Aircraft Icing. FAR 25, Appendix C charts. Prof. Dr. Serkan ÖZGEN. Dept. Aerospace Engineering, METU Spring 2014

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Aircraft Icing. FAR 25, Appendix C charts. Prof. Dr. Serkan ÖZGEN. Dept. Aerospace Engineering, METU Spring 2014"

Transcription

1 Aircraft Icing FAR 25, Appendix C charts Prof. Dr. Serkan ÖZGEN Dept. Aerospace Engineering, METU Spring 2014

2 Outline FAR 25 and FAR 29 Appendix C charts Using FAR 25 Appendix C charts Liquid water content as a function of horizontal extent and ambient temperature Liquid water content as a function of horizontal extent and droplet size Alternative ways to document test data and compare with Appendix C Water catch rate (WCR) and total water catch (TWC) Icing severity definitions Variation of icing severity as a function of horizontal extent and ambient temperature Comparing test data with natural probabilities Serkan ÖZGEN 2

3 FAR 25 and FAR 29 Appendix C charts FAR 25 App. C consists of 6 figures. Has been in use since 1964 for selecting values of icing-related cloud variables for the design of inflight ice protection systems for aircraft. First 3 figures are known as continuous maximum conditions representing stratiform icing conditions or layer-type clouds. The last 3 figures are known as intermittent maximum conditions representing convective or cumuliform clouds and icing conditions. Serkan ÖZGEN 3

4 FAR 25 and FAR 29 Appendix C charts Traditionally, continuous maximum conditions have been applied to airframe icing protection, Intermittent maximum conditions have been applied to engine ice protection. Figures 1 and 4 indicate the probable maximum (99%) value of cloud water concentration (liquid water content LWC) expected over a specified reference distance for a given temperature and representative droplet size in the cloud. Reference distance: 17.4 nm (20 statute miles) for continuous maximum clouds, Reference distance: 2.6 nm (3 statute miles) for intermittent maximum clouds. Serkan ÖZGEN 4

5 FAR 25 and FAR 29 Appendix C charts The actual drop size distribution (typically 1-30 microns) in clouds is represented by a single variable droplet median volume diameter (MVD). Overall MVD 15 microns in stratiform clouds, Overall MVD 19 microns in convective clouds. The MVD has proven useful as a simple substitute for the actual droplet size distributions in ice accretion computations. Serkan ÖZGEN 5

6 Continuous maximum (stratiform) atmospheric icing conditions, Figure 1 Serkan ÖZGEN 6

7 Continuous maximum (stratiform) atmospheric icing conditions, Figure 2 Serkan ÖZGEN 7

8 Continuous maximum (stratiform) atmospheric icing conditions, Figure 3 Serkan ÖZGEN 8

9 Intermittent maximum (cumuliform) atmospheric icing conditions, Figure 4 Serkan ÖZGEN 9

10 Intermittent maximum (cumuliform) atmospheric icing conditions, Figure 5 Serkan ÖZGEN 10

11 Intermittent maximum (cumuliform) atmospheric icing conditions, Figure 6 Serkan ÖZGEN 11

12 Using FAR 25 Appendix C charts There is no comprehensive guide for using, interpretation and application of Appendix C. Design engineers typically select a conventionally recommended MVD and a temperature appropriate to the flight level of concern and use them to obtain the probable LWC from Figure 1 or 4 of Appendix C. Serkan ÖZGEN 12

13 Using FAR 25 Appendix C charts Selecting exposure distances (HE) LWC values obtained from Figure 1 or 4 are valid only for the reference distances of 17.4 nm or 2.6 nm, respectively. If there is a reason to design for a longer or shorter exposure distance, the LWC originally selected may be reduced or increased by a factor obtained from Figure 3 or 6 in Appendix C. Longer averaging distances will result in lower maximum LWC. Serkan ÖZGEN 13

14 Using FAR 25 Appendix C charts Selecting exposure distances (HE) Common applications: To estimate ice buildup amounts on unprotected surfaces during a long exposure of miles. LWC obtained from Figure 1 is reduced by the factor obtained from Figure 3. To estimate ice buildups on unprotected surfaces during a 45 minute hold. LWC obtained from Figure 1 is used at full value, without reduction. This assumes the worst case in which the holding pattern happens to be entirely within a 17.4 nm region of cloudiness containing the maximum probable LWC. Serkan ÖZGEN 14

15 Using FAR 25 Appendix C charts Selecting MVD values Common applications: For computing the impingement limits of droplets (chordwise extent of ice accretion) on an airfoil an absolute droplet diameter of 40 microns is used. In general, MVD=20 microns is used for the computation of ice accretion amounts for standard exposure distance (17.4 nm) or longer. Another reference recommends the use of the entire range of MVDs. The designer is advised to consider exposures to droplets with an MVD up to 40 microns over distances up to 17.4 nm at least. Serkan ÖZGEN 15

16 Using FAR 25 Appendix C charts Difficulties comparing with test data Users often wish to plot the points representing combinations of LWC, MVD and temperature used in Wet wind tunnel tests, Computer simulations, Test flights behind airborne spray tankers, and test flights in natural icing conditions. on Figures 1 and 4. The problem is that these figures are valid only for the fixed averaging distances. A better way is to convert Figures 1 and 4 to equivalent, distance based envelopes where the LWC curves have already been adjusted for the distance effect. Serkan ÖZGEN 16

17 Continuous maximum LWCs converted to distance adjusted values Serkan ÖZGEN 17

18 Intermittent maximum LWCs converted to distance adjusted values Serkan ÖZGEN 18

19 Appendix C curves converted to distance based format (MVD=15 m) Serkan ÖZGEN 19

20 LWC as a function of HE and T a (Continuous maximum, MVD=15μm) Serkan ÖZGEN 20

21 LWC as a function of HE and T a (Continuous maximum, MVD=20μm) Serkan ÖZGEN 21

22 LWC as a function of HE and T a (Continuous maximum, MVD=30μm) Serkan ÖZGEN 22

23 LWC as a function of HE and T a (Intermittent maximum, MVD=20μm) Serkan ÖZGEN 23

24 LWC as a function of HE and MVD (Continuous maximum, T a =0 o C) Serkan ÖZGEN 24

25 LWC as a function of HE and MVD (Intermittent maximum, T a =0 o C) Serkan ÖZGEN 25

26 The entire supercooled cloud database (660 icing events, nm in icing conditions) Serkan ÖZGEN 26

27 Graphing flight data (t exp =10 min, V =150knot) Serkan ÖZGEN 27

28 Graphing flight data (t exp =10 min, V =150knot) Serkan ÖZGEN 28

29 Sample flight data compared with Appendix C Continuous maximum, Appendix C, MVD=15μm Serkan ÖZGEN 29

30 Sample flight data compared with Appendix C Continuous maximum, Appendix C, T a =0 o C Serkan ÖZGEN 30

31 Icing tunnel test points on Appendix C envelopes Continuous maximum Serkan ÖZGEN 31

32 Icing tunnel test points on Appendix C envelopes Continuous maximum, MVD=20μm, V =174 kt Serkan ÖZGEN 32

33 Water catch rate In some applications, such as in testing thermal antiicing systems, the rate of water catch is important. For a given amount of LWC, the speed at which the aircraft flies through it and the droplet collection efficiency of the wing is important in determining how much heat is required to keep the leading edges at a required elevated temperature. Water catch rate is calculated from: WCR V tot LWC Serkan ÖZGEN 33

34 Water catch rate Serkan ÖZGEN 34

35 Total water catch Another item of interest for an icing encounter may be the total amount of ice accreted on certain components, such as unprotected surfaces. Here, the rate of water (ice) accumulation may not be important, but rather the total water catch during the encounter(s). The TWC may be useful for estimating the weight of ice accreted on aircraft components, except for any losses due to shedding or melting. Total water catch is calculated from: TWC tot HE LWC average Serkan ÖZGEN 35

36 Total water catch Serkan ÖZGEN 36

37 Acceptable Exposures What is an adequate exposure, or how much exposure is enough? This can be set in terms of TWC. Maximum TWC from the envelopes for a 17.4 nm exposure at the same temperature as the available icing conditions during the test flight can provide a reference. This can be used as the target TWC to be achieved during the test flight. Serkan ÖZGEN 37

38 Icing severity definitions Test exposures can be reported based on whether the encounters correspond to trace, light, moderate or severe icing conditions. Icing severity can be calculated from: db dt a V r Icing severity Trace Light Moderate Severe Time expired for 0.25 ice formation t > 1 hour 15 min < t < 60 min 5 min < t < 15 min t < 5 min Serkan ÖZGEN 38

39 Continuous maximum, Appendix C converted to icing severity envelopes Serkan ÖZGEN 39

40 Sample icing intensity compared with cont. Max., Appendix C, converted to icing severity envelopes Serkan ÖZGEN 40

41 Comparing test data with natural probabilities The differences between FAR 25 App. C and nature The envelopes in Appendix C do not show all the values that can exist in nature. They also do not give information about the probability of encountering various LWCs, MVDs, temperature durations in icing conditions. Only the probable maximum (99% percentile) values of LWC are shown. Designers of ice protection systems for military aircraft would like to consider lesser percentile values of LWC to accept more risk as a tradeoff against extra weight, space and electrical power reqirements. Serkan ÖZGEN 41

42 Comparing test data with natural probabilities Flight tests and icing wind tunnel tests Serkan ÖZGEN 42

43 Natural 99% limits vs altitude for highest temperatures available at the altitude (MVD=15-20 m) Serkan ÖZGEN 43

44 Natural probabilities for LWC averages at altitudes < 2500 ft AGL Serkan ÖZGEN 44

45 Natural probabilities for LWC averages at altitudes 5000 ft ± 2500 ft AGL Serkan ÖZGEN 45

46 Natural probabilities for LWC averages at altitudes ft ± 2500 ft AGL Serkan ÖZGEN 46

47 Natural probabilities for LWC averages at altitudes ft ± 2500 ft AGL Serkan ÖZGEN 47

48 Natural probabilities for LWC averages at altitudes ft ± 2500 ft AGL Serkan ÖZGEN 48

49 Sample flight data compared with natural probabilities for LWC averages at altitudes< 2500 ft Serkan ÖZGEN 49

50 Natural HE limits and 99% LWC limits for different MVDs in stratiform clouds at 0 o C to -10 o C Serkan ÖZGEN 50

51 Sample flight data compared with natural 99% LWC limits for different MVDs Serkan ÖZGEN 51

A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty of Military Technology, University of Defence, Brno, Czech Republic

A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty of Military Technology, University of Defence, Brno, Czech Republic AiMT Advances in Military Technology Vol. 8, No. 1, June 2013 Aerodynamic Characteristics of Multi-Element Iced Airfoil CFD Simulation A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty

More information

A HANDBOOK METHOD FOR THE ESTIMATION OF POWER REQUIREMENTS FOR ELECTRICAL DE-ICING SYSTEMS

A HANDBOOK METHOD FOR THE ESTIMATION OF POWER REQUIREMENTS FOR ELECTRICAL DE-ICING SYSTEMS AERO AIRCRAFT DESIGN AND SYSTEMS GROUP A HANDBOOK METHOD FOR THE ESTIMATION OF POWER REQUIREMENTS FOR ELECTRICAL DE-ICING SYSTEMS Oliver Meier Dieter Scholz Hamburg University of Applied Sciences Hamburg

More information

Cloud seeding. Frequently Asked Questions. What are clouds and how are they formed? How do we know cloud seeding works in Tasmania?

Cloud seeding. Frequently Asked Questions. What are clouds and how are they formed? How do we know cloud seeding works in Tasmania? What are clouds and how are they formed? Clouds are composed of water droplets and sometimes ice crystals. Clouds form when air that is rich in moisture near the Earth s surface rises higher into the atmosphere,

More information

WEATHER THEORY Temperature, Pressure And Moisture

WEATHER THEORY Temperature, Pressure And Moisture WEATHER THEORY Temperature, Pressure And Moisture Air Masses And Fronts Weather Theory- Page 77 Every physical process of weather is a result of a heat exchange. The standard sea level temperature is 59

More information

AIRCRAFT PERFORMANCE Pressure Altitude And Density Altitude

AIRCRAFT PERFORMANCE Pressure Altitude And Density Altitude Performance- Page 67 AIRCRAFT PERFORMANCE Pressure Altitude And Density Altitude Pressure altitude is indicated altitude corrected for nonstandard pressure. It is determined by setting 29.92 in the altimeter

More information

Roelof Bruintjes, Sarah Tessendorf, Jim Wilson, Rita Roberts, Courtney Weeks and Duncan Axisa WMA Annual meeting 26 April 2012

Roelof Bruintjes, Sarah Tessendorf, Jim Wilson, Rita Roberts, Courtney Weeks and Duncan Axisa WMA Annual meeting 26 April 2012 Aerosol affects on the microphysics of precipitation development in tropical and sub-tropical convective clouds using dual-polarization radar and airborne measurements. Roelof Bruintjes, Sarah Tessendorf,

More information

Glaciogenic Cloud Seeding to Increase Orographic Precipitation Bruce A. Boe bboe@weathermod.com Director of Meteorology

Glaciogenic Cloud Seeding to Increase Orographic Precipitation Bruce A. Boe bboe@weathermod.com Director of Meteorology Glaciogenic Cloud Seeding to Increase Orographic Precipitation Bruce A. Boe bboe@weathermod.com Director of Meteorology Weather Modification, Inc. Fargo, North Dakota, USA www.weathermodification.com Content

More information

AVIATION INVESTIGATION REPORT A02O0406 ROLL OSCILLATIONS ON LANDING

AVIATION INVESTIGATION REPORT A02O0406 ROLL OSCILLATIONS ON LANDING AVIATION INVESTIGATION REPORT A02O0406 ROLL OSCILLATIONS ON LANDING AIR CANADA AIRBUS 321-211, C-GJVX AND C-GIUF TORONTO/LESTER B. PEARSON INTERNATIONAL AIRPORT, ONTARIO 07 DECEMBER 2002 The Transportation

More information

SIXTH MEETING SUMMARY

SIXTH MEETING SUMMARY WAFSOPSG/6-IP/13 3/3/ /11 WORLD AREAA FORECAST SYSTEM OPERATIONS GROUP (WAFSOPSG) SIXTH MEETING Dakar, Senegal, 21 to 24 March 2011 Agenda Item 6: Development of the WAFS 6.1: Improved GRIB 2 forecasts

More information

Simple methodology to map and forecast icing for wind power

Simple methodology to map and forecast icing for wind power Simple methodology to map and forecast icing for wind power Winterwind 2014 Sundsvall 11-12.2.2014 Ville Lehtomäki, Simo Rissanen VTT Technical Research Centre of Finland 2 Outline Motivation, market potential

More information

EGAST Component of ESSI. European General Aviation Safety Team IN FLIGHT ICING GA 10

EGAST Component of ESSI. European General Aviation Safety Team IN FLIGHT ICING GA 10 EGAST Component of ESSI European General Aviation Safety Team IN FLIGHT ICING FOR GENERAL AVIATION PILOTS SAFETY PROMOTION LEAFLET GA 10 2 >> In Flight Icing In Flight Icing >> 3 CONTENT Introduction 4

More information

REVESE ENGINEERING HELICOPTER PERFORMANCE USING THE ROTORCRAFT FLIGHT MANUAL

REVESE ENGINEERING HELICOPTER PERFORMANCE USING THE ROTORCRAFT FLIGHT MANUAL REVESE ENGINEERING HELICOPTER PERFORMANCE USING THE ROTORCRAFT FLIGHT MANUAL James M. Eli Birch Bay, WA Email: JamesEli@earthlink.net November 10, 008 INTRODUCTION Aircraft weight and atmospheric conditions

More information

The Ice Crystal Weather Threat to Engines

The Ice Crystal Weather Threat to Engines The Ice Crystal Weather Threat to Engines Jeanne Mason Propulsion Operability Boeing Commercial Airplanes Boeing is a trademark of Boeing Management Company. Copyright 2006 The Boeing Company. All rights

More information

IN-FLIGHT ICING CHARACTERISTICS OF UNMANNED AERIAL VEHICLES DURING SPECIAL ATMOSPHERIC CONDITION OVER THE CARPATHIAN-BASIN

IN-FLIGHT ICING CHARACTERISTICS OF UNMANNED AERIAL VEHICLES DURING SPECIAL ATMOSPHERIC CONDITION OVER THE CARPATHIAN-BASIN IN-FLIGHT ICING CHARACTERISTICS OF UNMANNED AERIAL VEHICLES DURING SPECIAL ATMOSPHERIC CONDITION OVER THE CARPATHIAN-BASIN ZSOLT BOTTYÁN National University of Public Service, Department of Military Aviation

More information

THERMODYNAMICS / CHPTER 4. Lec. Saleh Hasson

THERMODYNAMICS / CHPTER 4. Lec. Saleh Hasson Saturation Temperature and Saturation Pressure Is water start to boil at 100 C? the statement water boils at 100 C is incorrect. The correct statement is water boils at 100 C at 1 atm pressure. The only

More information

In a majority of ice-crystal icing engine events, convective weather occurs in a very warm, moist, tropical-like environment. aero quarterly qtr_01 10

In a majority of ice-crystal icing engine events, convective weather occurs in a very warm, moist, tropical-like environment. aero quarterly qtr_01 10 In a majority of ice-crystal icing engine events, convective weather occurs in a very warm, moist, tropical-like environment. 22 avoiding convective Weather linked to Ice-crystal Icing engine events understanding

More information

Making Aviation Safer: Results of the National Aviation Weather Program s 10-Year Goal to Reduce Weather- Related Accidents by 80 Percent

Making Aviation Safer: Results of the National Aviation Weather Program s 10-Year Goal to Reduce Weather- Related Accidents by 80 Percent 1 Making Aviation Safer: Results of the National Aviation Weather Program s 10-Year Goal to Reduce Weather- Related Accidents by 80 Percent Friends/Partners of Aviation Weather October 9, 2008 Jud Stailey,

More information

Seasonal & Daily Temperatures. Seasons & Sun's Distance. Solstice & Equinox. Seasons & Solar Intensity

Seasonal & Daily Temperatures. Seasons & Sun's Distance. Solstice & Equinox. Seasons & Solar Intensity Seasonal & Daily Temperatures Seasons & Sun's Distance The role of Earth's tilt, revolution, & rotation in causing spatial, seasonal, & daily temperature variations Please read Chapter 3 in Ahrens Figure

More information

FLIGHT IN ICING CONDITIONS

FLIGHT IN ICING CONDITIONS FLIGHT IN ICING CONDITIONS SUMMARY Prepared by: Giuseppe Mingione (CIRA), Massimo Barocco (ANPAC) with the co-operation of: Eugenio Denti, Francesco Giuseppe Bindi (University of Pisa) On behalf of: French

More information

Clouds. Ulrike Lohmann Department of Physics and Atmospheric Science, Dalhousie University, Halifax, N. S., Canada

Clouds. Ulrike Lohmann Department of Physics and Atmospheric Science, Dalhousie University, Halifax, N. S., Canada Clouds Ulrike Lohmann Department of Physics and Atmospheric Science, Dalhousie University, Halifax, N. S., Canada Outline of this Lecture Overview of clouds Warm cloud formation Precipitation formation

More information

DIRECCION DE PERSONAL AERONAUTICO DPTO. DE INSTRUCCION PREGUNTAS Y OPCIONES POR TEMA

DIRECCION DE PERSONAL AERONAUTICO DPTO. DE INSTRUCCION PREGUNTAS Y OPCIONES POR TEMA MT DIREION DE PERSONL ERONUTIO DPTO. DE INSTRUION PREGUNTS Y OPIONES POR TEM Pag.: 1 TEM: 0321 INSTRUTOR_DVNED_06_ENR FLT & NVIGTION OD_PREG: PREGUNT: RPT: 6856 GIVEN: Departure path... straight out Takeoff

More information

Turbulence and Icing Nomek Helsinki Mar-Apr 2006 Sheldon Johnston

Turbulence and Icing Nomek Helsinki Mar-Apr 2006 Sheldon Johnston Turbulence and Icing Nomek Helsinki Mar-Apr 2006 Sheldon Johnston Contributing Organizations Nowcasting and Forecasting Significant weather charts Created using a number of sources to anticipate when and

More information

INVISIBLE TURBULENCE IN VICINITY OF CB / CUMULUS CELL

INVISIBLE TURBULENCE IN VICINITY OF CB / CUMULUS CELL In the following work a new approach to understanding some hidden facts about the Turbulence associated with CB & Cumulus clouds and methods to avoid it so as to promote comfortable flights have been explained

More information

TOPIC: CLOUD CLASSIFICATION

TOPIC: CLOUD CLASSIFICATION INDIAN INSTITUTE OF TECHNOLOGY, DELHI DEPARTMENT OF ATMOSPHERIC SCIENCE ASL720: Satellite Meteorology and Remote Sensing TERM PAPER TOPIC: CLOUD CLASSIFICATION Group Members: Anil Kumar (2010ME10649) Mayank

More information

Temperature Rise Above

Temperature Rise Above Spec-00488 E763.422.2211 763.422.2600 Thermal Management Heat Dissipation in Electrical Enclosures Thermal Management Heat Dissipation in Electrical Enclosures Heat Dissipation in Sealed Electrical Enclosures

More information

Marin Ising (sjøsprøyt) på fartøyer, MARICE prosjektet

Marin Ising (sjøsprøyt) på fartøyer, MARICE prosjektet Marin Ising (sjøsprøyt) på fartøyer, MARICE prosjektet Olga Shipilova 17 June 2014 1 DNV GL 2014 17 June 2014 SAFER, SMARTER, GREENER Sea Spray Icing 2 Impact of icing on ships and offshore structures

More information

Current Challenges in UAS Research Intelligent Navigation and Sense & Avoid

Current Challenges in UAS Research Intelligent Navigation and Sense & Avoid Current Challenges in UAS Research Intelligent Navigation and Sense & Avoid Joerg Dittrich Institute of Flight Systems Department of Unmanned Aircraft UAS Research at the German Aerospace Center, Braunschweig

More information

Iowa Fine Particulate Monitoring Network Design Values 2011-2013. Iowa DNR Ambient Air Monitoring Group

Iowa Fine Particulate Monitoring Network Design Values 2011-2013. Iowa DNR Ambient Air Monitoring Group Iowa Fine Particulate Monitoring Network Design Values 2011-2013 Iowa DNR Ambient Air Monitoring Group What is Fine Particulate Matter (PM 2.5 )? The term particulate matter (PM) includes both solid particles

More information

6.0 JET ENGINE WAKE AND NOISE DATA. 6.2 Airport and Community Noise

6.0 JET ENGINE WAKE AND NOISE DATA. 6.2 Airport and Community Noise 6.0 JET ENGINE WAKE AND NOISE DATA 6.1 Jet Engine Exhaust Velocities and Temperatures 6.2 Airport and Community Noise DECEMBER 2002 139 6.0 JET ENGINE WAKE AND NOISE DATA 6.1 Jet Engine Exhaust Velocities

More information

Beechcraft 1900D: Fuel, Emissions & Cost Savings Operational Analysis

Beechcraft 1900D: Fuel, Emissions & Cost Savings Operational Analysis Specific Range Solutions Ltd. Your partner in flight operations optimization omer.majeed@srs.aero / 1.613.883.5045 www.srs.aero Beechcraft 1900D: Fuel, Emissions & Cost Savings Operational Analysis by

More information

CENTRAL TEXAS COLLEGE SYLLABUS FOR AIRP 1307 AVIATION METEOROLOGY Semester Hours Credit: 3

CENTRAL TEXAS COLLEGE SYLLABUS FOR AIRP 1307 AVIATION METEOROLOGY Semester Hours Credit: 3 CENTRAL TEXAS COLLEGE SYLLABUS FOR AIRP 1307 AVIATION METEOROLOGY Semester Hours Credit: 3 INSTRUCTOR: OFFICE HOURS: I. INTRODUCTION A. The purpose of this course is to study Meteorology as it applies

More information

Supporting document to NORSOK Standard C-004, Edition 2, May 2013, Section 5.4 Hot air flow

Supporting document to NORSOK Standard C-004, Edition 2, May 2013, Section 5.4 Hot air flow 1 of 9 Supporting document to NORSOK Standard C-004, Edition 2, May 2013, Section 5.4 Hot air flow A method utilizing Computational Fluid Dynamics (CFD) codes for determination of acceptable risk level

More information

HW 8. G = a 3 G v. 6a 2. Problem a. To Find:

HW 8. G = a 3 G v. 6a 2. Problem a. To Find: HW 8 Problem 10. a. To Find: (a) The expression for total free energy change for a cubic nucleus, critical cube edge length, a*, and G* (b) Compare G* for a cube with that for a sphere b. Given: Nucleus

More information

Energy Matters Heat. Changes of State

Energy Matters Heat. Changes of State Energy Matters Heat Changes of State Fusion If we supply heat to a lid, such as a piece of copper, the energy supplied is given to the molecules. These start to vibrate more rapidly and with larger vibrations

More information

PRIVATE PILOT LICENCE AEROPLANE MANUAL SACAA-01 FOR EXAMINATION PURPOSES ONLY PLEASE DO NOT MARK ON OR DAMAGE THIS MANUAL IN ANY WAY OCTOBER 2008

PRIVATE PILOT LICENCE AEROPLANE MANUAL SACAA-01 FOR EXAMINATION PURPOSES ONLY PLEASE DO NOT MARK ON OR DAMAGE THIS MANUAL IN ANY WAY OCTOBER 2008 FLIGHT PERFORMANCE AND PLANNING PRIVATE PILOT LICENCE AEROPLANE MANUAL SACAA-01 FOR EXAMINATION PURPOSES ONLY PLEASE DO NOT MARK ON OR DAMAGE THIS MANUAL IN ANY WAY OCTOBER 2008 SOUTH AFRICAN CIVIL AVIATION

More information

V. Water Vapour in Air

V. Water Vapour in Air V. Water Vapour in Air V. Water Vapour in Air So far we have indicated the presence of water vapour in the air through the vapour pressure e that it exerts. V. Water Vapour in Air So far we have indicated

More information

Harvard wet deposition scheme for GMI

Harvard wet deposition scheme for GMI 1 Harvard wet deposition scheme for GMI by D.J. Jacob, H. Liu,.Mari, and R.M. Yantosca Harvard University Atmospheric hemistry Modeling Group Februrary 2000 revised: March 2000 (with many useful comments

More information

NATIONAL RESEARCH COUNCIL CANADA. DIVISION OF BUILn ING RESEARCH DESIGN OF EXPOSED SEWER PIPES FOR INTERMITTENT USE UNDER FREEZING CONDITIONS

NATIONAL RESEARCH COUNCIL CANADA. DIVISION OF BUILn ING RESEARCH DESIGN OF EXPOSED SEWER PIPES FOR INTERMITTENT USE UNDER FREEZING CONDITIONS NATIONAL RESEARCH COUNCIL CANADA DIVISION OF BUILn ING RESEARCH DESIGN OF EXPOSED SEWER PIPES FOR INTERMITTENT USE UNDER FREEZING CONDITIONS D,G, by Stephenson Report No, 166 of the Division of Building

More information

Earth Science Lecture Summary Notes Chapter 7 - Water and Atmospheric Moisture

Earth Science Lecture Summary Notes Chapter 7 - Water and Atmospheric Moisture Earth Science Lecture Summary Notes Chapter 7 - Water and Atmospheric Moisture (based on Christopherson, Geosystems, 6th Ed., 2006) Prof. V.J. DiVenere - Dept. Earth & Environmental Science - LIU Post

More information

Performance 4. Fluid Statics, Dynamics, and Airspeed Indicators

Performance 4. Fluid Statics, Dynamics, and Airspeed Indicators Performance 4. Fluid Statics, Dynamics, and Airspeed Indicators From our previous brief encounter with fluid mechanics we developed two equations: the one-dimensional continuity equation, and the differential

More information

Chapter 6 - Cloud Development and Forms. Interesting Cloud

Chapter 6 - Cloud Development and Forms. Interesting Cloud Chapter 6 - Cloud Development and Forms Understanding Weather and Climate Aguado and Burt Interesting Cloud 1 Mechanisms that Lift Air Orographic lifting Frontal Lifting Convergence Localized convective

More information

SPECIFIC FEATURES OF HIGH PRESSURE WATER SEPARATION IN AIRCRAFT ENVIRONMENTAL CONTROL SYSTEMS

SPECIFIC FEATURES OF HIGH PRESSURE WATER SEPARATION IN AIRCRAFT ENVIRONMENTAL CONTROL SYSTEMS H INERNAIONAL CONGRESS OF HE AERONAUICAL SCIENCES SPECIFIC FEAURES OF HIGH PRESSURE WAER SEPARAION IN AIRCRAF ENVIRONMENAL CONROL SYSEMS Yury M. Shustrov Moscow Aviation Institute, Russia Keywords: aircraft

More information

NIFA REGIONAL SAFECON 2006 Manual Flight Computer Accuracy Explanations

NIFA REGIONAL SAFECON 2006 Manual Flight Computer Accuracy Explanations NIFA REGIONAL SAFECON 2006 Manual Flight Computer Accuracy Explanations Note to competitor: This will offer some basic help in solving the problems on the test. There is often more than one way to correctly

More information

Wintry weather: improved nowcasting through data fusion

Wintry weather: improved nowcasting through data fusion Wintry weather: improved nowcasting through data fusion Arnold Tafferner, Felix Keis DLR Institut für Physik der Atmosphäre (IPA) Wetter&Fliegen Final Colloquium, MAC MUC, 15 March 2012 1 Outline The problem

More information

Performance. 12. Gliding Flight (Steady State)

Performance. 12. Gliding Flight (Steady State) Performance 12. Gliding Flight (Steady State) If the engine is turned off, (T = 0), and one desires to maintain airspeed, it is necessary to put the vehicle at such an attitude that the component of the

More information

Fog and Cloud Development. Bows and Flows of Angel Hair

Fog and Cloud Development. Bows and Flows of Angel Hair Fog and Cloud Development Bows and Flows of Angel Hair 1 Ch. 5: Condensation Achieving Saturation Evaporation Cooling of Air Adiabatic and Diabatic Processes Lapse Rates Condensation Condensation Nuclei

More information

Simultaneous ground based radar reflectivity measurements and airborne electric

Simultaneous ground based radar reflectivity measurements and airborne electric Lightning Hazards to Aircraft and Launchers A. Delannoy (Onera) P. Gondot (Airbus) E-mail: pascal.gondot@airbus.com Airborne Measurements of the Charge of Precipitating Particles Related to Radar Reflectivity

More information

LEADER GUIDE for MODULE ONE

LEADER GUIDE for MODULE ONE LEADER GUIDE for MODULE ONE INTRODUCTION TO FLIGHT Chapter One Flight Learning Outcomes--Upon completion of this chapter, the cadet should know: The relationship between Bernoulli s Principle, Newton s

More information

Performance. Power Plant Output in Terms of Thrust - General - Arbitrary Drag Polar

Performance. Power Plant Output in Terms of Thrust - General - Arbitrary Drag Polar Performance 11. Level Flight Performance and Level flight Envelope We are interested in determining the maximum and minimum speeds that an aircraft can fly in level flight. If we do this for all altitudes,

More information

Selection of Wires and Circuit Protective Devices for STS Orbiter Vehicle Payload Electrical Circuits

Selection of Wires and Circuit Protective Devices for STS Orbiter Vehicle Payload Electrical Circuits NASA Technical Memorandum 102179 Selection of Wires and Circuit Protective Devices for STS Orbiter Vehicle Payload Electrical Circuits Darilyn M. Gaston Lyndon B. Johnson Space Center Houston, Texas National

More information

Content DESCRIPTIVE STATISTICS. Data & Statistic. Statistics. Example: DATA VS. STATISTIC VS. STATISTICS

Content DESCRIPTIVE STATISTICS. Data & Statistic. Statistics. Example: DATA VS. STATISTIC VS. STATISTICS Content DESCRIPTIVE STATISTICS Dr Najib Majdi bin Yaacob MD, MPH, DrPH (Epidemiology) USM Unit of Biostatistics & Research Methodology School of Medical Sciences Universiti Sains Malaysia. Introduction

More information

6.0 JET ENGINE WAKE AND NOISE DATA. 6.1 Jet Engine Exhaust Velocities and Temperatures. 6.2 Airport and Community Noise

6.0 JET ENGINE WAKE AND NOISE DATA. 6.1 Jet Engine Exhaust Velocities and Temperatures. 6.2 Airport and Community Noise 6.0 JET ENGINE WAKE AND NOISE DATA 6.1 Jet Engine Exhaust Velocities and Temperatures 6.2 Airport and Community Noise AUGUST 2009 113 6.0 JET ENGINE WAKE AND NOISE DATA 6.1 Jet Engine Exhaust Velocities

More information

APP Aircraft Performance Program Demo Notes Using Cessna 172 as an Example

APP Aircraft Performance Program Demo Notes Using Cessna 172 as an Example APP Aircraft Performance Program Demo Notes Using Cessna 172 as an Example Prepared by DARcorporation 1. Program Layout & Organization APP Consists of 8 Modules, 5 Input Modules and 2 Calculation Modules.

More information

Compiled by Matt Zagoren

Compiled by Matt Zagoren The information provided in this document is to be used during simulated flight only and is not intended to be used in real life. Attention VA's - you may post this file on your site for download. Please

More information

Weather Journals: a. copying forecast text b. figure captions. d. citing source material e. units

Weather Journals: a. copying forecast text b. figure captions. d. citing source material e. units Weather Journals: a. copying forecast text b. figure captions c. linking figures with text d. citing source material e. units In the News: http://www.reuters.com In the News: warmer waters in the Pacific

More information

Chapter 3: Weather Map. Station Model and Weather Maps Pressure as a Vertical Coordinate Constant Pressure Maps Cross Sections

Chapter 3: Weather Map. Station Model and Weather Maps Pressure as a Vertical Coordinate Constant Pressure Maps Cross Sections Chapter 3: Weather Map Station Model and Weather Maps Pressure as a Vertical Coordinate Constant Pressure Maps Cross Sections Weather Maps Many variables are needed to described dweather conditions. Local

More information

Frost Damage of Roof Tiles in Relatively Warm Areas in Japan

Frost Damage of Roof Tiles in Relatively Warm Areas in Japan Frost Damage of Roof Tiles in Relatively Warm Areas in Japan Influence of Surface Finish on Water Penetration Chiemi IBA Hokkaido Research Organization, Japan Shuichi HOKOI Kyoto University, Japan INTRODUCTION

More information

Mixing Heights & Smoke Dispersion. Casey Sullivan Meteorologist/Forecaster National Weather Service Chicago

Mixing Heights & Smoke Dispersion. Casey Sullivan Meteorologist/Forecaster National Weather Service Chicago Mixing Heights & Smoke Dispersion Casey Sullivan Meteorologist/Forecaster National Weather Service Chicago Brief Introduction Fire Weather Program Manager Liaison between the NWS Chicago office and local

More information

Principles of Flight. There are four major forces acting on an aircraft: Gravity Lift Drag Thrust. lift. thrust. drag. gravity

Principles of Flight. There are four major forces acting on an aircraft: Gravity Lift Drag Thrust. lift. thrust. drag. gravity Principles of Flight There are four major forces acting on an aircraft: Gravity Lift Drag Thrust Gravity Gravity is the downward force that keeps the airplane on the ground or pulls the airplane toward

More information

Computational Aerodynamic Analysis on Store Separation from Aircraft using Pylon

Computational Aerodynamic Analysis on Store Separation from Aircraft using Pylon International Journal of Engineering Science Invention (IJESI) ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 www.ijesi.org ǁ PP.27-31 Computational Aerodynamic Analysis on Store Separation from Aircraft

More information

Chapter 3: Weather Map. Weather Maps. The Station Model. Weather Map on 7/7/2005 4/29/2011

Chapter 3: Weather Map. Weather Maps. The Station Model. Weather Map on 7/7/2005 4/29/2011 Chapter 3: Weather Map Weather Maps Many variables are needed to described weather conditions. Local weathers are affected by weather pattern. We need to see all the numbers describing weathers at many

More information

Chapter 8, Part 1. How do droplets grow larger? Cloud Droplets in Equilibrium. Precipitation Processes

Chapter 8, Part 1. How do droplets grow larger? Cloud Droplets in Equilibrium. Precipitation Processes Chapter 8, Part 1 Precipitation Processes How do droplets grow larger? Cloud contain water droplets, but a cloudy sky does not always mean rain. Cloud Droplets in Equilibrium In equilibrium water molecules

More information

Formation & Classification

Formation & Classification CLOUDS Formation & Classification DR. K. K. CHANDRA Department of forestry, Wildlife & Environmental Sciences, GGV, Bilaspur What is Cloud It is mass of tiny water droplets or ice crystals or both of size

More information

Experimental Evaluation of Cruise Flap Deflection on Total Aircraft Drag using the NLF(1)-0215F. C. Zavatson

Experimental Evaluation of Cruise Flap Deflection on Total Aircraft Drag using the NLF(1)-0215F. C. Zavatson Experimental Evaluation of Cruise Flap Deflection on Total Aircraft Drag using the NLF(1)-0215F C. Zavatson 3-16-2013 Table of Contents Introduction... 3 Objective and Testing Approach... 3 The Test Aircraft...

More information

Noise Certification Workshop

Noise Certification Workshop Noise Certification Workshop Session 2: Aircraft Noise Certification Annex 16, Volume I and equivalent procedures Jan Böttcher Luftfahrt-Bundesamt, Braunschweig, Germany Montreal, 20 to 21 October 2004

More information

Flight Operations Support & Line Assistance. getting to grips with. fuel economy

Flight Operations Support & Line Assistance. getting to grips with. fuel economy Flight Operations Support & Line Assistance getting to grips with fuel economy Issue 4 - October 2004 Flight Operations Support & Line Assistance Customer Services 1, rond-point Maurice Bellonte, BP 33

More information

FACTUAL REPORT AVIATION

FACTUAL REPORT AVIATION Aircraft Registration Number: N8098T Occurrence Date: Occurrence Type: 03/07/005 Accident Most Critical Injury: Minor Investigated By: NTSB Location/Time Nearest City/Place Shreveport Zip Code Local Time

More information

CHAPTER 6: WEATHER FOR SOARING

CHAPTER 6: WEATHER FOR SOARING CHAPTER 6: WEATHER FOR SOARING Weather patterns on Earth are complicated and chaotic. Weather is a result of the atmosphere s constant attempt to reach equilibrium. This equilibrium is continually upset

More information

Convec,on, cloud and radia,on

Convec,on, cloud and radia,on Convec,on, cloud and radia,on Convection redistributes the thermal energy yielding (globally-averaged), a mean lapse rate of ~ -6.5 o C/km. Radiative processes tend to produce a more negative temperature

More information

Performance. 13. Climbing Flight

Performance. 13. Climbing Flight Performance 13. Climbing Flight In order to increase altitude, we must add energy to the aircraft. We can do this by increasing the thrust or power available. If we do that, one of three things can happen:

More information

Chapter 6: Cloud Development and Forms

Chapter 6: Cloud Development and Forms Chapter 6: Cloud Development and Forms (from The Blue Planet ) Why Clouds Form Static Stability Cloud Types Why Clouds Form? Clouds form when air rises and becomes saturated in response to adiabatic cooling.

More information

Vacuum. How It Relates to Refrigeration And Air Conditioning Service

Vacuum. How It Relates to Refrigeration And Air Conditioning Service Vacuum How It Relates to Refrigeration And Air Conditioning Service Moisture In A Refrigeration System Visible Moisture Water Droplets Uncommon, but it can occur Invisible Moisture Water Vapor Found in

More information

AE 451 Aeronautical Engineering Design I Special Considerations. Prof. Dr. Serkan Özgen Dept. Aerospace Engineering November 2015

AE 451 Aeronautical Engineering Design I Special Considerations. Prof. Dr. Serkan Özgen Dept. Aerospace Engineering November 2015 AE 451 Aeronautical Engineering Design I Special Considerations Prof. Dr. Serkan Özgen Dept. Aerospace Engineering November 2015 Aerodynamic considerations Design arrangement: Overall arrangement and smoothness

More information

SURFACE SOURCE OF ICE PARTICLES IN MOUNTAIN CLOUDS

SURFACE SOURCE OF ICE PARTICLES IN MOUNTAIN CLOUDS SURFACE SOURCE OF ICE PARTICLES IN MOUNTAIN CLOUDS Gabor Vali, Bart Geerts, David Leon and Jefferson R. Snider. Department of Atmospheric Science, University of Wyoming Laramie, WY USA.

More information

E6-B Flight Computer Instructions 1992 2000 ASA. Aviation Supplies & Academics, Inc. 7005 132nd Place SE Newcastle, WA 98059-3153

E6-B Flight Computer Instructions 1992 2000 ASA. Aviation Supplies & Academics, Inc. 7005 132nd Place SE Newcastle, WA 98059-3153 E6-B Flight Computer Instructions This instruction booklet can be used with the three different E6-B models available from ASA. If you have a different model than the one depicted, some parts of your computer

More information

Reading Assignment: A&B: Ch. 5 (p. 123-134) CD: Tutorials 3 & 4 (Atm. Moisture; Adiab. Proc.) Interactive Ex.: Moisture LM: Lab# 7

Reading Assignment: A&B: Ch. 5 (p. 123-134) CD: Tutorials 3 & 4 (Atm. Moisture; Adiab. Proc.) Interactive Ex.: Moisture LM: Lab# 7 G109: 7. Moisture 1 7. MOISTURE Reading Assignment: A&B: Ch. 5 (p. 123-134) CD: Tutorials 3 & 4 (Atm. Moisture; Adiab. Proc.) Interactive Ex.: Moisture LM: Lab# 7 1. Introduction Moisture in the atmosphere:

More information

Energy Pathways in Earth s Atmosphere

Energy Pathways in Earth s Atmosphere BRSP - 10 Page 1 Solar radiation reaching Earth s atmosphere includes a wide spectrum of wavelengths. In addition to visible light there is radiation of higher energy and shorter wavelength called ultraviolet

More information

EUROPEAN STANDARDS PERSONAL PROTECTIVE CLOTHING FOR FLAME RESISTANT. Alexander Gstettner, Lenzing AG Austria

EUROPEAN STANDARDS PERSONAL PROTECTIVE CLOTHING FOR FLAME RESISTANT. Alexander Gstettner, Lenzing AG Austria EUROPEAN STANDARDS FOR FLAME RESISTANT PERSONAL PROTECTIVE CLOTHING Alexander Gstettner, Lenzing AG Austria W a t e r How are the standards organized? A 1 Testing Methods Standards specifiying performance

More information

Performance. 15. Takeoff and Landing

Performance. 15. Takeoff and Landing Performance 15. Takeoff and Landing The takeoff distance consists of two parts, the ground run, and the distance from where the vehicle leaves the ground to until it reaches 50 ft (or 15 m). The sum of

More information

Introduction to the forecasting world Jukka Julkunen FMI, Aviation and military WS

Introduction to the forecasting world Jukka Julkunen FMI, Aviation and military WS Boundary layer challenges for aviation forecaster Introduction to the forecasting world Jukka Julkunen FMI, Aviation and military WS 3.12.2012 Forecast for general public We can live with it - BUT Not

More information

THE HUMIDITY/MOISTURE HANDBOOK

THE HUMIDITY/MOISTURE HANDBOOK THE HUMIDITY/MOISTURE HANDBOOK Table of Contents Introduction... 3 Relative Humidity... 3 Partial Pressure... 4 Saturation Pressure (Ps)... 5 Other Absolute Moisture Scales... 8 % Moisture by Volume (%M

More information

- Particle Image Velocimetry Development of a Promising Tool for In-Flight Flow Field Measurements

- Particle Image Velocimetry Development of a Promising Tool for In-Flight Flow Field Measurements - Particle Image Velocimetry Development of a Promising Tool for In-Flight Flow Field Measurements C. Politz, R. Konrath, A. Schröder, J. Agocs German Aerospace Center (DLR Göttingen) Institute of Aerodynamics

More information

Chapter 4 Estimation of wing loading and thrust loading (Lectures 9 to 18)

Chapter 4 Estimation of wing loading and thrust loading (Lectures 9 to 18) Chapter 4 Estimation of wing loading and thrust loading (Lectures 9 to 18) Keywords : Choice of wing loading based on considerations of landing field length, prescribed flight speed, absolute ceiling,

More information

Not all clouds are easily classified! Cloud Classification schemes. Clouds by level 9/23/15

Not all clouds are easily classified! Cloud Classification schemes. Clouds by level 9/23/15 Cloud Classification schemes 1) classified by where they occur (for example: high, middle, low) 2) classified by amount of water content and vertical extent (thick, thin, shallow, deep) 3) classified by

More information

1.0 What Are the Purpose and Applicability of Performance Specification 11?

1.0 What Are the Purpose and Applicability of Performance Specification 11? While we have taken steps to ensure the accuracy of this Internet version of the document, it is not the official version. Please refer to the official version in the FR publication, which appears on the

More information

The GFS weather model

The GFS weather model The GFS weather model The Global Forecast System (GFS) is a numerical weather model of the National Weather Service and the National Oceanic and Atmospheric Administration (NOAA), USA. A numerical weather

More information

Flight Operations Briefing Notes

Flight Operations Briefing Notes Flight Operations Briefing Notes I Introduction Although more and more aircraft are equipped with one or two airborne weather radars, incursions into very active cumulonimbus still occur, resulting in

More information

PPLFDC02 Conduct pre-flight planning

PPLFDC02 Conduct pre-flight planning Overview This unit is about preparing for flight and implementing a flight plan. You must take account of all significant factors that may affect the flight. You should be aware of what effect revising

More information

TECHNICAL GUIDE. Call 800-624-2766 or visit 1 SOLENOID DESIGN & OPERATION

TECHNICAL GUIDE. Call 800-624-2766 or visit  1 SOLENOID DESIGN & OPERATION Definition & Operation Linear solenoids are electromechanical devices which convert electrical energy into a linear mechanical motion used to move an external load a specified distance. Current flow through

More information

Four years of monitoring a wind turbine under icing conditions

Four years of monitoring a wind turbine under icing conditions Four years of monitoring a wind turbine under icing conditions Cattin René 1, Russi Markus, Russi Gabriela METEOTEST Fabrikstrasse 14, 3012 Bern, Switzerland +41 31 307 26 26, rene.cattin@meteotest.ch

More information

The Dramatic Effects of Pitot-Static System Blockages and Failures. References... 51

The Dramatic Effects of Pitot-Static System Blockages and Failures. References... 51 The Dramatic Effects of Pitot-Static System Blockages and Failures by Luiz Roberto Monteiro de Oliveira. Table of Contents I II III IV V VI Introduction.1 Pitot Static Instruments..3 Blockage Scenarios

More information

ACFM vs. SCFM vs. ICFM Series of Technical White Papers from Ohio Medical Corporation

ACFM vs. SCFM vs. ICFM Series of Technical White Papers from Ohio Medical Corporation ACFM vs. SCFM vs. ICFM Series of Technical White Papers from Ohio Medical Corporation Ohio Medical Corporation 1111 Lakeside Drive Gurnee, IL 60031 Phone: (800) 448-0770 Fax: (847) 855-6304 info@ohiomedical.com

More information

Allan C. Ramsay Science Applications International Corporation (SAIC), Sterling, Virginia

Allan C. Ramsay Science Applications International Corporation (SAIC), Sterling, Virginia 6.5 FREEZING DRIZZLE (FZDZ) IDENTIFICATION FROM THE AUTOMATED SURFACE OBSERVING SYSTEM (ASOS): STATUS OF THE ASOS MULTI-SENSOR FZDZ ALGORITHM Allan C. Ramsay Science Applications International Corporation

More information

SENSOR SYSTEMS. Total Temperature Sensors Technical Report 5755

SENSOR SYSTEMS. Total Temperature Sensors Technical Report 5755 SENSOR SYSTEMS Total Temperature Sensors Technical Report 5755 GOODRICH TOTAL TEMPERATURE SENSORS Technical Report 5755 Revision C, 1994 By Truman M. Stickney, Marvin W. Shedlov, Donald I. Thompson This

More information

Executive Summary: Environmental Assessment (EA) Supersonic Flight Training 5 Wing Goose Bay

Executive Summary: Environmental Assessment (EA) Supersonic Flight Training 5 Wing Goose Bay Executive Summary: Environmental Assessment (EA) Supersonic Flight Training 5 Wing Goose Bay Issue: The potential impact on land below the Labrador portion of 5 Wing Goose Bay Air Range CYA 732 due to

More information

Using ASA s Flight Planner

Using ASA s Flight Planner Using ASA s Flight Planner A flight log is an important part in the preparation for a safe flight. The flight log is needed during flight to check your groundspeed and monitor flight progress to ensure

More information

Diurnal Cycle: Cloud Base Height clear sky

Diurnal Cycle: Cloud Base Height clear sky Diurnal Cycle: Cloud Base Height clear sky Helsinki CNN I Madrid, 16 Dezember 2002 1 Cabauw Geesthacht Cabauw Geesthacht Helsinki Helsinki Petersburg Potsdam Petersburg Potsdam CNN I CNN II Madrid, 16

More information

Convective Clouds. Convective clouds 1

Convective Clouds. Convective clouds 1 Convective clouds 1 Convective Clouds Introduction Convective clouds are formed in vertical motions that result from the instability of the atmosphere. This instability can be caused by: a. heating at

More information

This chapter discusses: 1. Definitions and causes of stable and unstable atmospheric air. 2. Processes that cause instability and cloud development

This chapter discusses: 1. Definitions and causes of stable and unstable atmospheric air. 2. Processes that cause instability and cloud development Stability & Cloud Development This chapter discusses: 1. Definitions and causes of stable and unstable atmospheric air 2. Processes that cause instability and cloud development Stability & Movement A rock,

More information

AIRSPACE EXPLAINED. Separation of Traffic

AIRSPACE EXPLAINED. Separation of Traffic AIRSPACE EXPLAINED Airspace is an area of aeronautical knowledge that is commonly poorly demonstrated on airman practical tests. Even when airman applicants demonstrate knowledge of the airspace system

More information