeable foundation repair

### Step 11 Static Load Testing

Step 11 Static Load Testing Test loading is the most definitive method of determining load capacity of a pile. Testing a pile to failure provides valuable information to the design engineer and is recommended

### Helical Design Theory and Applications. By Darin Willis, P.E.

Helical Design Theory and Applications By Darin Willis, P.E. Solution Systems Ram Jack utilizes two unique underpinning & anchoring systems Hydraulically driven piles (pressed) Helical piles (torqued)

### New construction Repairing failed or old foundations Retrofit foundations Permanent battered piers Machinery/equipment foundations

from New construction foundations don t have to be a headache. The CHANCE Helical Pier Foundation System gives you the performance of concrete without the drawbacks and liabilities of driven piles and

### PILE FOUNDATIONS FM 5-134

C H A P T E R 6 PILE FOUNDATIONS Section I. GROUP BEHAVIOR 6-1. Group action. Piles are most effective when combined in groups or clusters. Combining piles in a group complicates analysis since the characteristics

### Helical Pier Foundation System U.S. Patents 5,011,336; 5,120,163; 5,213,448

Helical Pier Foundation System U.S. Patents 5,011,336; 5,120,163; 5,213,448 Technical Manual Contents Helical Pier Foundation System History Research and Development Advantages Theory of Foundation Anchor

### Stability. Security. Integrity.

Stability. Security. Integrity. PN #MBHPT Foundation Supportworks provides quality helical pile systems for both new construction and retrofit applications. 288 Helical Pile System About Foundation Supportworks

### Figure A-1. Figure A-2. continued on next page... HPM-1. Grout Reservoir. Neat Cement Grout (Very Flowable) Extension Displacement Plate

Addendum HELICAL PULLDOWN Micropile (HPM) Introduction The HPM is a system for constructing a grout column around the shaft of a standard Helical Screw Foundation (see Figure A1). To begin the process,

### ALLOWABLE LOADS ON A SINGLE PILE

C H A P T E R 5 ALLOWABLE LOADS ON A SINGLE PILE Section I. BASICS 5-1. Considerations. For safe, economical pile foundations in military construction, it is necessary to determine the allowable load capacity

Page B-1 Hubbell Power Systems, Inc. All Rights Reserved Copyright 2014 Appendix B CONTENTS STATIC (TIEBACKS)... B-3 STATIC AXIAL (COMPRESSION/TENSION)... B-6 STATIC (LATERAL)... B-9 CAPACITY VERIFICATION

### PDCA Driven-Pile Terms and Definitions

PDCA Driven-Pile Terms and Definitions This document is available for free download at piledrivers.org. Preferred terms are descriptively defined. Potentially synonymous (but not preferred) terms are identified

### ATLAS RESISTANCE Pier Foundation Systems

ATLAS RESISTANCE Pier Foundation Systems Foundation Repair Systems for Civil Construction Applications: Residential, Commercial, Industrial Atlas Resistance Piers have been used to restore and/or stabilize

### Designed and Engineered to Perform

History EARTH CONTACT PRODUCTS, L.L.C., is a family owned company, based in Olathe, Kansas. This company was built upon Don May s U.S. Patented fourth-generation Steel Piering System that has led to the

### How to Design Helical Piles per the 2009 International Building Code

ABSTRACT How to Design Helical Piles per the 2009 International Building Code by Darin Willis, P.E. 1 Helical piles and anchors have been used in construction applications for more than 150 years. The

### LEGACY REPORT ER-5110. www.icc-es.org. ICC Evaluation Service, Inc. Reissued November 1, 2003. Legacy report on the 1997 Uniform Building Code

LEGACY REPORT Reissued November 1, 2003 ICC Evaluation Service, Inc. www.icc-es.org Business/Regional Office # 5360 Workman Mill Road, Whittier, California 90601 # (562) 699-0543 Regional Office # 900

### FOUNDATION DESIGN. Instructional Materials Complementing FEMA 451, Design Examples

FOUNDATION DESIGN Proportioning elements for: Transfer of seismic forces Strength and stiffness Shallow and deep foundations Elastic and plastic analysis Foundation Design 14-1 Load Path and Transfer to

### Engineered, Time-Tested Foundation Repairs for Settlement in Residential and Light Commercial Structures. The Leading Edge.

TM TM Engineered, Time-Tested Foundation Repairs for Settlement in Residential and Light Commercial Structures. SM The Leading Edge. 10 One Major Causes of foundation settlement or more conditions may

### DESIGN, INSTALLATION AND TESTING OF HELICAL PILES & ANCHORS. Presented by: Donald A. Deardorff, P.E. CHANCE Civil Construction Centralia, MO USA

DESIGN, INSTALLATION AND TESTING OF HELICAL PILES & ANCHORS Presented by: Donald A. Deardorff, P.E. CHANCE Civil Construction Centralia, MO USA Historical Perspective 1 st Recorded Screw Pile was by Alexander

### High Strain Dynamic Load Testing of Drilled Shafts

Supplemental Technical Specification for High Strain Dynamic Load Testing of Drilled Shafts SCDOT Designation: SC-M-712 (9/15) September 3, 2015 1.0 GENERAL This work shall consist of performing high-strain

### TYPES OF FOUNDATIONS

TYPES OF FOUNDATIONS 1 Foundation Systems Shallow Foundation Deep Foundation Pile Foundation Pier (Caisson) Foundation Isolated spread footings Wall footings Combined footings Cantilever or strap footings

### PRODUCT DRAWINGS AND RATINGS Section 7

PRODUCT DRAWINGS AND RATINGS Section 7 CONTENTS ATLAS RESISTANCE PIERS 7-1 PIER PIPE SHAFTS 7-1 REMEDIAL REPAIR BRACKETS for ATLAS RESISTANCE PIERS 7-2 ACCESSORIES for ATLAS RESISTANCE PIERS 7-6 CHANCE

### PDHonline Course S151A (1 PDH) Steel Sheet Piling. Instructor: Matthew Stuart, PE, SE. PDH Online PDH Center

PDHonline Course S151A (1 PDH) Steel Sheet Piling Instructor: Matthew Stuart, PE, SE 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.pdhonline.org

### EXAMPLE 1 DESIGN OF CANTILEVERED WALL, GRANULAR SOIL

EXAMPLE DESIGN OF CANTILEVERED WALL, GRANULAR SOIL A sheet pile wall is required to support a 2 excavation. The soil is uniform as shown in the figure. To take into account the friction between the wall

### Now That s IDEAL. Now That s IDEAL. LISTEN. RESEARCH. DESIGN. DELIVER.

The Leading Edge SM At IDEAL, we try not to complicate things. We discover needs and problems, then work out solutions. It takes real teamwork to accomplish truly great things. That s you and us, working

### Specification Guidelines: Allan Block Modular Retaining Wall Systems

Specification Guidelines: Allan Block Modular Retaining Wall Systems The following specifications provide Allan Block Corporation's typical requirements and recommendations. At the engineer of record's

### SPECIFICATIONS FOR PRECAST MODULAR BLOCK RETAINING WALL SYSTEM (revised 11/5/13)

Page 1 of 7 STONE STRONG SYSTEMS SPECIFICATIONS FOR PRECAST MODULAR BLOCK RETAINING WALL SYSTEM (revised ) PART 1: GENERAL 1.01 Description A. Work includes furnishing and installing precast modular blocks

### 5/1/2013. Topics. The challenge is to better maintain native characteristics of soils during and after construction

PIN Foundations Topics Applications Design and Construction Flow Control Credits www.pinfoundations.com Copyright 2008, Pin Foundations, Inc. Curtis Hinman WSU Extension Faculty, Watershed Ecologist chinman@wsu.edu

### Pro-Lift Steel Pile Foundation Repair

Pro-Lift Steel Pile Foundation Repair Pro-Lift Steel Pile Foundation Repair System Pro-lift steel piles are designed for the stresses of Texas soils. They can have multiple steel walls, depending on the

### Micropiles Reduce Costs and Schedule for Merchant RR Bridge Rehabilitation

Micropiles Reduce Costs and Schedule for Merchant RR Bridge Rehabilitation Jeff R. Hill, P.E. Hayward Baker Inc. 111 W. Port Plaza Drive Suite 600 St. Louis, MO 63146 314-542-3040 JRHill@HaywardBaker.com

### 1997 Uniform Administrative Code Amendment for Earthen Material and Straw Bale Structures Tucson/Pima County, Arizona

for Earthen Material and Straw Bale Structures SECTION 70 - GENERAL "APPENDIX CHAPTER 7 - EARTHEN MATERIAL STRUCTURES 70. Purpose. The purpose of this chapter is to establish minimum standards of safety

Compression Test, METHOD OF STATEMENT FOR STATIC LOADING TEST Tension Test and Lateral Test According to the American Standards ASTM D1143 07, ASTM D3689 07, ASTM D3966 07 and Euro Codes EC7 Table of Contents

### Geotechnical Investigation Reports and Foundation Recommendations - Scope for Improvement - Examples

Geotechnical Investigation Reports and Foundation Recommendations - Scope for Improvement - Examples Prof. V.S.Raju (Formerly: Director, IIT Delhi & Professor and Dean, IIT Madras) Email: rajuvs_b@yahoo.com

### High Capacity Helical Piles Limited Access Projects

High Capacity Helical Piles Limited Access Projects Tel 403 228-1767 Canada, USA, Russia Brendan ODonoghue 519 830-6113 Presentation Summary 1. Helical piles Background on large diameter shafts and helices

### INDIRECT METHODS SOUNDING OR PENETRATION TESTS. Dr. K. M. Kouzer, Associate Professor in Civil Engineering, GEC Kozhikode

INDIRECT METHODS SOUNDING OR PENETRATION TESTS STANDARD PENETRATION TEST (SPT) Reference can be made to IS 2131 1981 for details on SPT. It is a field edtest to estimate e the penetration e resistance

### Hydraulic Drive Head Curves For Helical Pile Capacity

Hydraulic Drive Head Curves For Helical Pile Capacity Don Deardorff, P.E. Senior Application Engineer Abstract Helical piles often rely on the final installation torque for ultimate capacity verification.

### DIVISION: 31 00 00 EARTHWORK SECTION: 31 63 00 BORED PILES REPORT HOLDER: HUBBELL POWER SYSTEMS, INC.

0 ICC ES Report ICC ES (800) 4 6587 (56) 699 054 www.icc es.org 000 Most Widely Accepted and Trusted ESR 794 Reissued 05/05 This report is subject to renewal 05/06. DIVISION: 00 00 EARTHWORK SECTION: 6

### Shallow Foundation Analysis on Heterogeneous Soil Formation in the Niger Delta of Nigeria

Shallow Foundation Analysis on Heterogeneous Soil Formation in the Niger Delta of Nigeria Akpila, S.B Department of Civil Engineering Rivers State University of Science & Technology, PortHarcourt. Eluozo,

### DESIGNING STRUCTURES IN EXPANSIVE CLAY

DESIGNING STRUCTURES IN EXPANSIVE CLAY A GUIDE FOR A RCHITECTS AND E NGINEERS Table of Contents 1. Introduction Page 1 2. Common Foundation Systems Page 2 3. Drilled Piers Page 3 a. Skin Friction Piers

This document downloaded from vulcanhammer.net since 1997, your source for engineering information for the deep foundation and marine construction industries, and the historical site for Vulcan Iron Works

### 13. AN INTRODUCTION TO FOUNDATION ENGINEERING

13-1 13. AN INTRODUCTION TO FOUNDATION ENGINEERING 13.1 TYPES OF FOUNDATIONS The foundation is that portion of a structure that transmits the loads from the structure to the underlying foundation material.

### Geotechnical Measurements and Explorations Prof. Nihar Ranjan Patra Department of Civil Engineering Indian Institute of Technology, Kanpur

Geotechnical Measurements and Explorations Prof. Nihar Ranjan Patra Department of Civil Engineering Indian Institute of Technology, Kanpur Lecture No. # 13 (Refer Slide Time: 00:18) So last class, it was

### Module 1 : Site Exploration and Geotechnical Investigation. Lecture 4 : In-situ tests [ Section 4.1: Penetrometer Tests ] Objectives

Lecture 4 : In-situ tests [ Section 4.1: Penetrometer Tests ] Objectives In this section you will learn the following Penetrometer Tests Standard penetration test Static cone penetration test Dynamic cone

### STRUCTURES. 1.1. Excavation and backfill for structures should conform to the topic EXCAVATION AND BACKFILL.

STRUCTURES 1. General. Critical structures may impact the integrity of a flood control project in several manners such as the excavation for construction of the structure, the type of foundation, backfill

### Residential Deck Safety, Construction, and Repair

Juneau Permit Center, 4 th Floor Marine View Center, (907)586-0770 This handout is designed to help you build your deck to comply with the 2006 International Residential Building code as modified by the

### c. Borehole Shear Test (BST): BST is performed according to the instructions published by Handy Geotechnical Instruments, Inc.

Design Manual Chapter 6 - Geotechnical 6B - Subsurface Exploration Program 6B-2 Testing A. General Information Several testing methods can be used to measure soil engineering properties. The advantages,

### Dynamic Load Testing of Helical Piles

Dynamic Load Testing of Helical Piles ANNUAL KANSAS CITY SPECIALTY SEMINAR 2014 JANUARY 10, 2014 Jorge Beim JWB Consulting LLC Pile Dynamics, Inc. Main Topics Brief description of the Dynamic Load Test

### Evaluation Report CCMC 13102-R Pieux Vissés Vistech / Postech Screw Piles

Evaluation Report CCMC 13102-R Pieux Vissés Vistech / Postech Screw Piles 1. Opinion 1of 6 MASTERFORMAT: 31 62 16.01 Evaluation issued: 2003-02-13 Re-evaluated: 2015-03-13 Re-evaluation due: 2018-02-13

### 13.1 SCOPE...13-1 13.2 DEFINITIONS...13-1 13.3 NOTATION...13-1 13.4 DETERMINATION OF SOIL PROPERTIES...13-2

SECTION 13: FOUNDATION DESIGN TABLE OF CONTENTS 13 13.1 SCOPE...13-1 13.2 DEFINITIONS...13-1 13.3 NOTATION...13-1 13.4 DETERMINATION OF SOIL PROPERTIES...13-2 13.5 FOUNDATION BEARING CAPACITY...13-2 13.5.1

### SECTION 1 GENERAL REQUIREMENTS

Page 1 of 6 SECTION 1 GENERAL REQUIREMENTS 1. SCOPE OF WORK: The work to be performed under the provisions of these documents and the contract based thereon includes furnishing all labor, equipment, materials,

### PTS HELICAL PIERS INSTALLATION SPECIFICATIONS NOTICE

FORM A PTS HELICAL PIERS INSTALLATION SPECIFICATIONS NOTICE The following suggested specifications are written as a guide to assist the specifier in writing his own specifications. Specific circumstances

### Applications for Drum Cutters. They can be used underwater to a depth of 98 feet without additional installation.

DC DRUM CUTTER Your choice for rock, concrete, or hard soil. Applications include surface profiling, trenching, frozen soil, excavation, and demolition. Drum Cutters are your economic solution when conventional

### Helical Piles. A Practical Guide to Design and Installation

Brochure More information from http://www.researchandmarkets.com/reports/2216946/ Helical Piles. A Practical Guide to Design and Installation Description: An unbiased, comprehensive review of helical pile

### product manual HS-4210 HS-4210_MAN_09.08 Digital Static Cone Penetrometer

HS-4210_MAN_09.08 product manual HS-4210 Digital Static Cone Penetrometer Introduction This Manual covers the measurement of bearing capacity using the Humboldt Digital Static Cone Penetrometer (DSCP).

How Many Piers? By Gary Collins, P.E. A clear-cut guide to helical pier spacing Introduction Helical pier spacing is not an exact science. How many does it take to support a structure adequately or repair

### DIRT DWELLING. and your. www.pinfoundations.com. Pin Foundations Inc., 2008

DIRT and your DWELLING 2008 Pin Foundations Inc., 2008 If we accept that preserving soil in its native condition is necessary, then how do we build? Utilities? Roads? Foundations? Typical Strip, Transfer,

### The Islamic university - Gaza Faculty of Engineering Civil Engineering Department CHAPTER (2) SITE INVESTIGATION. Instructor : Dr.

The Islamic university - Gaza Faculty of Engineering Civil Engineering Department CHAPTER (2) SITE INVESTIGATION Instructor : Dr. Jehad Hamad Definition The process of determining the layers of natural

### INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 3, No 3, 2013

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 3, No 3, 2013 Copyright by the authors - Licensee IPA- Under Creative Commons license 3.0 Research article ISSN 0976 4399 Reliability of

### Finite Element Analysis of Elastic Settlement of Spreadfootings Founded in Soil

Finite Element Analysis of Elastic Settlement of Spreadfootings Founded in Soil Jae H. Chung, Ph.D. Bid Bridge Software Institute t University of Florida, Gainesville, FL, USA Content 1. Background 2.

### Piping Systems. General considerations

SRAC Publication No. 373 May 2013 Revision PR VI Piping Systems J. David Bankston, Jr. and Fred Eugene Baker 1 A piping system allows the controlled movement of water from one location to another. It consists

### Transmission Foundations. helical piles and guy anchors for transmission structures. www.hubbellpowersystems.com

Transmission Foundations helical piles and guy anchors for transmission structures www.hubbellpowersystems.com Grid locked on your transmission job? Instant Foundation helical piles go places concrete

### Report on. Wind Resistance of Signs supported by. Glass Fiber Reinforced Concrete (GFRC) Pillars

Report on Wind Resistance of Signs supported by Glass Fiber Reinforced Concrete (GFRC) Pillars Prepared for US Sign and Fabrication Corporation January, 2006 SUMMARY This study found the attachment of

### SPECIFICATION FOR DYNAMIC CONSOLIDATION / DYNAMIC REPLACEMENT

SPECIFICATION FOR DYNAMIC CONSOLIDATION / DYNAMIC REPLACEMENT 1.0 SOIL IMPROVEMENT 1.1 General Soil Investigation Information are provided in Part B1 annex as a guide to the Contractor for his consideration

### HURRICANE MITIGATION RETROFITS FOR EXISTING SITE-BUILT SINGLE FAMILY RESIDENTIAL STRUCTURES

HURRICANE MITIGATION RETROFITS FOR EXISTING SITE-BUILT SINGLE FAMILY RESIDENTIAL STRUCTURES 101 Retrofits Required. Pursuant to Section 553.844 553.884, Florida Statutes, strengthening of existing site-built,

### Screw Thread Design. Rev. 3-4-09

Screw Thread Design Screw Thread Fundamentals A screw thread is defined as a ridge of uniform section in the form of a helix on either the external or internal surface of a cylinder. Internal threads refer

### CHAPTER 2 HYDRAULICS OF SEWERS

CHAPTER 2 HYDRAULICS OF SEWERS SANITARY SEWERS The hydraulic design procedure for sewers requires: 1. Determination of Sewer System Type 2. Determination of Design Flow 3. Selection of Pipe Size 4. Determination

### Bearing Capacity (Daya Dukung Tanah)

Bearing Capacity (Daya Dukung Tanah) Dr. Ir.H. Erizal, MAgr Definisi Daya dukung yang diizinkan (allowable bearing cap.) tekanan maksimum yang dapat diaplikasikan ke tanah dimana 2 kondisi diatas dipenuhi.

### Load and Resistance Factor Geotechnical Design Code Development in Canada. by Gordon A. Fenton Dalhousie University, Halifax, Canada

Load and Resistance Factor Geotechnical Design Code Development in Canada by Gordon A. Fenton Dalhousie University, Halifax, Canada 1 Overview 1. Past: Where we ve been allowable stress design partial

### GLOSSARY OF TERMINOLOGY

GLOSSARY OF TERMINOLOGY AUTHORIZED PILE LENGTHS - (a.k.a. Authorized Pile Lengths letter) Official letter stating Engineer's recommended length of concrete piles to be cast for construction of foundation.

### CEEN 162 - Geotechnical Engineering Laboratory Session 7 - Direct Shear and Unconfined Compression Tests

PURPOSE: The parameters of the shear strength relationship provide a means of evaluating the load carrying capacity of soils, stability of slopes, and pile capacity. The direct shear test is one of the

### Site Investigation. Some unsung heroes of Civil Engineering. buried right under your feet. 4. Need good knowledge of the soil conditions

This is an attempt to create a stand alone self learning module on site investigation. Fasten your seat belts. Sit back, relax and enjoy. 1 2 Site Investigation Some unsung heroes of Civil Engineering

### HELICAL SCREW PILE FOUNDATIONS. Presented by: Laurence Boakes Azimuth Structural Engineering Ltd.

HELICAL SCREW PILE FOUNDATIONS Presented by: Laurence Boakes Azimuth Structural Engineering Ltd. Historical Perspective 1 st Recorded use of a Screw Pile was by Alexander Mitchell in 1836 for Moorings

### CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1.1 Introduction The design and construction of foundations require a good knowledge of the mechanical behaviour of soils and of their spatial variability. Such information can be

### Worked Example 2 (Version 1) Design of concrete cantilever retaining walls to resist earthquake loading for residential sites

Worked Example 2 (Version 1) Design of concrete cantilever retaining walls to resist earthquake loading for residential sites Worked example to accompany MBIE Guidance on the seismic design of retaining

Copyright by W. Tom Witherspoon All Rights Reserved LOAD CAPACITY TESTING AND ANALYSIS OF RESIDENTIAL UNDERPINNING SYSTEMS IN EXPANSIVE CLAY ENVIRONMENT by WILLIAM THOMAS WITHERSPOON Presented to the Faculty

### Local Authority Building Control Technical Information Note 3 Driven and In-situ Piled Foundations

Local Authority Building Control Technical Information Note 3 Driven and In-situ Piled Foundations Cambridge City Council - East Cambridgeshire District Council - Fenland District Council, Huntingdonshire

### SUGGESTION ABOUT DETERMINATION OF THE BEARING CAPACITY OF PILES ON THE BASIS OF CPT SOUNDING TESTS

SUGGESTION ABOUT DETERMINATION OF THE BEARING CAPACITY OF PILES ON THE BASIS OF CPT SOUNDING TESTS JóZSEF PUSZTAI About the authors Pusztai József Budapest University of Technology and Economics, Department

### PILE FOUNDATION. Pile

PILE FOUNDATION. One or more of the followings: (a)transfer load to stratum of adequate capacity (b)resist lateral loads. (c) Transfer loads through a scour zone to bearing stratum 1 (d)anchor structures

### GEOTECHNICAL ENGINEERING FORMULAS. A handy reference for use in geotechnical analysis and design

GEOTECHNICAL ENGINEERING FORMULAS A handy reference for use in geotechnical analysis and design TABLE OF CONTENTS Page 1. SOIL CLASSIFICATION...3 1.1 USCS: Unified Soil Classification System...3 1.1.1

### DRIVEN PIPE PILES IN DENSE SAND

DRIVEN PIPE PILES IN DENSE SAND BYRON BYRNE GEOMECHANICS GROUP THE UNIVERSITY OF WESTERN AUSTRALIA ABSTRACT: Piles are often driven open ended into dense sand with the aim of increasing the ease of penetration

### Chapter 4 FLOOR CONSTRUCTION

Chapter 4 FLOOR CONSTRUCTION Woodframe floor systems and concrete slab-on-grade floors are discussed in this chapter. Although cold-formed steel framing for floor systems also is permitted by the IRC,

### Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing

Brussels, 18-20 February 2008 Dissemination of information workshop 1 Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing Dr.-Ing. Bernd Schuppener, Federal Waterways Engineering

### Lymon C. Reese & Associates LCR&A Consulting Services Tests of Piles Under Axial Load

Lymon C. Reese & Associates LCR&A Consulting Services Tests of Piles Under Axial Load Nature of Services The company has a long history of performance of tests of piles and pile groups under a variety

### Terzaghi's Bearing Capacity Equations

Terzaghi's Bearing Capacity Equations Bearing capacity equation Bearing capacity factors Bearing capacity Chart Example 1: trip footing on cohesionless soil Example 2: quare footing on clay soil Example

### 6 RETROFITTING POST & PIER HOUSES

Retrofitting Post & Pier Houses 71 6 RETROFITTING POST & PIER HOUSES by James E. Russell, P.E. 72 Retrofitting Post & Pier Houses Retrofitting Post & Pier Houses 73 RETROFITTING POST AND PIER HOUSES This

### Abstract. Keywords. Pouya Salari 1, Gholam Reza Lashkaripour 2*, Mohammad Ghafoori 2. Email: * lashkaripour@um.ac.ir

Open Journal of Geology, 2015, 5, 231-2 Published Online May 2015 in SciRes. http://www.scirp.org/journal/ojg http://dx.doi.org/./ojg.2015.55021 Presentation of Empirical Equations for Estimating Internal

### Technical Notes 3B - Brick Masonry Section Properties May 1993

Technical Notes 3B - Brick Masonry Section Properties May 1993 Abstract: This Technical Notes is a design aid for the Building Code Requirements for Masonry Structures (ACI 530/ASCE 5/TMS 402-92) and Specifications

### Since the Steel Joist Institute

SELECTING and SPECIFYING Wesley B. Myers, P.E. An insider s guide to selecting and specifying K-series, LH, DLH-series joists and joist girders Since the Steel Joist Institute adopted the first standard

### SUPPLEMENTAL TECHNICAL SPECIFICATIONS BI-DIRECTIONAL STATIC LOAD TESTING OF DRILLED SHAFTS

July 14, 2015 1.0 GENERAL BI-DIRECTIONAL STATIC LOAD TESTING OF DRILLED SHAFTS This work shall consist of furnishing all materials, equipment, labor, and incidentals necessary for conducting bi-directional

### A Solid Foundation Solution for Homeowners. from. Our products are made with 90% Recycled Material Down. Right. Solid. GREEN.

A Solid Foundation Solution for Homeowners from Our products are made with 90% Recycled Material Down. Right. Solid. GREEN. Stop the damaging effects of foundation settling... Sinking foundations, cracked

### REINFORCED CONCRETE. Reinforced Concrete Design. A Fundamental Approach - Fifth Edition. Walls are generally used to provide lateral support for:

HANDOUT REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach - Fifth Edition RETAINING WALLS Fifth Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering

### CITY OF LOS ANGELES CALIFORNIA

BOARD OF BUILDING AND SAFETY COMMISSIONERS VAN AMBATIELOS PRESIDENT E. FELICIA BRANNON VICE PRESIDENT JOSELYN GEAGA-ROSENTHAL GEORGE HOVAGUIMIAN JAVIER NUNEZ CITY OF LOS ANGELES CALIFORNIA ERIC GARCETTI

### Up-Down Construction Utilizing Steel Sheet Piles and Drilled Shaft Foundations

Up-Down Construction Utilizing Steel Sheet Piles and Drilled Shaft Foundations Nathan A. Ingraffea, P.E., S.E. Associate, KPFF Consulting Engineers, Portland, Oregon, USA Abstract The use of steel sheet

### Design, Testing and Automated Monitoring of ACIP Piles in Residual Soils

Design, Testing and Automated Monitoring of ACIP Piles in Residual Soils Stephen W. Lacz 1, M. ASCE, P.E. and Richard C. Wells 2, F. ASCE, P.E. 1 Senior Professional, Trigon Kleinfelder, Inc., 313 Gallimore

### Underpinning Systems 14.1 FOUNDATION REPAIR. Helical Piles

Helical Piles Howard A. Perko Copyright 0 2009 by John Wiley & Sons, Inc. All rights reserved. C h a p t e r 14 Underpinning Systems There has been tremendous growth in the use of helical piles for underpinning

### Caltrans Geotechnical Manual

Cone Penetration Test The cone penetration test (CPT) is an in-situ sounding that pushes an electronic penetrometer into soil and records multiple measurements continuously with depth. Compared with rotary

### Wall Framing Technical Guide. LP SolidStart LSL & LVL. 1730F b -1.35E and 2360F b -1.55E LSL 2250F b -1.5E and 2900F b -2.0E LVL. U.S.

U.S. Technical Guide LP SolidStart LSL & LVL Wall Framing Technical Guide 1730F b -1.35E and 2360F b -1.55E LSL 2250F b -1.5E and 2900F b -2.0E LVL Please verify availability with the LP SolidStart Engineered

### SECTION TRENCHING AND BACKFILLING. 1. Section , Temporary Environmental Controls. 2. Section , Excavation and Fill.

SECTION 31 23 33 TRENCHING AND BACKFILLING PART 1 GENERAL 1.01 SECTION INCLUDES A. This WORK shall consist of all labor, equipment, and materials necessary for excavation, trenching, and backfilling for