The MOS Transistor. Debdeep Mukhopadhyay IIT Madras

Size: px
Start display at page:

Download "The MOS Transistor. Debdeep Mukhopadhyay IIT Madras"

Transcription

1 The MOS Transistor Debdeep Mukhopadhyay IIT Madras

2 Introduction So far, we have treated transistors as ideal switches An ON transistor passes a finite amount of current Depends on terminal voltages Derive current-voltage (I-V) relationships Transistor gate, source, drain all have capacitance I = C ( V/ t) -> t = (C/I) V Capacitance and current determine speed Also explore what a degraded level really means

3 MOS Characteristics MOS majority carrier device Carriers: e -- in nmos, holes in pmos V t channel threshold voltage (cuts off for voltages < V t )

4 nmos Enhancement Transistor Moderately doped p type Si substrate 2 Heavily doped n + regions

5 I vs. V Plots Enhancement and depletion transistors CMOS uses only enhancement transistors nmos uses both

6 Materials and Dopants SiO 2 low loss, high dielectric strength High gate fields are possible n type impurities: P, As, Sb p type impurities: B, Al, Ga, In

7 Bipolar vs. MOS Bipolar p-n junction metallurgical MOS Inversion layer / substrate junction field-induced Voltage-controlled switch, conducts when V gs V t e -- swept along channel when V ds > 0 by horizontal component of E Pinch-off conduction by e - drift mechanism caused by positive drain voltage Pinched-off channel voltage: V gs V t (saturated) Reverse-biased p-n junction insulates from the substrate

8 MOSFET Transistors MOSFET For given V ds & V gs, I ds controlled by: Distance between source & drain L Channel width W Threshold VoltageV t Gate oxide thickness t ox dielectric constant of gate oxide ε Carrier mobility µ

9 MOS Capacitor Gate and body form MOS capacitor Operating modes Accumulation Depletion Inversion (a) V g < polysilicon gate silicon dioxide insulator p-type body 0 < V g < V t depletion region + - (b) V g > V t + - inversion region depletion region (c)

10 Terminal Voltages Mode of operation depends on V g, V d, V s V gs = V g V s V gd = V g V d V ds = V d V s = V gs -V gd Source and drain are symmetric diffusion terminals By convention, source is terminal at lower voltage Hence V ds 0 nmos body is grounded. First assume source is 0 too. Three regions of operation Cutoff Linear Saturation V s V gs V g + V ds + V gd - V d

11 nmos Cutoff No channel I ds = 0 V gs = g + - V gd s d n+ n+ p-type body b

12 nmos Linear Channel forms Current flows from d to s e - from s to d I ds increases with V ds Similar to linear resistor At drain end of channel, only difference between gate & drain voltages effective for channel creation V gs > V t V gs > V t V gd = V gs n+ n+ V ds = 0 p-type body b + - s s g g + - V gs > V gd > V t n+ n+ 0 < V ds < V gs -V t p-type body b d d I ds

13 nmos Saturation Channel pinches off I ds independent of V ds We say current saturates Similar to current source V gs > V t + - g + - V gd < V t s d I ds n+ n+ V ds > V gs -V t p-type body b

14 I-V Characteristics In Linear region, I ds depends on How much charge is in the channel? How fast is the charge moving?

15 Channel Charge MOS structure looks like parallel plate capacitor while operating in inversion Gate oxide channel Q channel = gate t ox L n+ n+ p-type body polysilicon gate W SiO2 gate oxide (good insulator, ε ox = 3.9) V g + + source V gs C g V gd drain - - channel n+ - + n+ V s V ds p-type body V d

16 Channel Charge MOS structure looks like parallel plate capacitor while operating in inversion Gate oxide channel Q channel = CV C = t ox L n+ n+ p-type body polysilicon gate W SiO2 gate oxide (good insulator, ε ox = 3.9) gate V g + + source V gs C g V gd drain - - channel n+ - + n+ V s V ds p-type body V d

17 Channel Charge MOS structure looks like parallel plate capacitor while operating in inversion Gate oxide channel Q channel = CV C = C g = ε ox WL/t ox = C ox WL V = t ox L n+ n+ p-type body polysilicon gate W SiO2 gate oxide (good insulator, ε ox = 3.9) gate V g + + source V gs C g V gd drain - - channel n+ - + n+ V s C ox = ε ox / t ox V ds p-type body V d

18 Channel Charge MOS structure looks like parallel plate capacitor while operating in inversion Gate oxide channel Q channel = CV C = C g = ε ox WL/t ox = C ox WL V = V gc V t = (V gs V ds /2) V t t ox L n+ n+ p-type body polysilicon gate W SiO2 gate oxide (good insulator, ε ox = 3.9) gate V g + + source V gs C g V gd drain - - channel n+ - + n+ V s C ox = ε ox / t ox V ds p-type body V d

19 Carrier velocity Charge is carried by e- Carrier velocity v proportional to lateral E- field between source and drain v =

20 Carrier Velocity Charge is carried by e- Carrier velocity v proportional to lateral E- field between source and drain v = µe µ called mobility E =

21 Carrier Velocity Charge is carried by e- Carrier velocity v proportional to lateral E- field between source and drain v = µe µ called mobility E = V ds /L Time for carrier to cross channel: t =

22 Carrier Velocity Charge is carried by e- Carrier velocity v proportional to lateral E- field between source and drain v = µe µ called mobility E = V ds /L Time for carrier to cross channel: t = L / v

23 nmos Linear I-V Now we know How much charge Q channel is in the channel How much time t each carrier takes to cross I = ds

24 nmos Linear I-V Now we know I How much charge Q channel is in the channel How much time t each carrier takes to cross ds = = Q channel t

25 nmos Linear I-V Now we know I How much charge Q channel is in the channel How much time t each carrier takes to cross ds Qchannel = t W V = µ C V V V L V = β V ds gs V t V 2 ds ds ox gs t 2 ds W β = µcox L

26 nmos Saturation I-V If V gd < V t, channel pinches off near drain When V ds > V dsat = V gs V t Now drain voltage no longer increases current I = ds

27 nmos Saturation I-V If V gd < V t, channel pinches off near drain When V ds > V dsat = V gs V t Now drain voltage no longer increases current V I = β V V dsat V 2 ds gs t dsat

28 nmos Saturation I-V If V gd < V t, channel pinches off near drain When V ds > V dsat = V gs V t Now drain voltage no longer increases current V I = β V V dsat V 2 β = ( V ) 2 gs Vt 2 ds gs t dsat

29 nmos I-V Summary Shockley transistor models 0 Vgs < V V I = β V V ds V V V 2 < β ( V V ) 2 V > V 2 ds gs t ds ds dsat Note the dependencies on W, L gs t ds dsat t cutoff linear saturation W Cgµ ins 0 WL β = K, K =, Cg = L WL D

30 Activity 1) If the width of a transistor increases, the current will increase decrease not change 2) If the length of a transistor increases, the current will increase decrease not change 3) If the supply voltage of a chip increases, the maximum transistor current will increase decrease not change 4) If the width of a transistor increases, its gate capacitance will increase decrease not change 5) If the length of a transistor increases, its gate capacitance will increase decrease not change 6) If the supply voltage of a chip increases, the gate capacitance of each transistor will increase decrease not change

31 MOS as switch MOS can be viewed as switches. The switches are electrically controlled.

32 NMOS as a switch Vin=Vdd Vin=0 Gate=Vdd Vgs Vout I Load Capacitor Ground Gate=Vdd Vgs Vout=Vdd I Load Capacitor Ground Assume capacitor (C L ) is initially discharged Gate=1, Vin=1 C L begins to conduct and charges toward 1 (Vdd) and stops at (Vdd-Vt) Signal is degraded Gate=1, Vin=0 C L begins to discharge toward 0 Good passer of 0.

33 CMOS Signal Transfer Property Source Gate Drain Gate 0 1 Path Closed Open Transmits 1 well Transmits 0 poorly pmos Drain Gate Source nmos Gate 0 1 Path Open Closed Transmits 0 well Transmits 1 poorly

34 CMOS Transmission Gate Transmit signal from INPUT to OUTPUT when Gate is closed Gate (complementary of Gate) Gate pmos nmos OUTPUT INPUT Source Drain OUTPUT 0 1 OFF ON OFF ON Z INPUT Gate Z : High-Impedance State, consider the terminal is floating

35 CMOS Inverter Vcc Vin Combines the best of both.

36 nmos Operation Cutoff V gsn < Linear V gsn > Saturated V gsn > V dsn < V dsn > V DD I dsp V in V out I dsn

37 nmos Operation Cutoff V gsn < V tn Linear V gsn > V tn Saturated V gsn > V tn V dsn < V gsn V tn V dsn > V gsn V tn V DD V in I dsp I dsn V out

38 nmos Operation Cutoff V gsn < V tn Linear V gsn > V tn Saturated V gsn > V tn V dsn < V gsn V tn V dsn > V gsn V tn V gsn = V in V DD V dsn = V out V in I dsp V out I dsn

39 nmos Operation Cutoff V gsn < V tn V in < V tn Linear V gsn > V tn V in > V tn V dsn < V gsn V tn V out < V in -V tn Saturated V gsn > V tn V in > V tn V dsn > V gsn V tn V out > V in -V tn V gsn = V in V DD V dsn = V out V in I dsp V out I dsn

40 pmos Operation Cutoff V gsp > Linear V gsp < V dsp > Saturated V gsp < V dsp < V DD V in I dsp I dsn V out

41 pmos Operation Cutoff V gsp > V tp Linear V gsp < V tp Saturated V gsp < V tp V dsp > V gsp V tp V dsp < V gsp V tp V DD V in I dsp I dsn V out

42 pmos Operation Cutoff V gsp > V tp Linear V gsp < V tp Saturated V gsp < V tp V dsp > V gsp V tp V dsp < V gsp V tp V DD V gsp = V in -V DD V tp < 0 V dsp = V out -V DD V in I dsp I dsn V out

43 pmos Operation Cutoff V gsp > V tp V in > V DD + V tp Linear V gsp < V tp V in < V DD + V tp V dsp > V gsp V tp V out > V in -V tp Saturated V gsp < V tp V in < V DD + V tp V dsp < V gsp V tp V out < V in -V tp V DD V gsp = V in -V DD V tp < 0 V dsp = V out -V DD V in I dsp I dsn V out

44 CMOS Inverter Voltage Transfer Characteristic V out NMOS off PMOS lin NMOS sat PMOS lin NMOS sat PMOS sat NMOS lin PMOS sat NMOS lin PMOS off V in

45 3 INPUT CMOS NAND GATE PULL UP NETWORK A B C PULL DOWN NETWORK Y=~ABC

46 Key Points There is always a path from VDD or GND to the output. There is no path from the VDD to GND (for our purpose). Thus this gate has a very low power consumption. Fully restored logic (why?)

47 Complex CMOS gates Design F=ab+bc+ac Design the complementary logic

48 Exercises Design an AND OR Inverter gate:

49 Tristate Inverter EN Inp Out Z Z 1 0 What will be the CMOS level circuit for the above?

50 Tristate Inverter

Chapter 10 Advanced CMOS Circuits

Chapter 10 Advanced CMOS Circuits Transmission Gates Chapter 10 Advanced CMOS Circuits NMOS Transmission Gate The active pull-up inverter circuit leads one to thinking about alternate uses of NMOS devices. Consider the circuit shown in

More information

Here we introduced (1) basic circuit for logic and (2)recent nano-devices, and presented (3) some practical issues on nano-devices.

Here we introduced (1) basic circuit for logic and (2)recent nano-devices, and presented (3) some practical issues on nano-devices. Outline Here we introduced () basic circuit for logic and (2)recent nano-devices, and presented (3) some practical issues on nano-devices. Circuit Logic Gate A logic gate is an elemantary building block

More information

CO2005: Electronics I (FET) Electronics I, Neamen 3th Ed. 1

CO2005: Electronics I (FET) Electronics I, Neamen 3th Ed. 1 CO2005: Electronics I The Field-Effect Transistor (FET) Electronics I, Neamen 3th Ed. 1 MOSFET The metal-oxide-semiconductor field-effect transistor (MOSFET) becomes a practical reality in the 1970s. The

More information

CHAPTER 10 Fundamentals of the Metal Oxide Semiconductor Field Effect Transistor

CHAPTER 10 Fundamentals of the Metal Oxide Semiconductor Field Effect Transistor CHAPTER 10 Fundamentals of the Metal Oxide Semiconductor Field Effect Transistor Study the characteristics of energy bands as a function of applied voltage in the metal oxide semiconductor structure known

More information

Field-Effect (FET) transistors

Field-Effect (FET) transistors Field-Effect (FET) transistors References: Hayes & Horowitz (pp 142-162 and 244-266), Rizzoni (chapters 8 & 9) In a field-effect transistor (FET), the width of a conducting channel in a semiconductor and,

More information

Bob York. Transistor Basics - MOSFETs

Bob York. Transistor Basics - MOSFETs Bob York Transistor Basics - MOSFETs Transistors, Conceptually So far we have considered two-terminal devices that are described by a current-voltage relationship I=f(V Resistors: Capacitors: Inductors:

More information

MOS Transistors as Switches

MOS Transistors as Switches MOS Transistors as Switches G (gate) nmos transistor: Closed (conducting) when Gate = 1 (V DD ) D (drain) S (source) Oen (non-conducting) when Gate = 0 (ground, 0V) G MOS transistor: Closed (conducting)

More information

Lecture 8 MOSFET(I) MOSFET I-V CHARACTERISTICS

Lecture 8 MOSFET(I) MOSFET I-V CHARACTERISTICS Lecture 8 MOSFET(I) MOSFET I-V CHARACTERISTICS Outline 1. MOSFET: cross-section, layout, symbols 2. Qualitative operation 3. I-V characteristics Reading Assignment: Howe and Sodini, Chapter 4, Sections

More information

The MOSFET Transistor

The MOSFET Transistor The MOSFET Transistor The basic active component on all silicon chips is the MOSFET Metal Oxide Semiconductor Field Effect Transistor Schematic symbol G Gate S Source D Drain The voltage on the gate controls

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 11 MOSFET part 2 guntzel@inf.ufsc.br I D -V DS Characteristics

More information

Module 7 : I/O PADs Lecture 33 : I/O PADs

Module 7 : I/O PADs Lecture 33 : I/O PADs Module 7 : I/O PADs Lecture 33 : I/O PADs Objectives In this lecture you will learn the following Introduction Electrostatic Discharge Output Buffer Tri-state Output Circuit Latch-Up Prevention of Latch-Up

More information

Transconductance. (Saturated) MOSFET Small-Signal Model. The small-signal drain current due to v gs is therefore given by

Transconductance. (Saturated) MOSFET Small-Signal Model. The small-signal drain current due to v gs is therefore given by 11 (Saturated) MOSFET Small-Signal Model Transconductance Concept: find an equivalent circuit which interrelates the incremental changes in i D v GS v DS etc. for the MOSFET in saturation The small-signal

More information

EDC Lesson 12: Transistor and FET Characteristics. 2008 EDCLesson12- ", Raj Kamal, 1

EDC Lesson 12: Transistor and FET Characteristics. 2008 EDCLesson12- , Raj Kamal, 1 EDC Lesson 12: Transistor and FET Characteristics Lesson-12: MOSFET (enhancement and depletion mode) Characteristics and Symbols 2008 EDCLesson12- ", Raj Kamal, 1 1. Metal Oxide Semiconductor Field Effect

More information

Notes about Small Signal Model. for EE 40 Intro to Microelectronic Circuits

Notes about Small Signal Model. for EE 40 Intro to Microelectronic Circuits Notes about Small Signal Model for EE 40 Intro to Microelectronic Circuits 1. Model the MOSFET Transistor For a MOSFET transistor, there are NMOS and PMOS. The examples shown here would be for NMOS. Figure

More information

Lecture 9 - MOSFET (I) MOSFET I-V Characteristics. October 6, 2005

Lecture 9 - MOSFET (I) MOSFET I-V Characteristics. October 6, 2005 6.12 - Microelectronic Devices and Circuits - Fall 25 Lecture 9-1 Lecture 9 - MOSFET (I) MOSFET I-V Characteristics October 6, 25 Contents: 1. MOSFET: cross-section, layout, symbols 2. Qualitative operation

More information

Lecture 9 - MOSFET (I) MOSFET I-V Characteristics. March 6, 2003

Lecture 9 - MOSFET (I) MOSFET I-V Characteristics. March 6, 2003 6.12 - Microelectronic Devices and Circuits - Spring 23 Lecture 9-1 Lecture 9 - MOSFET (I) MOSFET I-V Characteristics March 6, 23 Contents: 1. MOSFET: cross-section, layout, symbols 2. Qualitative operation

More information

ECE124 Digital Circuits and Systems Page 1

ECE124 Digital Circuits and Systems Page 1 ECE124 Digital Circuits and Systems Page 1 Chip level timing Have discussed some issues related to timing analysis. Talked briefly about longest combinational path for a combinational circuit. Talked briefly

More information

Introduction to CMOS VLSI Design

Introduction to CMOS VLSI Design Introduction to CMOS VLSI esign Slides adapted from: N. Weste,. Harris, CMOS VLSI esign, Addison-Wesley, 3/e, 24 Introduction Integrated Circuits: many transistors on one chip Very Large Scale Integration

More information

Lecture 30: Biasing MOSFET Amplifiers. MOSFET Current Mirrors.

Lecture 30: Biasing MOSFET Amplifiers. MOSFET Current Mirrors. Whites, EE 320 Lecture 30 Page 1 of 8 Lecture 30: Biasing MOSFET Amplifiers. MOSFET Current Mirrors. There are two different environments in which MOSFET amplifiers are found, (1) discrete circuits and

More information

Module 4 : Propagation Delays in MOS Lecture 22 : Logical Effort Calculation of few Basic Logic Circuits

Module 4 : Propagation Delays in MOS Lecture 22 : Logical Effort Calculation of few Basic Logic Circuits Module 4 : Propagation Delays in MOS Lecture 22 : Logical Effort Calculation of few Basic Logic Circuits Objectives In this lecture you will learn the following Introduction Logical Effort of an Inverter

More information

Fig6-22 CB configuration. Z i [6-54] Z o [6-55] A v [6-56] Assuming R E >> r e. A i [6-57]

Fig6-22 CB configuration. Z i [6-54] Z o [6-55] A v [6-56] Assuming R E >> r e. A i [6-57] Common-Base Configuration (CB) The CB configuration having a low input and high output impedance and a current gain less than 1, the voltage gain can be quite large, r o in MΩ so that ignored in parallel

More information

Advanced VLSI Design CMOS Processing Technology

Advanced VLSI Design CMOS Processing Technology Isolation of transistors, i.e., their source and drains, from other transistors is needed to reduce electrical interactions between them. For technologies

More information

BJT Ebers-Moll Model and SPICE MOSFET model

BJT Ebers-Moll Model and SPICE MOSFET model Department of Electrical and Electronic Engineering mperial College London EE 2.3: Semiconductor Modelling in SPCE Course homepage: http://www.imperial.ac.uk/people/paul.mitcheson/teaching BJT Ebers-Moll

More information

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences Elad Alon Homework #4 Solutions EECS141 PROBLEM 1: Shoot-Through Current In this problem,

More information

LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS

LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS Objective In this experiment you will study the i-v characteristics of an MOS transistor. You will use the MOSFET as a variable resistor and as a switch. BACKGROUND

More information

Junction FETs. FETs. Enhancement Not Possible. n p n p n p

Junction FETs. FETs. Enhancement Not Possible. n p n p n p A11 An Introduction to FETs Introduction The basic principle of the field-effect transistor (FET) has been known since J. E. Lilienfeld s patent of 1925. The theoretical description of a FET made by hockley

More information

CONTENTS. Preface. 1.1.2. Energy bands of a crystal (intuitive approach)

CONTENTS. Preface. 1.1.2. Energy bands of a crystal (intuitive approach) CONTENTS Preface. Energy Band Theory.. Electron in a crystal... Two examples of electron behavior... Free electron...2. The particle-in-a-box approach..2. Energy bands of a crystal (intuitive approach)..3.

More information

Lecture 060 Push-Pull Output Stages (1/11/04) Page 060-1. ECE 6412 - Analog Integrated Circuits and Systems II P.E. Allen - 2002

Lecture 060 Push-Pull Output Stages (1/11/04) Page 060-1. ECE 6412 - Analog Integrated Circuits and Systems II P.E. Allen - 2002 Lecture 060 PushPull Output Stages (1/11/04) Page 0601 LECTURE 060 PUSHPULL OUTPUT STAGES (READING: GHLM 362384, AH 226229) Objective The objective of this presentation is: Show how to design stages that

More information

Biasing in MOSFET Amplifiers

Biasing in MOSFET Amplifiers Biasing in MOSFET Amplifiers Biasing: Creating the circuit to establish the desired DC oltages and currents for the operation of the amplifier Four common ways:. Biasing by fixing GS. Biasing by fixing

More information

Pass Gate Logic An alternative to implementing complex logic is to realize it using a logic network of pass transistors (switches).

Pass Gate Logic An alternative to implementing complex logic is to realize it using a logic network of pass transistors (switches). Pass Gate Logic n alternative to implementing complex logic is to realize it using a logic network of pass transistors (switches). Switch Network Regeneration is performed via a buffer. We have already

More information

Lecture 030 DSM CMOS Technology (3/24/10) Page 030-1

Lecture 030 DSM CMOS Technology (3/24/10) Page 030-1 Lecture 030 DSM CMOS Technology (3/24/10) Page 030-1 LECTURE 030 - DEEP SUBMICRON (DSM) CMOS TECHNOLOGY LECTURE ORGANIZATION Outline Characteristics of a deep submicron CMOS technology Typical deep submicron

More information

CMOS Logic Integrated Circuits

CMOS Logic Integrated Circuits CMOS Logic Integrated Circuits Introduction CMOS Inverter Parameters of CMOS circuits Circuits for protection Output stage for CMOS circuits Buffering circuits Introduction Symetrical and complementary

More information

Lecture 090 Large Signal MOSFET Model (3/24/10) Page 090-1

Lecture 090 Large Signal MOSFET Model (3/24/10) Page 090-1 Lecture 9 Large Signal MOSFET Model (3/24/1) Page 9-1 LECTURE 9 LARGE SIGNAL MOSFET MODEL LECTURE ORGANIZATION Outline Introduction to modeling Operation of the MOS transistor Simple large signal model

More information

Small Signal Analysis of a PMOS transistor Consider the following PMOS transistor to be in saturation. Then, 1 2

Small Signal Analysis of a PMOS transistor Consider the following PMOS transistor to be in saturation. Then, 1 2 Small Signal Analysis of a PMOS transistor Consider the following PMOS transistor to be in saturation. Then, 1 I SD = µ pcox( VSG Vtp)^2(1 + VSDλ) 2 From this equation it is evident that I SD is a function

More information

Field Effect Transistors

Field Effect Transistors 506 19 Principles of Electronics Field Effect Transistors 191 Types of Field Effect Transistors 193 Principle and Working of JFET 195 Importance of JFET 197 JFET as an Amplifier 199 Salient Features of

More information

The MOS Transistor in Weak Inversion

The MOS Transistor in Weak Inversion MOFE Operation in eak and Moderate nversion he MO ransistor in eak nversion n this section we will lore the behavior of the MO transistor in the subthreshold regime where the channel is weakly inverted.

More information

An Introduction to the EKV Model and a Comparison of EKV to BSIM

An Introduction to the EKV Model and a Comparison of EKV to BSIM An Introduction to the EKV Model and a Comparison of EKV to BSIM Stephen C. Terry 2. 3.2005 Integrated Circuits & Systems Laboratory 1 Overview Characterizing MOSFET operating regions EKV model fundamentals

More information

Semiconductor Memories

Semiconductor Memories Semiconductor Memories Semiconductor memories array capable of storing large quantities of digital information are essential to all digital systems Maximum realizable data storage capacity of a single

More information

W04 Transistors and Applications. Yrd. Doç. Dr. Aytaç Gören

W04 Transistors and Applications. Yrd. Doç. Dr. Aytaç Gören W04 Transistors and Applications W04 Transistors and Applications ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors

More information

COMMON-SOURCE JFET AMPLIFIER

COMMON-SOURCE JFET AMPLIFIER EXPERIMENT 04 Objectives: Theory: 1. To evaluate the common-source amplifier using the small signal equivalent model. 2. To learn what effects the voltage gain. A self-biased n-channel JFET with an AC

More information

MOS (metal-oxidesemiconductor) 李 2003/12/19

MOS (metal-oxidesemiconductor) 李 2003/12/19 MOS (metal-oxidesemiconductor) 李 2003/12/19 Outline Structure Ideal MOS The surface depletion region Ideal MOS curves The SiO 2 -Si MOS diode (real case) Structure A basic MOS consisting of three layers.

More information

Application Note AN-940

Application Note AN-940 Application Note AN-940 How P-Channel MOSFETs Can Simplify Your Circuit Table of Contents Page 1. Basic Characteristics of P-Channel HEXFET Power MOSFETs...1 2. Grounded Loads...1 3. Totem Pole Switching

More information

THE INVERTER DYNAMICS

THE INVERTER DYNAMICS Dynamic Behavior THE IVERTER DYAMIC Propagation Delay, T p Defines how quickly output is affected by input Measured between 5% transition from input to output t plh defines delay for output going from

More information

Class 11: Transmission Gates, Latches

Class 11: Transmission Gates, Latches Topics: 1. Intro 2. Transmission Gate Logic Design 3. X-Gate 2-to-1 MUX 4. X-Gate XOR 5. X-Gate 8-to-1 MUX 6. X-Gate Logic Latch 7. Voltage Drop of n-ch X-Gates 8. n-ch Pass Transistors vs. CMOS X-Gates

More information

MRF175GU MRF175GV The RF MOSFET Line 200/150W, 500MHz, 28V

MRF175GU MRF175GV The RF MOSFET Line 200/150W, 500MHz, 28V Designed for broadband commercial and military applications using push pull circuits at frequencies to 500 MHz. The high power, high gain and broadband performance of these devices makes possible solid

More information

CMOS, the Ideal Logic Family

CMOS, the Ideal Logic Family CMOS, the Ideal Logic Family INTRODUCTION Let s talk about the characteristics of an ideal logic family. It should dissipate no power, have zero propagation delay, controlled rise and fall times, and have

More information

Lecture 9 MOSFET(II) MOSFET I-V CHARACTERISTICS(contd.)

Lecture 9 MOSFET(II) MOSFET I-V CHARACTERISTICS(contd.) Lecture 9 MOSFET(II) MOSFET I-V CHARACTERISTICS(contd.) Outline 1. The saturation regime 2. Backgate characteristics Reading Assignment: Howe and Sodini, Chapter 4, Section 4.4 Announcements: 1. Quiz#1:

More information

MOS Transistor 6.1 INTRODUCTION TO THE MOSFET

MOS Transistor 6.1 INTRODUCTION TO THE MOSFET Hu_ch06v3.fm Page 195 Friday, February 13, 2009 4:51 PM 6 MOS Transistor CHAPTER OBJECTIVES This chapter provides a comprehensive introduction to the modern MOSFETs in their on state. (The off state theory

More information

MOSFET DEVICE MODELING FOR ANALOG CIRCUITS DESIGN

MOSFET DEVICE MODELING FOR ANALOG CIRCUITS DESIGN MOSFET DEVICE MODELING FOR ANALOG CIRCUITS DESIGN Student name: Truong, Long Giang Student #: 970304580 Course: ECE1352F 1. INTRODUCTION The technological trend towards deep sub-micrometer dimensions,

More information

05 Bipolar Junction Transistors (BJTs) basics

05 Bipolar Junction Transistors (BJTs) basics The first bipolar transistor was realized in 1947 by Brattain, Bardeen and Shockley. The three of them received the Nobel prize in 1956 for their invention. The bipolar transistor is composed of two PN

More information

Yrd. Doç. Dr. Aytaç Gören

Yrd. Doç. Dr. Aytaç Gören H2 - AC to DC Yrd. Doç. Dr. Aytaç Gören ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits W04 Transistors and Applications (H-Bridge) W05 Op Amps

More information

Digital Integrated Circuit (IC) Layout and Design - Week 3, Lecture 5

Digital Integrated Circuit (IC) Layout and Design - Week 3, Lecture 5 igital Integrated Circuit (IC) Layout and esign - Week 3, Lecture 5! http://www.ee.ucr.edu/~rlake/ee134.html EE134 1 Reading and Prelab " Week 1 - Read Chapter 1 of text. " Week - Read Chapter of text.

More information

Lecture 23 - Frequency Response of Amplifiers (I) Common-Source Amplifier. December 1, 2005

Lecture 23 - Frequency Response of Amplifiers (I) Common-Source Amplifier. December 1, 2005 6.012 Microelectronic Devices and Circuits Fall 2005 Lecture 231 Lecture 23 Frequency Response of Amplifiers (I) CommonSource Amplifier December 1, 2005 Contents: 1. Introduction 2. Intrinsic frequency

More information

CHAPTER 16 MEMORY CIRCUITS

CHAPTER 16 MEMORY CIRCUITS CHPTER 6 MEMORY CIRCUITS Chapter Outline 6. atches and Flip-Flops 6. Semiconductor Memories: Types and rchitectures 6.3 Random-ccess Memory RM Cells 6.4 Sense-mplifier and ddress Decoders 6.5 Read-Only

More information

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 2 Bipolar Junction Transistors Lecture-2 Transistor

More information

Efficient Interconnect Design with Novel Repeater Insertion for Low Power Applications

Efficient Interconnect Design with Novel Repeater Insertion for Low Power Applications Efficient Interconnect Design with Novel Repeater Insertion for Low Power Applications TRIPTI SHARMA, K. G. SHARMA, B. P. SINGH, NEHA ARORA Electronics & Communication Department MITS Deemed University,

More information

Fabrication and Manufacturing (Basics) Batch processes

Fabrication and Manufacturing (Basics) Batch processes Fabrication and Manufacturing (Basics) Batch processes Fabrication time independent of design complexity Standard process Customization by masks Each mask defines geometry on one layer Lower-level masks

More information

CHAPTER 2 POWER AMPLIFIER

CHAPTER 2 POWER AMPLIFIER CHATER 2 OWER AMLFER 2.0 ntroduction The main characteristics of an amplifier are Linearity, efficiency, output power, and signal gain. n general, there is a trade off between these characteristics. For

More information

Diode Circuits. Operating in the Reverse Breakdown region. (Zener Diode)

Diode Circuits. Operating in the Reverse Breakdown region. (Zener Diode) Diode Circuits Operating in the Reverse Breakdown region. (Zener Diode) In may applications, operation in the reverse breakdown region is highly desirable. The reverse breakdown voltage is relatively insensitive

More information

CAR IGNITION WITH IGBTS

CAR IGNITION WITH IGBTS APPLICATION NOTE CAR IGNITION WITH IGBTS by M. Melito ABSTRACT IGBTs are used in a variety of switching applications thanks to their attractive characteristics, particularly their peak current capability,

More information

Amplifier Teaching Aid

Amplifier Teaching Aid Amplifier Teaching Aid Table of Contents Amplifier Teaching Aid...1 Preface...1 Introduction...1 Lesson 1 Semiconductor Review...2 Lesson Plan...2 Worksheet No. 1...7 Experiment No. 1...7 Lesson 2 Bipolar

More information

Layout of Multiple Cells

Layout of Multiple Cells Layout of Multiple Cells Beyond the primitive tier primitives add instances of primitives add additional transistors if necessary add substrate/well contacts (plugs) add additional polygons where needed

More information

Title : Analog Circuit for Sound Localization Applications

Title : Analog Circuit for Sound Localization Applications Title : Analog Circuit for Sound Localization Applications Author s Name : Saurabh Kumar Tiwary Brett Diamond Andrea Okerholm Contact Author : Saurabh Kumar Tiwary A-51 Amberson Plaza 5030 Center Avenue

More information

Features. Symbol JEDEC TO-220AB

Features. Symbol JEDEC TO-220AB Data Sheet June 1999 File Number 2253.2 3A, 5V,.4 Ohm, N-Channel Power MOSFET This is an N-Channel enhancement mode silicon gate power field effect transistor designed for applications such as switching

More information

BJT Characteristics and Amplifiers

BJT Characteristics and Amplifiers BJT Characteristics and Amplifiers Matthew Beckler beck0778@umn.edu EE2002 Lab Section 003 April 2, 2006 Abstract As a basic component in amplifier design, the properties of the Bipolar Junction Transistor

More information

Lecture 39: Intro to Differential Amplifiers. Context

Lecture 39: Intro to Differential Amplifiers. Context Lecture 39: Intro to Differential Amplifiers Prof J. S. Smith Context Next week is the last week of lecture, and we will spend those three lectures reiewing the material of the course, and looking at applications

More information

3 The TTL NAND Gate. Fig. 3.1 Multiple Input Emitter Structure of TTL

3 The TTL NAND Gate. Fig. 3.1 Multiple Input Emitter Structure of TTL 3 The TTL NAND Gate 3. TTL NAND Gate Circuit Structure The circuit structure is identical to the previous TTL inverter circuit except for the multiple emitter input transistor. This is used to implement

More information

Op-Amp Simulation EE/CS 5720/6720. Read Chapter 5 in Johns & Martin before you begin this assignment.

Op-Amp Simulation EE/CS 5720/6720. Read Chapter 5 in Johns & Martin before you begin this assignment. Op-Amp Simulation EE/CS 5720/6720 Read Chapter 5 in Johns & Martin before you begin this assignment. This assignment will take you through the simulation and basic characterization of a simple operational

More information

Analog & Digital Electronics Course No: PH-218

Analog & Digital Electronics Course No: PH-218 Analog & Digital Electronics Course No: PH-218 Lec-28: Logic Gates & Family Course Instructor: Dr. A. P. VAJPEYI Department of Physics, Indian Institute of Technology Guwahati, India 1 Digital Logic Gates

More information

Gates & Boolean Algebra. Boolean Operators. Combinational Logic. Introduction

Gates & Boolean Algebra. Boolean Operators. Combinational Logic. Introduction Introduction Gates & Boolean lgebra Boolean algebra: named after mathematician George Boole (85 864). 2-valued algebra. digital circuit can have one of 2 values. Signal between and volt =, between 4 and

More information

McPAT: An Integrated Power, Area, and Timing Modeling Framework for Multicore and Manycore Architectures

McPAT: An Integrated Power, Area, and Timing Modeling Framework for Multicore and Manycore Architectures McPAT: An Integrated Power, Area, and Timing Modeling Framework for Multicore and Manycore Architectures Sheng Li, Junh Ho Ahn, Richard Strong, Jay B. Brockman, Dean M Tullsen, Norman Jouppi MICRO 2009

More information

3. Diodes and Diode Circuits. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1

3. Diodes and Diode Circuits. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1 3. Diodes and Diode Circuits 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1 3.1 Diode Characteristics Small-Signal Diodes Diode: a semiconductor device, which conduct the current

More information

Nyquist data converter fundamentals Tuesday, February 8th, 9:15 11:35

Nyquist data converter fundamentals Tuesday, February 8th, 9:15 11:35 Sampling switches, charge injection, Nyquist data converter fundamentals Tuesday, February 8th, 9:15 11:35 Snorre Aunet (sa@ifi.uio.no) Nanoelectronics group Department of Informatics University of Oslo

More information

Interfacing 3V and 5V applications

Interfacing 3V and 5V applications Authors: Tinus van de Wouw (Nijmegen) / Todd Andersen (Albuquerque) 1.0 THE NEED FOR TERFACG BETWEEN 3V AND 5V SYSTEMS Many reasons exist to introduce 3V 1 systems, notably the lower power consumption

More information

CMOS Thyristor Based Low Frequency Ring Oscillator

CMOS Thyristor Based Low Frequency Ring Oscillator CMOS Thyristor Based Low Frequency Ring Oscillator Submitted by: PIYUSH KESHRI BIPLAB DEKA 4 th year Undergraduate Student 4 th year Undergraduate Student Electrical Engineering Dept. Electrical Engineering

More information

10 BIT s Current Mode Pipelined ADC

10 BIT s Current Mode Pipelined ADC 10 BIT s Current Mode Pipelined ADC K.BHARANI VLSI DEPARTMENT VIT UNIVERSITY VELLORE, INDIA kothareddybharani@yahoo.com P.JAYAKRISHNAN VLSI DEPARTMENT VIT UNIVERSITY VELLORE, INDIA pjayakrishnan@vit.ac.in

More information

5V Tolerance Techniques for CoolRunner-II Devices

5V Tolerance Techniques for CoolRunner-II Devices Application Note: Coolunner-II CPLDs XAPP429 (v1.0) August 8, 2003 5V Tolerance Techniques for Summary This document describes several different methods for interfacing 5V signals to Coolunner - II devices.

More information

Diodes and Transistors

Diodes and Transistors Diodes What do we use diodes for? Diodes and Transistors protect circuits by limiting the voltage (clipping and clamping) turn AC into DC (voltage rectifier) voltage multipliers (e.g. double input voltage)

More information

Introduction to VLSI Fabrication Technologies. Emanuele Baravelli

Introduction to VLSI Fabrication Technologies. Emanuele Baravelli Introduction to VLSI Fabrication Technologies Emanuele Baravelli 27/09/2005 Organization Materials Used in VLSI Fabrication VLSI Fabrication Technologies Overview of Fabrication Methods Device simulation

More information

Sequential 4-bit Adder Design Report

Sequential 4-bit Adder Design Report UNIVERSITY OF WATERLOO Faculty of Engineering E&CE 438: Digital Integrated Circuits Sequential 4-bit Adder Design Report Prepared by: Ian Hung (ixxxxxx), 99XXXXXX Annette Lo (axxxxxx), 99XXXXXX Pamela

More information

IRF150 [REF:MIL-PRF-19500/543] 100V, N-CHANNEL. Absolute Maximum Ratings

IRF150 [REF:MIL-PRF-19500/543] 100V, N-CHANNEL. Absolute Maximum Ratings PD - 90337G REPETITIVE AVALANCHE AND dv/dt RATED HEXFET TRANSISTORS THRU-HOLE (TO-204AA/AE) Product Summary Part Number BVDSS RDS(on) ID IRF150 100V 0.055Ω 38A IRF150 JANTX2N6764 JANTXV2N6764 [REF:MIL-PRF-19500/543]

More information

Use and Application of Output Limiting Amplifiers (HFA1115, HFA1130, HFA1135)

Use and Application of Output Limiting Amplifiers (HFA1115, HFA1130, HFA1135) Use and Application of Output Limiting Amplifiers (HFA111, HFA110, HFA11) Application Note November 1996 AN96 Introduction Amplifiers with internal voltage clamps, also known as limiting amplifiers, have

More information

Semiconductor doping. Si solar Cell

Semiconductor doping. Si solar Cell Semiconductor doping Si solar Cell Two Levels of Masks - photoresist, alignment Etch and oxidation to isolate thermal oxide, deposited oxide, wet etching, dry etching, isolation schemes Doping - diffusion/ion

More information

EE-612: Nanoscale Transistors (Advanced VLSI Devices) Spring 2005

EE-612: Nanoscale Transistors (Advanced VLSI Devices) Spring 2005 EE-612: Nanoscale Transistors (Advanced VLSI Devices) Spring 2005 Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA 765-494-3515 lundstro@purdue.edu 1 evolution

More information

A Review of MOS Device Physics

A Review of MOS Device Physics A Review of MOS Device Physics 1.0 Introduction This set of notes focuses on those aspects of transistor behavior that are of immediate relevance to the analog circuit designer. Separation of first order

More information

Power MOSFET Basics Abdus Sattar, IXYS Corporation

Power MOSFET Basics Abdus Sattar, IXYS Corporation Power MOSFET Basics Abdus Sattar, IXYS Corporation Power MOSFETs have become the standard choice for the main switching devices in a broad range of power conversion applications. They are majority carrier

More information

Fourth generation MOSFET model and its VHDL-AMS implementation

Fourth generation MOSFET model and its VHDL-AMS implementation Fourth generation MOSFET model and its VHDL-AMS implementation Fabien Prégaldiny and Christophe Lallement fabien.pregaldiny@phase.c-strasbourg.fr ERM-PHASE, Parc d innovation, BP 10413, 67412 Illkirch

More information

Application Note AN-1135

Application Note AN-1135 Application Note AN-1135 PCB Layout with IR Class D Audio Gate Drivers By Jun Honda, Connie Huang Table of Contents Page Application Note AN-1135... 1 0. Introduction... 2 0-1. PCB and Class D Audio Performance...

More information

Flash Memories. João Pela (52270), João Santos (55295) December 22, 2008 IST

Flash Memories. João Pela (52270), João Santos (55295) December 22, 2008 IST Flash Memories João Pela (52270), João Santos (55295) IST December 22, 2008 João Pela (52270), João Santos (55295) (IST) Flash Memories December 22, 2008 1 / 41 Layout 1 Introduction 2 How they work 3

More information

1ED Compact A new high performance, cost efficient, high voltage gate driver IC family

1ED Compact A new high performance, cost efficient, high voltage gate driver IC family 1ED Compact A new high performance, cost efficient, high voltage gate driver IC family Heiko Rettinger, Infineon Technologies AG, Am Campeon 1-12, 85579 Neubiberg, Germany, heiko.rettinger@infineon.com

More information

Basic FET Ampli ers 6.0 PREVIEW 6.1 THE MOSFET AMPLIFIER

Basic FET Ampli ers 6.0 PREVIEW 6.1 THE MOSFET AMPLIFIER C H A P T E R 6 Basic FET Ampli ers 6.0 PREVIEW In the last chapter, we described the operation of the FET, in particular the MOSFET, and analyzed and designed the dc response of circuits containing these

More information

Fundamentals of Microelectronics

Fundamentals of Microelectronics Fundamentals of Microelectronics H1 Why Microelectronics? H2 Basic Physics of Semiconductors H3 Diode ircuits H4 Physics of Bipolar ransistors H5 Bipolar Amplifiers H6 Physics of MOS ransistors H7 MOS

More information

Bipolar Junction Transistors

Bipolar Junction Transistors Bipolar Junction Transistors Physical Structure & Symbols NPN Emitter (E) n-type Emitter region p-type Base region n-type Collector region Collector (C) B C Emitter-base junction (EBJ) Base (B) (a) Collector-base

More information

" PCB Layout for Switching Regulators "

 PCB Layout for Switching Regulators 1 " PCB Layout for Switching Regulators " 2 Introduction Linear series pass regulator I L V IN V OUT GAIN REF R L Series pass device drops the necessary voltage to maintain V OUT at it s programmed value

More information

AN900 APPLICATION NOTE

AN900 APPLICATION NOTE AN900 APPLICATION NOTE INTRODUCTION TO SEMICONDUCTOR TECHNOLOGY INTRODUCTION by Microcontroller Division Applications An integrated circuit is a small but sophisticated device implementing several electronic

More information

AMPLIFIERS BJT BJT TRANSISTOR. Types of BJT BJT. devices that increase the voltage, current, or power level

AMPLIFIERS BJT BJT TRANSISTOR. Types of BJT BJT. devices that increase the voltage, current, or power level AMPLFERS Prepared by Engr. JP Timola Reference: Electronic Devices by Floyd devices that increase the voltage, current, or power level have at least three terminals with one controlling the flow between

More information

Chapter 2 Sources of Variation

Chapter 2 Sources of Variation Chapter 2 Sources of Variation Variations in process, supply voltage and temperature (PVT) have always been an issue in Integrated Circuit (IC) Design. In digital circuits, PVT fluctuations affect the

More information

Transmission Gate Characteristics

Transmission Gate Characteristics Transmission Gate Characteristics enb in outp (6/2) (6/2) outn 1G out en Figure 1. Transmission Gate Circuit for Simulation. The transmissionn gate is on when en=5v and enb=0v, assuming the bulk of PMOS

More information

RLC Resonant Circuits

RLC Resonant Circuits C esonant Circuits Andrew McHutchon April 20, 203 Capacitors and Inductors There is a lot of inconsistency when it comes to dealing with reactances of complex components. The format followed in this document

More information

Bipolar Junction Transistor Basics

Bipolar Junction Transistor Basics by Kenneth A. Kuhn Sept. 29, 2001, rev 1 Introduction A bipolar junction transistor (BJT) is a three layer semiconductor device with either NPN or PNP construction. Both constructions have the identical

More information