Angelika Mader Veri cation of Modal Properties Using Boolean Equation Systems EDITION VERSAL 8

Size: px
Start display at page:

Download "Angelika Mader Veri cation of Modal Properties Using Boolean Equation Systems EDITION VERSAL 8"

Transcription

1 UsingBooleanEquationSystems VericationofModalProperties AngelikaMader EDITIONVERSAL8

2 Band1:E.Kindler:ModularerEntwurf Herausgeber:WolfgangReisig Lektorat:RolfWalter EDITIONVERSAL Band2:R.Walter:PetrinetzmodelleverteilterAlgorithmen. verteiltersystememitpetrinetzen Band4:K.Schmidt:SymbolischeAnalysemethoden Band3:D.Gomm:ModellierungundAnalyse mitpetrinetzen verzogerungs-unabhangigerschaltungen BeweistechnikundIntuition Band5:M.Kohn:FormaleModellierung Band6:D.Barnard:TemporalLanguageofTransitions furalgebraischepetrinetze asynchronersysteme Band8:A.Mader:VericationofModalProperties Band7:U.Jaeger:EventDetectionin UsingBooleanEquationSystems ActiveDataBases andclient-serversystems

3 UsingBooleanEquationSystems VericationofModalProperties AngelikaMader DieterBertzVerlag

4 Systems/AngelikaMader.{Berlin:Bertz,1997 Mader,Angelika: VericationofModalPropertiesUsingBooleanEquation (EditionVersal;Bd.8) Zugl.:Munchen,Techn.-Univ.,Diss.,1997 DieDeutscheBibliothek{CIPEinheitsaufnahme NE:GT ISBN n-x AlleRechtevorbehalten GorlitzerStr.37, c1996bydieterbertzverlag,berlin

5 Abstract expressionscontainingleastandgreatestxpoints.fixpoint-equation model-checking. Themodal-calculuscontainsxpoint-operatorswhichgivegreatexbraicallyweintroducexpoint-equationsystemsasanextensionopressivepower.Inordertotreatthemodel-checkingproblemalge- systemsexpressedinthemodal-calculus.thisapproachiscalled Thethesisisconcernedwithvericationofpropertiesofconcurrent and presentanewalgorithm,similartogaueliminationforlinearequationsystems. BooleanlatticesarecalledBooleanequationsystems.Modelcheck- solvingnitebooleanequationsystems.wediscussexistingmodelcheckingalgorithmsfromtheperspectiveofbooleanequationsystems systemsinterpretedoverthebooleanlatticeoraninniteproductof Asanapplicationweinvestigatealgorithmssolvingtheproblemof ingforsystemswithnitestatespacesisshowntobeequivalentto mutualexclusion,constructformulaeforlivenesspropertiesandverify lencetoanautomata-theoreticproblembygoingviabooleanequa- tionsystems.thereexistedareductionofmodel-checkingtoagame wepresentanalgorithm,similartothegaueliminationalgorithmfor equivalence. Forthecaseofinnitestatespaceswealsoshowthatmodel-checkingis thenitecase. equivalenttosolvinginnitebooleanequationsystems.additionally, themwithanimplementationofthegaueliminationalgorithm. Model-checkinginthemodal-calculushasalreadybeentreatedin automatatheoryandgametheory.weareabletoshowanewequiva- theoreticproblem.usingbooleanequationsystemswecanprovethe

6

7 environmentheprovidedforus,andhisliberalattitudes,whichmade acarefreeandconcentratedwayofworkingpossible. fortheconstantsupportofmyallactivitieshere,thecomfortable IamindebtedtomyproofreadersJulianBradeld,EdBrinksmaand EkkartKindler.Theircommentsandcarefulcriticismwereofgreat Acknowledgement helpformeinndingoutwhatiwasdoing,inimprovingmywork, Intherstplace,IwouldliketothankmysupervisorWilfriedBrauer ereeandformostlyilluminatingdiscussions,julianbradeldforhis commentsonpartsofthethesis. IamverygratefultopeopleinEdinburgh:ColinStirlingforbeingref- and,whatisperhapsevenmorevaluable,theyincreasedthefuni hadwhenwritingup.thanksalsotochristinerocklwhogaveuseful EdBrinksmaandPeterRossmanithsupportedmeinndinganexponentialexampleformyversionoftheGaualgorithmanddelivered scienticatmosphereandthegreatvarietyofsinglemaltscontributed enormouslytomyenjoymentofmyvisitstoedinburgh. Kaivolaforclarifyingautomata-theoreticconcepts.Theimpressive forhertheoreticalandpracticalhelpconcerninggames,androope hisinsightinbooleanequationsystemswithme,perditastevens friendshipandpleasantcooperation,kyriakoskalorkoti,whoshared sharptongueofdominikgomm. liketoacknowledgeallpeopleofthegrouphere,andthosewholeftto Berlin.Ispentagoodtimewiththem.Particularly,Iammissingthe Gaualgorithmwasextremlyhelpfultome.Furthermore,Iwould pleasuretome.hisneverendingengagementinimplementingthe mefromalong-termpassion.infrankwallnerifoundacolleague ManythanksgotoBarbaraRoemerwhogavevaluablehintsconcerninglayout. whowasnotafraidofxpointsanddiscussionswithhimwereagreat WithoutGerhard'ssupportIcouldnothavedonethisworkandmany (Sonderforschungsbereich342)forfundingmypositionattheTU. IthankFa.Siemens,ZFE,andtheDeutscheForschungsgemeinschaft otherthingsatthesametimewhilehavingachild.manythanksalso

8 todavidforconsistentlyrelativizingallupsanddownsconcerningmy workandforallthenightshesleptthrough. >FromEd,myparents,familyandfriendsIreceivedvaluablesupport ofvariouskindsduringallthetime,forwhichiowethemgreatthanks.

9 Contents 2Basics. 1Introduction. 2.2Fixpointsandtheirproperties.::::::::::::::22 1.1Generalintroduction.::::::::::::::::::::11 2.1Ordersandlattices.:::::::::::::::::::::19 1.2Synopsis.:::::::::::::::::::::::::: Simplexpoints.:::::::::::::::::: Themodal-calculus. 3Fixpoint-equationsystems. 3.1Fixpoint-equationsystemsforcompletelattices.::::28 4.1Syntaxandsemantics.:::::::::::::::::::45 3.2Booleanequationsystems.::::::::::::::::: Nestedxpoints.::::::::::::::::::24 4.3Propertiesofthemodal-calculus.::::::::::::51 4.2Basicformulae.::::::::::::::::::::::: SolvingBooleanequationsystems. 5Booleanequationsystemsformodelchecking. 5.3ReductionofBooleanequationsystems.:::::::::62 5.1Reductionofthemodelcheckingproblem.::::::::56 5.2Representationandcomplexity.::::::::::::::59 6.1PlainBooleanequationsystems.:::::::::::::

10 106.4Gauelimination.::::::::::::::::::::::81 6.3Tableaux.::::::::::::::::::::::::::76 6.2Approximation.::::::::::::::::::::::: Complexityforthegeneralcase.::::::::: Complexityforsubclasses.::::::::::::: Globalandlocalalgorithm.::::::::::::82 CONTENTS 7Peterson'smutexalgorithm. 8Equivalenttechniques. 6.5Complexity.:::::::::::::::::::::::::94 7.2FairnessandLiveness.::::::::::::::::::: Graphgames.:::::::::::::::::::::::: Alternatingautomata.::::::::::::::::::: ExperimentalResults.::::::::::::::::::: Modellingthealgorithm.:::::::::::::::::: InniteBooleanequationsystems. 9.6Conclusion.::::::::::::::::::::::::: Examples.:::::::::::::::::::::::::: Eliminationmethod.:::::::::::::::::::: Equivalencetothemodelcheckingproblem.::::::: Denitions.::::::::::::::::::::::::: SetbasedBooleanequationsystems.::::::::::: AAppendix 10Conclusion. A.3ProofsofChapter8.::::::::::::::::::::161 A.2ProofsofChapter5.::::::::::::::::::::158 A.1ProofsofChapter3.:::::::::::::::::::: Innitestatespacemodelchecking:::::::::::: Finitestatespacemodelchecking::::::::::::: Bibliography A.4ProofsofChapter9.::::::::::::::::::::

11 Chapter1 Introduction. 1.1Generalintroduction. be,itispossiblethatitshouldbe... Yet,fromtheproposition`itmaybe' Whenitisnecessarythatathingshould fromthatitfollowsthatitisnotnecessary;itcomesaboutthereforethatthe itfollowsthatitisnotimpossible,and ianstoicsalsodealtwithmodallogics,introducingatimebasedinter- pretation:possibleisjustwhateitherisorwillbe;athingisnecessary onlyifitisnowtrueandalwayswillbetrue. Leibnizgaveasemanticmodelforlogicsincludingthemodalities`nec- Aristotle,Hermeneia1 ThebeginningofmodallogicdatesbacktoAristotlewhowasalready concernedwiththelogicofnecessityandpossibility.later,themegar- be;whichisabsurd... thingwhichmustnecessarilybeneednot essarily'and`possibly':heassumedasetofworldsanddeneda propositionbeingnecessarilytrueifitistrueinallworlds,andbeing possiblytrueifthereexistssomeworldwhereitistrue.inaddition, 1see[Boc70]

12 tury.nowadaysphilosophers,logicians,linguistsandcomputerscien- tistsshareaninterestinthesubject,andvarioussystemsofmodal Formalmathematicaltreatmentofmodallogicstartedinthiscen- logichavebeendeveloped. 12 Infurtherdevelopment,morestructurewasgiventothemodelof heprovedthatweliveinthebestofallpossibleworlds. Chapter1.Introduction. worlds.whendecidingwhethersomepropositionpisnecessaryin areorderedlinearlyintime. oneworldonlyaspeciedsetofworldsmayberelevant,whichneed Incomputersciencemodalandtemporallogicplayaroleinthevericationofsystems.Here,thetaskistoshowthatasystemmeets itsspecicationwhichmayconsistofsetofpropertiesexpressedas systems.theyconsistofasetofstates(representingtheworlds)and formulaeofalogic. ModelsformodallogicareKripkestructures,alsocalledtransition transitionsbetweenthestates(theaccessibilityrelation).atransition pinballmachine.transitionsmaycarryalabelidentifyinganaction (write1toamemorycell,shootthepinball)ormodellingjustthe systemmodelsthedierentstatesanarbitrarysystemcanenter,and actionsleadingfromonestatetoanother.astatecanrepresente.g. on-goingofasystemastimepasses.thelattercaseprovidesamodel fortemporallogic. Propositionsareaboutstatesorpathsofamodel,e.g.forthepinball thecontentofamemory,thevalueofaprogramcounter,astateofa machineinitiallytheonlypossibleactionistoinsertacoin;thereexists arunofthepinballmachine,whereialwaysgetafreegame,or,ifi rolldown. oneworldmeansthatpbeingtrueinallworldsaccessiblefromthe currentone.temporallogicisthendenedasamodallogic,where accessibilitybetweenworldsrepresentstimepassingby,andtheworlds anaccessibilityrelationbetweenworlds,andpisnecessarilytruein notincludeeveryworldinthemodel.thisfeatureisrepresentedby hitthepinballmachineinnitelyoftenthentheballwilleventually

13 tiveprograms.provingcorrectnessforaprogramwastoshowthat [MP69],Park[Par70]andHoare[Hoa69]wereimportantdevelopments givenaspeciedinputtheprogramwouldterminateandproduce aspeciedoutput.theworksoffloyd[flo67],mannaandpnueli Intherstperiod,objectsofvericationweresequentialandimpera- inthiscontext. 1.1.Generalintroduction. 13 Therstmodallogicsforvericationweredynamiclogicsintroduced bypratt[pra76],andmostlyusedinthepropositionalversion.propositionaldynamiclogic(pdl)isbuiltupfrompropositionallogic extendedbythemodalitieshi,whereaprogramisaregularexpressionoverasetofatomicprograms.theformulahipistrueata state,whereitispossiblefortheprogramtoexecuteandresultin astatesatisfyingp.variousrestrictionsandextensionsofpdlhave acteristicsofprograms:terminationandresultsproducedwerenot longernecessaryfeatures,buton-goingandinteractionwithanenvironmentbecamerelevant.pnuelicalledthem\reactivesystems". andpdl-[str81]whereaninniteloop-operatorisaddedtopro- beeninvestigated.themostfamousonesarepdlwithtestprogams, gramexpressions. Theintroductionofconcurrencycausedchangeconcerningthechar- Clarke,EmersonandSistla[CES86],andothersstartedwithanew approach,calledmodel-checking.here,vericationfornitestatesystemsisperformedautomaticallyand,incontrasttoderivingaproof, Pnueli[MP83]foundthattemporallogicissuitableinthiscontext. Theyappliedaproof-theoreticstyleofverication:foragivenprogramtheyderivedasetoftemporalpropertiesandshowedthatthe Provingcorrectnesshererequiredmoreexpressivelogics.Mannaand specifyingpropertywasaconsequenceofthisset(orwasnot). pinballmachinetheninnitelyoftenitwillbeinthestate\tilt"). relevantpropertiesarenot(e.g.ifinnitelyoftenaplayerhitsthe ifthepinballisshotthenitwilleventuallyrolldownagain),butsome (CTL).Inthislogicanumberofusefulpropertiesisexpressible(e.g. analgorithmreceivingaformulaandamodelasinputgivestheresult trueorfalse.thetemporallogictheyusediscomputationtreelogic

14 AnextensionofCTLthatcanexpressthe\tilt"-propertycitedabove thetacklingofthesizeofproblemsandthedenitionofmoreexpressivelogics.ofcourse,theproblemsarenotmutuallyindependentof isvericationandthesmalleristhesizeofsolvableproblems. 14 eachother;roughly,themoreexpressivealogicis,themorecomplex Insubsequentdevelopment,workwascenteredmainlyontwoissues: Chapter1.Introduction. iscalledctl*.forthistemporallogicemersonandlei[el86]presentedamodel-checkingalgorithm. MeanwhilealsovariousextensionsofCTLandCTL*havebeeninves- andthexpointoperatorsand.themodalitiesallowonetoexpresspropertiesforonenext-step,whilebymeansofleast(anddually additiontopropositionallogicitcontainsthemodalities[a]andhai modalandtemporallogicsmentionedabove:themodal-calculus.in tigatedwhicharemoreexpressive,butstillsimpleenoughformodel- checking. greatest)xpointimmediatelypropertiesoverniteandinnitepaths Kozen[Koz83]introducedaverypowerfullogic,subsumingallother canbemodelled.thebeautyofthislogicliesinitsexpressivenessin combinationwithitssimplicity.therstmodel-checkingalgorithm forthemodal-calculuswasdevelopedbyemersonandlei[el86]. However,thecomplexityoftheiralgorithmishigherthanthatforless expressivelogicssuchasctl:itisofexponentialcomplexityinthesize byso-called\symbolicmodel-checking".forearlieralgorithmsthe Concerningthesizeofproblemsconsiderableprogresshasbeenachieved thecomplexityofthisproblemhavenotyetbeendetected. -calculushavebeensuggested,yettherehasnotbeenanyessential algorithmsforctl.sincethenanumberofalgorithmsforthemodal improvementconcerningcomplexitysofar,andthelowerboundsfor oftheformulaincontrasttopolynomialcomplexityofmodel-checking model,atransitionsystem,hadtoberepresentedexplicitly.ina newapproachforctlmodel-checkingburch,clarkeandmcmillan [BCM+92]choseBinaryDecisionDiagrams(BDDs)asdata-structure, sizeofproblemsthatcouldbetreatedgrewenormously. whichallowedaverycompactencodingoftransitionsystems,andthe

15 However,thesizeofthetransitionsystemsisstillthemostlimiting probleminthisarea.especiallyforconcurrentsystemstheso-called \statespaceexplosion"makesvericationdicultorevenimpossi- 1.1.Generalintroduction. ble.reductiontechniquesfortransitionsystemshavebeeninvesti- gatedincludinge.g.abstractionsandsymmetries,whichrelativize thepurelyautomaticapproachandreintroduceelementsofproofto 15 ornoteventhesetofreachablestates,buta(hopefullysmall)subset whetherapropertyholdsofpathsstartingfromtheinitialstateofa system.showingitscorrectnessmaynotrequirethewholestatespace, setofallstatessatisfyingaproperty.usually,weareinterestedin model-checking. Themethodofmodel-checkingdescribedaboveis\global"inthesense thatthealgorithmstraversethewholestatespaceanddeterminethe StirlingandWalker[SW89]informofatableausystem. ofit.algorithmsbasedonthisideaarecalled\local".alocalmodelcheckingalgorithmforthemodal-calculuswasrstintroducedby grammars. sistanceisapossibility.bradeldandstirling[bs90,bra92]developed modelsdenede.g.bysomepetri-netclasses[en94],orcontext-free automaticmethods.however,provingpropertieswithcomputeras- atableaumethodallowingcomputer-aidedvericationforformulaeof themodal-calculus.otherworkhasbeendoneinthisareaforinnite Inthecaseofgeneralinnitestate-spacesthereisnohopeforfully Booleanequationsystems.Infact,wecanshowthatthetwoproblems formedtotheproblemofsolvingaclassofequationsystems,called -calculus.theapproachisanalgebraicone:model-checkingistrans- showtheirrelationstoothertechniques,inautomatatheoryandgame areequivalent,forthecaseofnitesystemsaswellasforinniteones. Basedonthisequivalencewediscussmodel-checkingalgorithmsand Alsointhiswork,weareconcernedwithmodel-checkingforthemodal theory.thefollowingsectiongoesontooutlinethisinmoredetail.

16 16 1.2Synopsis. Inthebeginningwegiveabriefcollectionofrelevantdenitionsand factsfromlatticetheoryandthexpointtheoremswhicharestructures Incomputersciencemainlyleastxpointshavebeenconsidered.Propositionsforexpressionscontainingleastandgreatestxpointoperators donotgobeyonddualityargumentssofar.chapter3containstherst contributionofthiswork:anintroductionofxpoint-equationsystems entailsanextensivecollectionofpropertiesofxpoint-equationsystems.thedierencebetweenmoretraditionalequationsystemsand xpoint-equationsystemsconsistsoftheadditionalstructuregivento thelatter:thereisanorderdenedontheequationsandeachequationisequippedwithaminimalityormaximalitycondition.because ofthisstructureknownresultsforsolutionsofequationsystemsover latticesdonotapplyforthexpoint-equationsystems.inthiswork xpoint-equationsystemswillbeinterpretedoverthebooleanlattice fornitestatespacemodel-checkingaswellasoveraninniteproduct ofbooleanlatticesformodel-checkingofinnitestatespaces.section 3.2containsdenitionsandpropertiesforthenitecase,extending Booleanequationsystems. Chapter4containsanintroductiontothemodal-calculus,including propertiesforxpoint-equationsystemsoverarbitrarylattices.the interpretedinthiswayarecalledbooleanequationsystemsandinnite syntax,semantics,basicnotationsandfacts. Themainpointofchapter5istheequivalenceofthemodel-checking innitecasewillbetreatedinchapter9.fixpoint-equationsystems problemfornitestatespacesandtheproblemofsolvingboolean equationsystems.reductionstobooleanequationsystemsforthecase ofnon-alternating-calculusexpressionshavealreadybeentreatedby applyingdirectlytothegeneralcase.thesizeofabooleanequation otherpeople.theextensiontothegeneralcasecouldbedonebythe andfactsbasicforthewholework. Chapter1.Introduction. asageneralizationofnestedandalternatingxpoint-expressions.it well-knownxpointtheorems.here,insection5,wegiveareduction

17 equationsystem,weconstructaformulaofthemodal-calculusanda Section5.2showsthereductionintheotherdirection.GivenaBoolean simpleformforequationshastobedenedfollowingknowntechniques. systemlinearinthesizeoftheoriginalmodel-checkingproblemaa 1.2.Synopsis. systemderivedislinearinthesizeofthemodelandlinearinthesize oftheformula.inordertogetarepresentationofabooleanequation 17 relatingittothe\classical"versionofbooleanequationsystemswithoutorderontheequationsandwithoutsideconditionsforxpoints. thethemodelsatisestheformula.thesizeofthemodelisquadratic inthesizeofthebooleanequationsystem,thesizeoftheformulais linear. Chapter6dealswithmethodsforsolvingBooleanequationsystems, localaswellasglobalones.westartwithadiscussionoftheproblem, model,suchthatthebooleanequationsystemhasthesolutiontruei inationforlinearequationsystems.itleadstoboth,alocalanda BooleanequationsystemsbeinginNP\co-NP,andaccordingtothe techniqueforbooleanequationsystemswhichissimilartogauelim- Theknownmethodssolvingthemodel-checkingproblemaretheapproximationtechniqueandatableaumethod.Weinterpretethem equivalenceresultsalsothemodel-checkingproblemiscontainedin globalalgorithm.thelastsectioncontainsasimpleproofforsolving onbooleanequationsystems.inadditionwepresentanewsolving thisclass,whichisaknownresult. Examplesforapplicationarepresentedinchapter7.Here,wefocus inotherframeworks:thereexistreductionstoproblemsinautomata- algorithmsolvingtheproblemofmutualexclusion.theseproperties providenon-trivialexamplesfor-calculusformulae.theyareveri- edwithanimplementationofgaueliminationforbooleanequation systems. Themodel-checkingproblemforthemodal-calculushasbeentreated oncomposingandprovingdierentlivenesspropertiesforpeterson's andgame-theory.intherstcaseallautomataderivedaretree- automata.insection8.1weshowtheequivalenceofmodel-checking andthenon-emptiness-problemofalternatingautomataoninnite

18 playerhasawinningstrategyforagameandsolvingabooleanequationsystem.thereductionofbooleanequationsystemstomodelcheckinggivesimmediatelyareductionfromamodel-checkinggame games.insection8.2,weshowtheequivalenceofdecidingwhethera Themodel-checkingproblemhasalsobeenreducedtomodel-checking wordsoverasingle-letteralphabetwithaparityacceptancecondition. Chapter1.Introduction. 18 xpoint-equationsystemsinterpretedovera(possiblyinnite)productofbooleanlattices.theequivalenceofinnitebooleanequation systemsandthemodel-checkingproblemforinnitestatespacesis Sofarwehaveonlybeenconsideringnitestatespaces.Inchapter toamodel-checkingproblem,whichhasbeenanopenquestion. case.booleanequationsystemsastheyareusedherearederivedfrom provedbyreductionsinbothdirections.theseresultsareonlyuseful whenhavinganiterepresentationoftheproblemwhichisgivenby 9,thetheoryofBooleanequationsystemsisextendedtotheinnite setbasedequationsystems.wepresentaneliminationmethodusing ideasfromgaueliminationforthenitecaseandfromthetableau examplesdemonstratethetechnique. Thethesisendswithconcludingremarksputtingourresultsinageneralframework. methodofbradeldandstirling.itsolvessetbasedequationsystemsandalsothemodel-checkingproblemfortheinnitecase.small

19 Chapter2 Basics. xpointoperatorsofmodallogichavetobedenedviacontinuous interpretedasanorderpreservingfunctionbetweentwolattices.the functions.therefore,wecollectheretherelevantdenitionsandfacts. iscompletelattice.thesemanticofaformulaofmodallogiccanbe 2.1Ordersandlattices. Thebasicstructureinthisworkarelattices;formulaeofmodallogic withimplicationorderformalattice,thepowersetofastatespace Adetailedintroductionintolatticesandorderscanbefound[DP90]. Asetequippedwithapartialorderiscalledanorderedset. (transitivity)xyandyzimplyxz (antisymmetry)xyandyximplyx=y ifforallx;y;z2p: (reexivity) Denition2.1AbinaryrelationonasetPisapartialorder greatestelementofqisa2qifaxforallx2q.dually,the Denition2.2GivenanorderedsetPandasubsetQofPthe xx leastelementofqisa2qifaxforallx2q.

20 20Denition2.3LetPbeanorderedset.Thegreatestelementof P,ifitexists,iscalledthetopelementofPandwritten>.Dually, Proposition2.4GivenanorderedsetPanysubsetQPisan Pandwritten?. theleastelementofp,ifitexists,iscalledthebottomelementof Chapter2.Basics. orderedset. Proposition2.5Let(P1;1);:::;(Pn;n)beorderedsets.Their productp1:::pncanbeequippedwithapartialorderbypointwisedenition:(x1;:::;xn)(y1;:::;yn)ixiiyifor1in. Denition2.6LetPandQbeorderedsets.Thesetoffunctions fromptoqisdenotedby(p!q).foreachfunctionf2(p!q) Onthesetoffunctions(P!Q)anorderisinheritedfromthe p1p2itisthecasethatf(p1)f(p2). thedomainispandthecodomainisq. Afunctionf2(P!Q)ismonotone,ifforallp1;p22Pwith ThesetofallmonotonefunctionsisdenotedbyhP!Qi. f(a)g(a)foralla2a. orderontheircodomainq:letf;g2(p!q).thenfgif Denition2.7LetPbeanorderedsetandSbeasubsetofP. Thenx2PisanupperboundofS,ifsxforalls2S.Dually x2pisalowerboundofs,ifxsforalls2s. AllupperboundsofSarecollectedinaset"S,thelowerbounds TinsteadofWandV,and[and\insteadof_and^. inmumvfx;yg.whenspeakingaboutpowersetswewillusesand Notation:ForthesupremumWfx;ygwewritex_y,andx^yforthe VS.TheyarealsocalledthesupremumandinmumofS. upperboundofs,anddenotedbyws.thegreatestelementof #Sifitexists,iscalledgreatestlowerboundofS,anddenotedby inaset#s.theleastelementof"s,ifitexists,iscalledleast

21 2.1.Ordersandlattices. Denition2.8LetPbeanon-emptyorderedset.Pisalattice, ifx_yandx^yexistforallx;y2p.pisacompletelattice,if WSandVSexistforallsubsetsSP. Proposition (5)IfPandQare(complete)latticesthenalsothesetsoffunctions (4)ForanysetXitspowersetP(X)equippedwiththesetinclusion (1)InalatticeWSandVSexistforallnitesubsetsSP. (2)Everynitelatticeiscomplete. (3)Inacompletelatticethebottomelement?andthetopelement inmumareobtainedpointwise. (P!Q)andhP!Qiare(complete)lattices.Supremumand orderisacompletelattice. >exist. fop(k1) theoperationssupremum_andinmum^,andasetofoperators sions.thesearebuiltupbyvariablesxfromasetofvariablesx, theoperatorop(ki) Inmostcaseswethinkoffunctionsasrepresentedbyfunctionexpres- f::=xjf_fjf^fjop(ki) monotonefunction,andspsuchthatwsandvsexistin Proposition2.10LetPandQbeorderedsets,f:P!Qa 1;:::;Op(kn) P,andWf(S),Vf(S)existinQ.Thenf(WS)Wf(S)and ngforsomen2in,wherekidenotesthearityof f(vs)wf(s). i. i(f;:::;f) directed,ifeverynitesubsetfofshasanupperboundins. Proposition2.11Productsofcompletelatticesequippedwitha partialorderasinproposition2.5arecompletelattices. Denition2.12Anon-emptysubsetSofanorderedsetPis

22 22Thenf:P!QiscontinuousifforeverydirectedsetinPitisthe casethatf(wd)=wf(d). Denition2.13LetPandQbecompletelattices. Afunctionthatpreserves?,i.e.f(?)=?iscalledstrict. Chapter2.Basics. Proposition2.14LetPandQbecompletelattices.Thenevery 2.2Fixpointsandtheirproperties. Denition2.15GivenalatticePandafunctionf:P!P.An elementx2pisaxpointoffiff(x)=x. monotonefunctionf:p!qisalsocontinuous. TheverybasictheoremcomesfromTarski[Tar55](seealso[LNS82]). Thissectionisacollectionofvariouspropertiesofxpointswhichcan befoundintheliterature.itstartswithpropertiesofsimplexpoints, bothleastandgreatest.thenwelookatthemoregeneralcasewhere xpointoperatorsofpossiblydierenttypearenested. Itguaranteestheexistenceofaleastandgreatestxpointforamonotonefunctionoveracompletelattice Simplexpoints. Wewillusewhenreferringtoeitheror. Thenextproperties(formonotonef)canbefounde.g.in[Koz83]. notemptyandthesystem(p;)isacompletelattice;inparticular theleastxpointisx:f(x)=vfa2ajf(a)agandthe monotonefunction,andpthesetofallxpointsoff.thenpis Theorem2.16Let(A;)beacompletelattice,f:A!Aa greatestxpointisx:f(x)=wfa2ajf(a)ag.

23 2.2.Fixpointsandtheirproperties. Proposition2.17 (1)f(X:f(X))=X:f(X) (2)Iff(a)athenX:f(X)a. (3)Iff(a)athenX:f(X)a. (4)Iff(a)g(a)foralla2AthenX:f(X)X:g(X). 23 Thefollowingpropertyisknownasthereductionlemma,seeforexample[Koz83],[Win89]. Lemma2.18aX:f(X)iaf(X:(f(X)_a)) (6)X:f(X)=X:f(f(X)) (5)Iff(a)=f(b)foralla;b2AthenX:f(X)=f(X). generalversion,usingtransniteiteration(see[lns82]). butnoconstructivemethodtoyieldit.thisisthesubjectofthenext Tarski'stheoremshowstheexistenceofaleastandgreatestxpoint, well-knowntheorembasedonapproximants.itispresentedhereinits Denition2.19Let(A;)beacompletelatticeand or,dually,ax:f(x)iaf(x:(f(x)^a)). term,whereisanordinal.theapproximanttermsaredenedby +1X:f(X)def transniteinduction: f:a!aamonotonefunction.thenx:fisanapproximant X:f(X)def X:f(X)def 0X:f(X)def 0X:f(X)def =^<X:f(X) =_<X:f(X) => =f(x:f(x)) =? whereisalimitordinal.

24 24X:f(X)=^ X:f(X)=_ functionf:a!a Proposition2.20Foracompletelattice(A;)andamonotone 2OrdX:f(X) 2OrdX:f(X) Chapter2.Basics. and,dually, thatofasuchthatfor: X:f(X)=X:f(X) Moreoverthereexistsanordinalofcardinalitylessorequalto whereordistheclassofallordinals. andgaremonotoneinbotharguments.asarststepwewilldene wherexandyarevariablesoverlattices(a;)and(b;),andf 2.2.2Nestedxpoints. Wenowwanttoconsidernestedxpoints,suchasX:f(X;Y:g(X;Y)) X:f(X)=X:f(X): theirdomainsareinterpretedindierentways.fortechnicalreasons weassumefromnowonthattherearenottwodierentvariablesina nestedxpointexpressionhavingthesamenames. abusenotationanddonotintroducenewnamesforfandgwhen theinnerxpointy:g(x;y)asafunctiong0fromatob.wewill andthegreatestxpointis Y:g(X;Y)def Y:g(X;Y)def monotonefunctiononabtob.thentheleastxpointwith respecttobisafunctionfromatob Denition2.21Let(A;)and(B;)becompletelattices,ga =Wfg02(A!B)jg(X;g0(X))g0(X)g. =Vfg02(A!B)jg(X;g0(X))g0(X)g

25 2.2.Fixpointsandtheirproperties. Proof:straightforward g0(a)=y:g(a;y)(g0(a)=y:g(a;y))foreverya2a,where isamonotonefunctiong0:a!banditisthecasethat Proposition2.22Theleast(greatest)xpointofg:AB!B g(a;y):b!aandy:g(b;y)followsdenition forwardly.intheremarkbelowg0mightbeavectoroffunctions Themonotonicityofg0impliesthatf(X;g0(X))isamonotonefunction fromatoaanditsxpointsarewelldenedaccordingtodenition (possiblyempty)productsofcompletelattices. resultingfrominnerxpointsandalldomainscouldbeinterpretedas 2.16.Theapplicationtoarbitrarynestingofxpointsworksstraight- Remark2.23Wewanttopointout,thatthereexisttwobasicallydierentinterpretationsoftheinnerxpointswhichhave g0(a)def morecommonone:g0asafunctiononatobisdenedpointwise, consequencesforalgorithmscalculatingthem.therstoneisthe canexplicitlycalculatethefunctiong0,notinapointwisemanner, functiong(a;y)onbtobandtheapplicationofaxpointoperator Yiswelldened.Thisinterpretationgivesrisetotheapproximationbasedalgorithms.Evaluationofg0ataisdonebyasimple Theotherinterpretationfocusesonthefact,thatinsomecaseswe approximationofy:g(a;y)asinproposition2.20. =Y:g(a;Y).Foreveryargumenta2Awegetthesimple howasimultaneousxpointcanbetransformedtoanestedxpoint expression. Bekic'stheorem[Bek84]foreliminationofsimultaneousxpointsshows butasafunctionexpressionwithafreevariabley.heretheevaluationofg0(a)consistsofasimplefunctionevaluationandnotofan f:ab!aandg:ab!bmonotonefunctions. Theorem2.24Let(A;)and(B;)becompletelattices, approximation. a=x:f(x;y:g(x;y)),andb=y:g(a;y): Then(X;Y):(f(X;Y);g(X;Y))=a;b,where

26 26 Chapter2.Basics.

27 Chapter3 Fixpoint-equation systems. pretedoverarbitrarycompletelattices.fortheissueofthisworkthe caseofxpoint-equationsystemsisinvestigated,wheretheyareinter- propertiesofxpoint-equationsystems.intherstsectionthegeneral nitionsofsyntaxandsemanticsitcontainsanextensivecollectionof technicalbasisfortherestofthework.therefore,apartfromde- Weintroducexpoint-equationsystemsextendingthenotionofnested requireddomainsarethebooleanlatticeandapossiblyinniteprod- xpointexpressions.theintentionofthischapteristoprovidethe uctofbooleanlattices.thesecondsectionfocusesonthexpoint- equationsystemsoverthebooleanlattice,booleanequationsystems. Forthiscasesomedenitionssimplifyandwegetanumberoffurther properties.proofsofthischapterareshiftedtotheappendix.

28 3.1Fixpoint-equationsystemsfor 28 fromxpointexpressionstoxpointequationsystems.themainpart Firstsyntaxandsemantics1aredened,thenwegiveatranslation completelattices. Chapter3.Fixpoint-equationsystems. ineachfunction.insteadofperformingexplicitlythesubstitutionin environment.;1;:::willrangeoverenvironments,whereeachis equationsystems. Inthefollowingweconsidersequencesoffunctionsf1;f2;:::overalattice(A;).Often,freevariableswillbesubstitutedbythesamevalues eachfunctionwecollectthevaluesofthevariablesinavaluation,called ofthissectioncontainsanextensivecollectionofpropertiesofxpoint- fby(x).by[x=a]wedenotetheenvironmentthatcoincideswith afunction:x!a. Afunctionfcanbeappliedtoanenvironment,andtheresultf() isthevalueofthefunctionfaftersubstitutingeachfreevariablexof forallvariablesexceptx,i.e.(y)=([x=a])(y)fory6x,and Theorderonalattice(A;)extendsnaturallytoanorderonenvironmentsoverA(seeDeniton2.6).Wehave12iforallvariables latticeoperations_and^canbeappliedalsotoenvironmentswhen ments(foraxedsetofvariablesx)formsalattice.obviously,the ([X=a])(X)=a.Intheremainder[X=a]haspriorityoverallother interpretingthempointwise. operations,and[x=a]alwaysstandsfor([x=a]). X2Xitisthecasethat1(X)2(X).Thusthesetofenviron- pointedmetoitforthespecialcaseofxpoint-equationsystemsovertheboolean Axpoint-equationsystemoverAisanitesequenceofequations oftheform(x=f),wheref:an!aforsomen2inisa Denition3.1Let(A;)beacompletelattice. lattice.itturnedouttobemorecompactthanearlierversions. monotonefunction. Theemptysequenceisdenotedby. 1TheversionofnotationusedherewasinspiredfromVergauwen[Ver95]who

29 rightsideofanequationofearecollectedinthesetrhs(e).variables whichappearonthelefthandsideofanequationofearecollectedin thesetlhs(e),i.e.lhs((x=f)e)def equationsystemehavethesamelefthandsidevariable.variables Fortechnicalreasonsweassumethatnotwoequationsofaxpoint- 3.1.Fixpoint-equationsystemsforcompletelattices. InthefollowingE;E0;E1;:::willrangeoverxpoint-equationsystems. =fxg[lhs(e).variablesonthe 29 ofrhs(e)whicharecontainedinlhs(e)arecalledbound.variables whicharenotboundarefree,free(e)def axpoint-equationsystemeisasetofconsecutiveequationsofeall havingthesamexpointoperatorinfront. Theorderdenedbelowreectsthelinearorderofequationsina xpoint-equationsystem.itwillbeappliedtobothequationsand variables. Denition3.2Let(X=f)Ebeaxpoint-equationsystemand =rhs(e)nlhs(e).ablockin respecttoe,iffree(e0)free(e). systeme,ifforeachpairofequationswith(xx=fx)c(yy=fy) Axpoint-equationsystemE0isasubsystemofaxpoint-equation AsubsystemE0ofaxpoint-equationsystemEiscalledclosedwith ine0bothequationsarecontainedineandorderedinthesameway. AsusualXEYabbreviates(XCYorX=Y). 0Y=ganequationofE.ThenX=fC0Y=gandalsoXCY. Denition3.3Let(A;)beacompletelattice,(X=f)Ea Thesolutionofaxpoint-equationsystemrelativetoisan environmentdenedbystructuralinduction: xpoint-equationsystemovera,and:x!aanenvironment. [(X=f)E]def [(X=f)E]def []def X:f([E])=Wfajaf([E][X=a])g X:f([E])=Vfajaf([E][X=a])g where=[e][x=x:f([e])] = =[E][X=X:f([E])]

Question 1a of 14 ( 2 Identifying the roots of a polynomial and their importance 91008 )

Question 1a of 14 ( 2 Identifying the roots of a polynomial and their importance 91008 ) Quiz: Factoring by Graphing Question 1a of 14 ( 2 Identifying the roots of a polynomial and their importance 91008 ) (x-3)(x-6), (x-6)(x-3), (1x-3)(1x-6), (1x-6)(1x-3), (x-3)*(x-6), (x-6)*(x-3), (1x- 3)*(1x-6),

More information

1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain

1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain Notes on real-closed fields These notes develop the algebraic background needed to understand the model theory of real-closed fields. To understand these notes, a standard graduate course in algebra is

More information

ERP Market India September 2011

ERP Market India September 2011 ERP Market India September 2011 Executive Summary Market Benefits Industry Outlook Rapid increase in trade and business activities in India is pushing the Enterprise Resource Planning (ERP) market to grow

More information

DataClusteringAnalysisinaMultidimensionalSpace A.BouguettayaandQ.LeViet QueenslandUniversityofTechnology fathman,quanglg@icis.qut.edu.au SchoolofInformationSystems Brisbane,Qld4001,Australia theresultofafairlyexhaustivestudytoevaluatethreecommonlyusedclusteringalgorithms,

More information

Analysis of Software Variants

Analysis of Software Variants Analysis of Software Variants Christian Lindig CAROL Software Technology Group Technical University of Braunschweig Germany -BRA Outline Computer platform diversity causes software diversity software exists

More information

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution SF2940: Probability theory Lecture 8: Multivariate Normal Distribution Timo Koski 24.09.2015 Timo Koski Matematisk statistik 24.09.2015 1 / 1 Learning outcomes Random vectors, mean vector, covariance matrix,

More information

Chapter 2: Linear Equations and Inequalities Lecture notes Math 1010

Chapter 2: Linear Equations and Inequalities Lecture notes Math 1010 Section 2.1: Linear Equations Definition of equation An equation is a statement that equates two algebraic expressions. Solving an equation involving a variable means finding all values of the variable

More information

WARM UP EXERCSE. 1-3 Linear Functions & Straight lines

WARM UP EXERCSE. 1-3 Linear Functions & Straight lines WARM UP EXERCSE A company makes and sells inline skates. The price-demand function is p (x) = 190 0.013(x 10) 2. Describe how the graph of function p can be obtained from one of the library functions.

More information

Vectors, Gradient, Divergence and Curl.

Vectors, Gradient, Divergence and Curl. Vectors, Gradient, Divergence and Curl. 1 Introduction A vector is determined by its length and direction. They are usually denoted with letters with arrows on the top a or in bold letter a. We will use

More information

Logic in general. Inference rules and theorem proving

Logic in general. Inference rules and theorem proving Logical Agents Knowledge-based agents Logic in general Propositional logic Inference rules and theorem proving First order logic Knowledge-based agents Inference engine Knowledge base Domain-independent

More information

Chapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling

Chapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling Approximation Algorithms Chapter Approximation Algorithms Q. Suppose I need to solve an NP-hard problem. What should I do? A. Theory says you're unlikely to find a poly-time algorithm. Must sacrifice one

More information

University of Ostrava. Reasoning in Description Logic with Semantic Tableau Binary Trees

University of Ostrava. Reasoning in Description Logic with Semantic Tableau Binary Trees University of Ostrava Institute for Research and Applications of Fuzzy Modeling Reasoning in Description Logic with Semantic Tableau Binary Trees Alena Lukasová Research report No. 63 2005 Submitted/to

More information

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution SF2940: Probability theory Lecture 8: Multivariate Normal Distribution Timo Koski 24.09.2014 Timo Koski () Mathematisk statistik 24.09.2014 1 / 75 Learning outcomes Random vectors, mean vector, covariance

More information

(a) Write each of p and q as a polynomial in x with coefficients in Z[y, z]. deg(p) = 7 deg(q) = 9

(a) Write each of p and q as a polynomial in x with coefficients in Z[y, z]. deg(p) = 7 deg(q) = 9 Homework #01, due 1/20/10 = 9.1.2, 9.1.4, 9.1.6, 9.1.8, 9.2.3 Additional problems for study: 9.1.1, 9.1.3, 9.1.5, 9.1.13, 9.2.1, 9.2.2, 9.2.4, 9.2.5, 9.2.6, 9.3.2, 9.3.3 9.1.1 (This problem was not assigned

More information

Left-Handed Completeness

Left-Handed Completeness Left-Handed Completeness Dexter Kozen Computer Science Department Cornell University RAMiCS, September 19, 2012 Joint work with Alexandra Silva Radboud University Nijmegen and CWI Amsterdam Result A new

More information

UNIVERSITY OF WARWICK. Academic Quality and Standards Committee

UNIVERSITY OF WARWICK. Academic Quality and Standards Committee UNIVERSITY OF WARWICK Academic Quality and Standards Committee There will be a meeting of the Academic Quality and Standards Committee on Monday 7 July 2003 at 2.00pm in the Council Chamber, Senate House.

More information

Rigorous Software Development CSCI-GA 3033-009

Rigorous Software Development CSCI-GA 3033-009 Rigorous Software Development CSCI-GA 3033-009 Instructor: Thomas Wies Spring 2013 Lecture 11 Semantics of Programming Languages Denotational Semantics Meaning of a program is defined as the mathematical

More information

Software Modeling and Verification

Software Modeling and Verification Software Modeling and Verification Alessandro Aldini DiSBeF - Sezione STI University of Urbino Carlo Bo Italy 3-4 February 2015 Algorithmic verification Correctness problem Is the software/hardware system

More information

ú Ó Á É é ú ú É ú Á Á ú É É É ú É Ó É ó É Á ú ú ó Á Á ú Ó ú Ó ú É Á ú Á ú ó ú Á ú Á É Á Á Ó É Á ú ú é ú ú ú ú Á ú ó ú Ó Á Á Á Á ú ú ú é É ó é ó ú ú ú É é ú ú ú óú ú ú Ó Á ú ö é É ú ú ú úé ú ú É É Á É

More information

International Journal of Innovative Research in Science, Engineering and Technology Vol. 2, Issue 5, May 2013

International Journal of Innovative Research in Science, Engineering and Technology Vol. 2, Issue 5, May 2013 ISSN: 2319-8753 International Journal of Innovative Research in Science, Engineering and Technology Vol. 2, Issue 5, May 2013 of vibration are 0.14 rad/s and 0.42 rad/s respectively. The dynamic response

More information

Fixed Point Theory. With 14 Illustrations. %1 Springer

Fixed Point Theory. With 14 Illustrations. %1 Springer Andrzej Granas James Dugundji Fixed Point Theory With 14 Illustrations %1 Springer Contents Preface vii 0. Introduction 1 1. Fixed Point Spaces 1 2. Forming New Fixed Point Spaces from Old 3 3. Topological

More information

A Propositional Dynamic Logic for CCS Programs

A Propositional Dynamic Logic for CCS Programs A Propositional Dynamic Logic for CCS Programs Mario R. F. Benevides and L. Menasché Schechter {mario,luis}@cos.ufrj.br Abstract This work presents a Propositional Dynamic Logic in which the programs are

More information

Randomized algorithms

Randomized algorithms Randomized algorithms March 10, 2005 1 What are randomized algorithms? Algorithms which use random numbers to make decisions during the executions of the algorithm. Why would we want to do this?? Deterministic

More information

calculating the result modulo 3, as follows: p(0) = 0 3 + 0 + 1 = 1 0,

calculating the result modulo 3, as follows: p(0) = 0 3 + 0 + 1 = 1 0, Homework #02, due 1/27/10 = 9.4.1, 9.4.2, 9.4.5, 9.4.6, 9.4.7. Additional problems recommended for study: (9.4.3), 9.4.4, 9.4.9, 9.4.11, 9.4.13, (9.4.14), 9.4.17 9.4.1 Determine whether the following polynomials

More information

Bayesianprobabilisticextensionsofadeterministicclassicationmodel K.U.Leuven,Belgium IwinLeenenandIvenVanMechelen AndrewGelman ColumbiaUniversity,NewYork binarypredictorvariablesx1;:::;xk,abooleanregressionmodelisaconjunctive(ordisjunctive)logicalcombinationconsistingofasubsetsofthe

More information

Sect 6.1 - Greatest Common Factor and Factoring by Grouping

Sect 6.1 - Greatest Common Factor and Factoring by Grouping Sect 6.1 - Greatest Common Factor and Factoring by Grouping Our goal in this chapter is to solve non-linear equations by breaking them down into a series of linear equations that we can solve. To do this,

More information

Activity Networks And Gantt Charts

Activity Networks And Gantt Charts Activity Networks And Gantt Charts (Session 3 in the Project Planning And Management Module) Russ Pimmel Electrical and Computer Engineering University of Alabama October, 2001 The development of this

More information

Research Note. Bi-intuitionistic Boolean Bunched Logic

Research Note. Bi-intuitionistic Boolean Bunched Logic UCL DEPARTMENT OF COMPUTER SCIENCE Research Note RN/14/06 Bi-intuitionistic Boolean Bunched Logic June, 2014 James Brotherston Dept. of Computer Science University College London Jules Villard Dept. of

More information

Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points

Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points Introduction to Algebraic Geometry Bézout s Theorem and Inflection Points 1. The resultant. Let K be a field. Then the polynomial ring K[x] is a unique factorisation domain (UFD). Another example of a

More information

Average rate of change of y = f(x) with respect to x as x changes from a to a + h:

Average rate of change of y = f(x) with respect to x as x changes from a to a + h: L15-1 Lecture 15: Section 3.4 Definition of the Derivative Recall the following from Lecture 14: For function y = f(x), the average rate of change of y with respect to x as x changes from a to b (on [a,

More information

Multiple Representations of Equations & What We Know. Note that the worked out our turn and your turn charts can also be used as a matching activity.

Multiple Representations of Equations & What We Know. Note that the worked out our turn and your turn charts can also be used as a matching activity. Multiple Representations of s & What We California State Standards: 7 AF., 7 AF 3.3, 7 AF 3.4, Alg. 6., Alg. 7., Alg. 8. CCSS: 8.EE.6, 8.F., 8.F., 8.F.4 The idea of this lesson is to have students make

More information

5.1 Commutative rings; Integral Domains

5.1 Commutative rings; Integral Domains 5.1 J.A.Beachy 1 5.1 Commutative rings; Integral Domains from A Study Guide for Beginner s by J.A.Beachy, a supplement to Abstract Algebra by Beachy / Blair 23. Let R be a commutative ring. Prove the following

More information

For each learner you will need: mini-whiteboard. For each small group of learners you will need: Card set A Factors; Card set B True/false.

For each learner you will need: mini-whiteboard. For each small group of learners you will need: Card set A Factors; Card set B True/false. Level A11 of challenge: D A11 Mathematical goals Starting points Materials required Time needed Factorising cubics To enable learners to: associate x-intercepts with finding values of x such that f (x)

More information

Real-TimeVericationofStatemateDesigns. applicationsraisesthedemandforprovingtheircorrectness.becauseverication

Real-TimeVericationofStatemateDesigns. applicationsraisesthedemandforprovingtheircorrectness.becauseverication Real-TimeVericationofStatemateDesigns vericationofstatemate1designs.statemateisawidelyuseddesign Abstract.Thispaperpresentsanapproachtowardsreal-time toolforembeddedcontrolunits.theseembeddedcontrolunitsare

More information

MEZZANINE DEBT TERM SHEET HEADINGS

MEZZANINE DEBT TERM SHEET HEADINGS MEZZANINE DEBT TERM SHEET HEADINGS Borrower: Shareholders: Sponsors: Finance Parties: Administrative Parties: Lenders: Majority Lenders: Facility Agent: Security Agent: Account Bank: Material Project Party:

More information

CSL105: Discrete Mathematical Structures. Ragesh Jaiswal, CSE, IIT Delhi

CSL105: Discrete Mathematical Structures. Ragesh Jaiswal, CSE, IIT Delhi Propositional Logic: logical operators Negation ( ) Conjunction ( ) Disjunction ( ). Exclusive or ( ) Conditional statement ( ) Bi-conditional statement ( ): Let p and q be propositions. The biconditional

More information

Chapter 6. Linear Transformation. 6.1 Intro. to Linear Transformation

Chapter 6. Linear Transformation. 6.1 Intro. to Linear Transformation Chapter 6 Linear Transformation 6 Intro to Linear Transformation Homework: Textbook, 6 Ex, 5, 9,, 5,, 7, 9,5, 55, 57, 6(a,b), 6; page 7- In this section, we discuss linear transformations 89 9 CHAPTER

More information

Summary of Hoshin Policy Deployment

Summary of Hoshin Policy Deployment Summary of Hoshin Policy Deployment The Starting Point: First, they must assure the business is healthy today. Second, they must assure the business will remain healthy in the future. Peter Drucker Hoshin

More information

Linear Regression. Guy Lebanon

Linear Regression. Guy Lebanon Linear Regression Guy Lebanon Linear Regression Model and Least Squares Estimation Linear regression is probably the most popular model for predicting a RV Y R based on multiple RVs X 1,..., X d R. It

More information

Bachelor of Science in Marketing Curriculum

Bachelor of Science in Marketing Curriculum COLLEGE OF INDUSTRIAL MANAGEMENT Department of Management and Marketing Bachelor of Science in Marketing Curriculum The full list of courses in the proposed marketing curriculum is shown in the table below.

More information

CLASSICAL BI: ITS SEMANTICS AND PROOF THEORY

CLASSICAL BI: ITS SEMANTICS AND PROOF THEORY Logical Methods in Computer Science Vol. 6 (3:3) 2010, pp. 1 42 www.lmcs-online.org Submitted Aug. 1, 2009 Published Jul. 20, 2010 CLASSICAL BI: ITS SEMANTICS AND PROOF THEORY JAMES BROTHERSTON a AND CRISTIANO

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 27 Approximation Algorithms Load Balancing Weighted Vertex Cover Reminder: Fill out SRTEs online Don t forget to click submit Sofya Raskhodnikova 12/6/2011 S. Raskhodnikova;

More information

Andrew Pitts chapter for D. Sangorgi and J. Rutten (eds), Advanced Topics in Bisimulation and Coinduction, Cambridge Tracts in Theoretical Computer

Andrew Pitts chapter for D. Sangorgi and J. Rutten (eds), Advanced Topics in Bisimulation and Coinduction, Cambridge Tracts in Theoretical Computer Andrew Pitts chapter for D. Sangorgi and J. Rutten (eds), Advanced Topics in Bisimulation and Coinduction, Cambridge Tracts in Theoretical Computer Science No. 52, chapter 5, pages 197 232 ( c 2011 CUP)

More information

Regular Linear Temporal Logic with Past

Regular Linear Temporal Logic with Past Regular Linear Temporal Logic with Past César Sánchez 1,2 and Martin Leucker 3 1 Madrid Institute for Advanced Studies (IMDEA Software), Spain 2 Spanish Council for Scientific Research (CSIC), Spain 3

More information

2.3. Finding polynomial functions. An Introduction:

2.3. Finding polynomial functions. An Introduction: 2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned

More information

p: I am elected q: I will lower the taxes

p: I am elected q: I will lower the taxes Implication Conditional Statement p q (p implies q) (if p then q) is the proposition that is false when p is true and q is false and true otherwise. Equivalent to not p or q Ex. If I am elected then I

More information

x 2 x 2 cos 1 x x2, lim 1. If x > 0, multiply all three parts by x > 0, we get: x x cos 1 x x, lim lim x cos 1 lim = 5 lim sin 5x

x 2 x 2 cos 1 x x2, lim 1. If x > 0, multiply all three parts by x > 0, we get: x x cos 1 x x, lim lim x cos 1 lim = 5 lim sin 5x Homework 4 3.4,. Show that x x cos x x holds for x 0. Solution: Since cos x, multiply all three parts by x > 0, we get: x x cos x x, and since x 0 x x 0 ( x ) = 0, then by Sandwich theorem, we get: x 0

More information

SUPPORTI PER VETRO SUPPORT FOR GLASS. ACCESSORI PARAPETTI / Supporti per vetro FITTINGS FOR RAILINGS / Support for glass COD. COD. COD.

SUPPORTI PER VETRO SUPPORT FOR GLASS. ACCESSORI PARAPETTI / Supporti per vetro FITTINGS FOR RAILINGS / Support for glass COD. COD. COD. EX260 DA SPESSORE 6 mm A 8 mm Ø 42,4 - INOX AISI 304 SUPPORT for 6-8 mm glass x 42,4 mm dia. - STAINLESS STEEL AISI 304 SATIN FINISH EX260F DA SPESSORE 6 mm A 8 mm - INOX AISI 304 SUPPORT for 6-8 mm glass

More information

The Dirichlet Unit Theorem

The Dirichlet Unit Theorem Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

More information

University of Ostrava. Fuzzy Transforms

University of Ostrava. Fuzzy Transforms University of Ostrava Institute for Research and Applications of Fuzzy Modeling Fuzzy Transforms Irina Perfilieva Research report No. 58 2004 Submitted/to appear: Fuzzy Sets and Systems Supported by: Grant

More information

1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style

1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style Factorisation 1.5 Introduction In Block 4 we showed the way in which brackets were removed from algebraic expressions. Factorisation, which can be considered as the reverse of this process, is dealt with

More information

FREGE S PARADISE AND THE PARADOXES. Sten Lindström Umeå university, Sweden Sten.Lindstrom@philos.umu.se

FREGE S PARADISE AND THE PARADOXES. Sten Lindström Umeå university, Sweden Sten.Lindstrom@philos.umu.se Preliminary version, 03-04-19. All comments are welcome! FREGE S PARADISE AND THE PARADOXES Sten Lindström Umeå university, Sweden Sten.Lindstrom@philos.umu.se Abstract The main objective of this paper

More information

Winter Camp 2011 Polynomials Alexander Remorov. Polynomials. Alexander Remorov alexanderrem@gmail.com

Winter Camp 2011 Polynomials Alexander Remorov. Polynomials. Alexander Remorov alexanderrem@gmail.com Polynomials Alexander Remorov alexanderrem@gmail.com Warm-up Problem 1: Let f(x) be a quadratic polynomial. Prove that there exist quadratic polynomials g(x) and h(x) such that f(x)f(x + 1) = g(h(x)).

More information

AGENDA Annual Filing Season Program (AFSP) Overview Annual Federal Tax Refresher Course (AFTR) Overview Maryland Registration Requirements and

AGENDA Annual Filing Season Program (AFSP) Overview Annual Federal Tax Refresher Course (AFTR) Overview Maryland Registration Requirements and MRSTAX ENTERPRISE AGENDA Annual Filing Season Program (AFSP) Overview Annual Federal Tax Refresher Course (AFTR) Overview Maryland Registration Requirements and Examination Overview AFSP Voluntary Continuing

More information

Model Checking: An Introduction

Model Checking: An Introduction Announcements Model Checking: An Introduction Meeting 2 Office hours M 1:30pm-2:30pm W 5:30pm-6:30pm (after class) and by appointment ECOT 621 Moodle problems? Fundamentals of Programming Languages CSCI

More information

IVECO pag. 52-65 MAN pag. 64-65. SCANIA pag. 64-65 VOLVO pag. 64-65 GEARBOX CAMBIO

IVECO pag. 52-65 MAN pag. 64-65. SCANIA pag. 64-65 VOLVO pag. 64-65 GEARBOX CAMBIO ricambi per / spare parts for IVECO pag. 52-65 MAN pag. 64-65 MERCEDES pag. 64-65 SCANIA pag. 64-65 VOLVO pag. 64-65 52 FIG. ITEM RIF. ERREVI ERREVI REF. DESCRIZIONE PARTICOLARI DESCRIPTION TIPO VEHICLE

More information

def: An axiom is a statement that is assumed to be true, or in the case of a mathematical system, is used to specify the system.

def: An axiom is a statement that is assumed to be true, or in the case of a mathematical system, is used to specify the system. Section 1.5 Methods of Proof 1.5.1 1.5 METHODS OF PROOF Some forms of argument ( valid ) never lead from correct statements to an incorrect. Some other forms of argument ( fallacies ) can lead from true

More information

Classical BI. (A Logic for Reasoning about Dualising Resources) James Brotherston Cristiano Calcagno

Classical BI. (A Logic for Reasoning about Dualising Resources) James Brotherston Cristiano Calcagno Classical BI (A Logic for Reasoning about Dualising Resources) James Brotherston Cristiano Calcagno Dept. of Computing, Imperial College London, UK {jbrother,ccris}@doc.ic.ac.uk Abstract We show how to

More information

arts & crafts theatre literature dance artisan goods visual art music

arts & crafts theatre literature dance artisan goods visual art music arts & crafts theatre literature music dance artisan goods visual art arts & crafts + cultural industries film & TV publishing music recording theatre literature dance music artisan goods visual art video

More information

QMC: A Model Checker for Quantum Systems

QMC: A Model Checker for Quantum Systems QMC: A Model Checker for Quantum Systems Simon J. Gay 1, Rajagopal Nagarajan 2, and Nikolaos Papanikolaou 2 1 Department of Computing Science, University of Glasgow simon@dcs.gla.ac.uk 2 Department of

More information

Software Model Checking: Theory and Practice

Software Model Checking: Theory and Practice Software Model Checking: Theory and Practice Lecture: Secification Checking - Temoral Logic Coyright 2004, Matt Dwyer, John Hatcliff, and Robby. The syllabus and all lectures for this course are coyrighted

More information

Factorization in Polynomial Rings

Factorization in Polynomial Rings Factorization in Polynomial Rings These notes are a summary of some of the important points on divisibility in polynomial rings from 17 and 18 of Gallian s Contemporary Abstract Algebra. Most of the important

More information

OpenStax-CNX module: m32633 1. Quadratic Sequences 1; 2; 4; 7; 11;... (1)

OpenStax-CNX module: m32633 1. Quadratic Sequences 1; 2; 4; 7; 11;... (1) OpenStax-CNX module: m32633 1 Quadratic Sequences Rory Adams Free High School Science Texts Project Sarah Blyth Heather Williams This work is produced by OpenStax-CNX and licensed under the Creative Commons

More information

Introduction to Finite Fields (cont.)

Introduction to Finite Fields (cont.) Chapter 6 Introduction to Finite Fields (cont.) 6.1 Recall Theorem. Z m is a field m is a prime number. Theorem (Subfield Isomorphic to Z p ). Every finite field has the order of a power of a prime number

More information

TrinityHall, Cambridge, England.

TrinityHall, Cambridge, England. usingrecurrentneuralnetworks HandwritingRecognition O-lineCursive AndrewWilliamSenior A TrinityHall, Cambridge, England. Thisthesisissubmittedforconsideration forthedegreeofdoctorofphilosophy attheuniversityofcambridge.

More information

An Introduction to AC Field Hall Effect Measurements

An Introduction to AC Field Hall Effect Measurements An Introduction to AC Field Hall Effect Measurements Dr. Jeffrey R. Lindemuth The Hall effect is a well-known method to determine the carrier concentration, carrier type, and when coupled with a resistivity

More information

COURSE NAVIGATOR DEMO QUICK GUIDE

COURSE NAVIGATOR DEMO QUICK GUIDE COURSE NAVIGATOR DEMO QUICK GUIDE INTRODUCTION The Course Navigator is a web-based learning management system that contains the EHR Navigator activities and assessments, as well as flash cards, quizzes,

More information

Syntax and Semantics for Business Rules

Syntax and Semantics for Business Rules Syntax and Semantics for Business Rules Xiaofan Liu 1 2, Natasha Alechina 1, and Brian Logan 1 1 School of Computer Science, University of Nottingham, Nottingham, NG8 1BB, UK 2 School of Computer and Communication,

More information

Lights and Darks of the Star-Free Star

Lights and Darks of the Star-Free Star Lights and Darks of the Star-Free Star Edward Ochmański & Krystyna Stawikowska Nicolaus Copernicus University, Toruń, Poland Introduction: star may destroy recognizability In (finitely generated) trace

More information

2.8.3 / (Z80 Serial I/O)

2.8.3 / (Z80 Serial I/O) 283 / (Z80 Serial I/O) 80 SIO 80 / 80 bit bit bit bit SIO! 80 " Z80 SIO 2 # $ % Z80 SIO & IBM bisync ( byte) HDLC, IBM SDLC ( bit) '! # & ( modem modem )/" ' Cyclic Redundancy Check (CRC) ( ) 2831 Z80

More information

Bridge to College Mathematics. Upper Level Modules

Bridge to College Mathematics. Upper Level Modules Bridge to College Mathematics Upper Level Modules Authors: Julie Cranston, Toms River Regional Schools Melissa Frisch, Lace Township Schools Mar Morle, Ocean Count College Bridge Pilot Project A Partnership

More information

Reachability in Succinct and Parametric One-Counter Automata

Reachability in Succinct and Parametric One-Counter Automata Reachability in Succinct and Parametric One-Counter Automata Christoph Haase, Stephan Kreutzer, Joël Ouaknine, and James Worrell Oxford University Computing Laboratory, UK {chrh,kreutzer,joel,jbw}@comlab.ox.ac.uk

More information

Homogeneous equations, Linear independence

Homogeneous equations, Linear independence Homogeneous equations, Linear independence 1. Homogeneous equations: Ex 1: Consider system: B" #B# œ! B" #B3 œ! B B œ! # $ Matrix equation: Ô " #! Ô B " Ô! "! # B # œ! œ 0Þ Ð3Ñ Õ! " " ØÕB Ø Õ! Ø $ Homogeneous

More information

The Butterfly, Cube-Connected-Cycles and Benes Networks

The Butterfly, Cube-Connected-Cycles and Benes Networks The Butterfly, Cube-Connected-Cycles and Benes Networks Michael Lampis mlambis@softlab.ntua.gr NTUA The Butterfly, Cube-Connected-Cycles and Benes Networks p.1/16 Introduction Hypercubes are computationally

More information

Sect The Slope-Intercept Form

Sect The Slope-Intercept Form Concepts # and # Sect. - The Slope-Intercept Form Slope-Intercept Form of a line Recall the following definition from the beginning of the chapter: Let a, b, and c be real numbers where a and b are not

More information

Duality of linear conic problems

Duality of linear conic problems Duality of linear conic problems Alexander Shapiro and Arkadi Nemirovski Abstract It is well known that the optimal values of a linear programming problem and its dual are equal to each other if at least

More information

4.5 Linear Dependence and Linear Independence

4.5 Linear Dependence and Linear Independence 4.5 Linear Dependence and Linear Independence 267 32. {v 1, v 2 }, where v 1, v 2 are collinear vectors in R 3. 33. Prove that if S and S are subsets of a vector space V such that S is a subset of S, then

More information

On some Constructions of Shapeless Quasigroups

On some Constructions of Shapeless Quasigroups Aleksandra Mileva 1 and Smile Markovski 2 1 Faculty of Computer Science, University Goce Delčev, Štip 2 Faculty of Computer Science and Computer Engineering, University Ss. Cyril and Methodius - Skopje

More information

3.1 Solving Systems Using Tables and Graphs

3.1 Solving Systems Using Tables and Graphs Algebra 2 Chapter 3 3.1 Solve Systems Using Tables & Graphs 3.1 Solving Systems Using Tables and Graphs A solution to a system of linear equations is an that makes all of the equations. To solve a system

More information

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm.

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm. Approximation Algorithms Chapter Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of

More information

General Framework for an Iterative Solution of Ax b. Jacobi s Method

General Framework for an Iterative Solution of Ax b. Jacobi s Method 2.6 Iterative Solutions of Linear Systems 143 2.6 Iterative Solutions of Linear Systems Consistent linear systems in real life are solved in one of two ways: by direct calculation (using a matrix factorization,

More information

Foundational Proof Certificates

Foundational Proof Certificates An application of proof theory to computer science INRIA-Saclay & LIX, École Polytechnique CUSO Winter School, Proof and Computation 30 January 2013 Can we standardize, communicate, and trust formal proofs?

More information

ORIENTATIONS. Contents

ORIENTATIONS. Contents ORIENTATIONS Contents 1. Generators for H n R n, R n p 1 1. Generators for H n R n, R n p We ended last time by constructing explicit generators for H n D n, S n 1 by using an explicit n-simplex which

More information

Extraction of certified programs with effects from proofs with monadic types in Coq

Extraction of certified programs with effects from proofs with monadic types in Coq Extraction of certified programs with effects from proofs with monadic types in Coq Marino Miculan 1 and Marco Paviotti 2 1 Dept. of Mathematics and Computer Science, University of Udine, Italy 2 IT University

More information

CS510 Software Engineering

CS510 Software Engineering CS510 Software Engineering Propositional Logic Asst. Prof. Mathias Payer Department of Computer Science Purdue University TA: Scott A. Carr Slides inspired by Xiangyu Zhang http://nebelwelt.net/teaching/15-cs510-se

More information

Concentration inequalities for order statistics Using the entropy method and Rényi s representation

Concentration inequalities for order statistics Using the entropy method and Rényi s representation Concentration inequalities for order statistics Using the entropy method and Rényi s representation Maud Thomas 1 in collaboration with Stéphane Boucheron 1 1 LPMA Université Paris-Diderot High Dimensional

More information

Applied Mathematics and Computation

Applied Mathematics and Computation Applied Mathematics and Computation 219 (2012) 1449 1467 Contents lists available at SciVerse ScienceDirect Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc Preclusion

More information

EE 330 Lecture 21. Small Signal Analysis Small Signal Analysis of BJT Amplifier

EE 330 Lecture 21. Small Signal Analysis Small Signal Analysis of BJT Amplifier EE 330 Lecture 21 Small Signal Analsis Small Signal Analsis of BJT Amplifier Review from Last Lecture Comparison of Gains for MOSFET and BJT Circuits IN (t) A B BJT CC 1 R EE OUT I R C 1 t If I D R =I

More information

Functions and Equations

Functions and Equations Centre for Education in Mathematics and Computing Euclid eworkshop # Functions and Equations c 014 UNIVERSITY OF WATERLOO Euclid eworkshop # TOOLKIT Parabolas The quadratic f(x) = ax + bx + c (with a,b,c

More information

Coefficients of determination

Coefficients of determination Coefficients of determination Jean-Marie Dufour McGill University First version: March 1983 Revised: February 2002, July 2011 his version: July 2011 Compiled: November 21, 2011, 11:05 his work was supported

More information

Factor analysis. Angela Montanari

Factor analysis. Angela Montanari Factor analysis Angela Montanari 1 Introduction Factor analysis is a statistical model that allows to explain the correlations between a large number of observed correlated variables through a small number

More information

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm.

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm. Approximation Algorithms 11 Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of three

More information

Solving Quadratic Equations by Factoring

Solving Quadratic Equations by Factoring 4.7 Solving Quadratic Equations by Factoring 4.7 OBJECTIVE 1. Solve quadratic equations by factoring The factoring techniques you have learned provide us with tools for solving equations that can be written

More information

Non-deterministic Semantics and the Undecidability of Boolean BI

Non-deterministic Semantics and the Undecidability of Boolean BI 1 Non-deterministic Semantics and the Undecidability of Boolean BI DOMINIQUE LARCHEY-WENDLING, LORIA CNRS, Nancy, France DIDIER GALMICHE, LORIA Université Henri Poincaré, Nancy, France We solve the open

More information

Aim: How do we find the slope of a line? Warm Up: Go over test. A. Slope -

Aim: How do we find the slope of a line? Warm Up: Go over test. A. Slope - Aim: How do we find the slope of a line? Warm Up: Go over test A. Slope - Plot the points and draw a line through the given points. Find the slope of the line.. A(-5,4) and B(4,-3) 2. A(4,3) and B(4,-6)

More information

DNA Data and Program Representation. Alexandre David 1.2.05 adavid@cs.aau.dk

DNA Data and Program Representation. Alexandre David 1.2.05 adavid@cs.aau.dk DNA Data and Program Representation Alexandre David 1.2.05 adavid@cs.aau.dk Introduction Very important to understand how data is represented. operations limits precision Digital logic built on 2-valued

More information

Informatique Fondamentale IMA S8

Informatique Fondamentale IMA S8 Informatique Fondamentale IMA S8 Cours 1 - Intro + schedule + finite state machines Laure Gonnord http://laure.gonnord.org/pro/teaching/ Laure.Gonnord@polytech-lille.fr Université Lille 1 - Polytech Lille

More information

Semester Review. CSC 301, Fall 2015

Semester Review. CSC 301, Fall 2015 Semester Review CSC 301, Fall 2015 Programming Language Classes There are many different programming language classes, but four classes or paradigms stand out:! Imperative Languages! assignment and iteration!

More information

Beyond Propositional Logic Lukasiewicz s System

Beyond Propositional Logic Lukasiewicz s System Beyond Propositional Logic Lukasiewicz s System Consider the following set of truth tables: 1 0 0 1 # # 1 0 # 1 1 0 # 0 0 0 0 # # 0 # 1 0 # 1 1 1 1 0 1 0 # # 1 # # 1 0 # 1 1 0 # 0 1 1 1 # 1 # 1 Brandon

More information