Part 7: Topographic Maps and Contour Lines

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Part 7: Topographic Maps and Contour Lines"

Transcription

1 Part 7: Topographic Maps and Contour Lines SCALE We have already discussed horizontal scales: for example:. SCALE The vertical scale is also known as. It shows how the looks in. Contour Lines: Contour lines are used to determine and are on a map that are produced from of equal (elevation refers to height in feet, or meters, above sea level). Every on a contour line represents the same. Contour lines can never one another. Each line represents a elevation, and you can t have two elevations at the same point. Moving from one line to another always indicates a change in. To determine if it is a positive ( ) or negative ( ) change you must look at the contours on either. The contour lines are to one another, the the slope is in the real world. If the contour lines are it is a slope, if they are not evenly spaced the slope. Creating topographic profiles: Remember that topographic maps represent a view of the landscape as seen from. For producing a detailed study of a it is necessary to construct a topographic or through a particular interval. A topographic profile is a view along a line drawn through a portion of a topographic map.

2 Part 7: Topographic Maps and Contour Lines HORIZONTAL SCALE We have already discussed horizontal scales: for example: 1:100,000. VERTICAL SCALE The vertical scale is also known as contour intervals. It shows how the surface looks in 3-D space. Contour Lines: Contour lines are used to determine elevations and are lines on a map that are produced from connecting points of equal elevation (elevation refers to height in feet, or meters, above sea level). Every point on a contour line represents the exact same elevation. Contour lines can never cross one another. Each line represents a separate elevation, and you can t have two different elevations at the same point. Moving from one contour line to another always indicates a change in elevation. To determine if it is a positive (uphill) or negative (downhill) change you must look at the contours on either side. The closer contour lines are to one another, the steeper the slope is in the real world. If the contour lines are evenly spaced it is a constant slope, if they are not evenly spaced the slope changes. Creating topographic profiles: Remember that topographic maps represent a view of the landscape as seen from above. For producing a detailed study of a landform it is necessary to construct a topographic profile or cross-section through a particular interval. A topographic profile is a cross-sectional view along a line drawn through a portion of a topographic map.

3 A profile may be constructed quickly and accurately across any straight line on a map by following this procedure:

4 Contour Lines of a Stream Bed

5

6 HOW-TO GUIDE : Topographic Profile (Cross-section) 1) Pencil the line of your interest in lightly on your map. 2) Place a blank piece of paper along the line you have drawn. 3) On both the blank paper and the map, mark clearly the starting and ending points of your line of section. Below these marks, write down the elevation of the starting and ending points of your section. 4) Make a tic mark wherever the paper crosses a contour line on the map. Write the elevation of the contours below their tics on your paper. Make a note of the highest and lowest points on the profile for use later. 5) Once you are certain you have all of the appropriate tic marks and elevations, remove your paper from the map. Get a piece of graph paper that is at least as long as your line of section (you can piece them together if you have to, but make sure all the grids line up). Place your paper with the tic marks on the graph paper (once again, you may want to tape it down) and mark the starting and ending points of your line of section on the graph paper. 6) Draw vertical lines above your starting and ending points, these will be the boundaries of your profile. Use the maximum and minimum elevations along your line of section to determine how long to draw these lines.

7 7) Beginning with your starting elevation, go directly above the tic mark on your paper and make a small dot on the graph paper at the corresponding elevation. Make a small dot for each tic mark on your paper. 8) Connect the dots on the graph paper, and you have a topographic profile!

8 TO DO: Create a cross section (topographic profile) of A to B from this map. Assume the length from A to B is 500 m. Draw your cross section on the grid. A B

TOPOGRAPHIC MAPS. RELIEF (brown) Hills, valleys, mountains, plains, etc. WATER. land boundaries, etc. CULTURAL

TOPOGRAPHIC MAPS. RELIEF (brown) Hills, valleys, mountains, plains, etc. WATER. land boundaries, etc. CULTURAL TOPOGRAPHIC MAPS MAP 2-D REPRESENTATION OF THE EARTH S SURFACE TOPOGRAPHIC MAP A graphic representation of the 3-D configuration of the earth s surface. This is it shows elevations (third dimension). It

More information

The slope m of the line passes through the points (x 1,y 1 ) and (x 2,y 2 ) e) (1, 3) and (4, 6) = 1 2. f) (3, 6) and (1, 6) m= 6 6

The slope m of the line passes through the points (x 1,y 1 ) and (x 2,y 2 ) e) (1, 3) and (4, 6) = 1 2. f) (3, 6) and (1, 6) m= 6 6 Lines and Linear Equations Slopes Consider walking on a line from left to right. The slope of a line is a measure of its steepness. A positive slope rises and a negative slope falls. A slope of zero means

More information

Linear functions Increasing Linear Functions. Decreasing Linear Functions

Linear functions Increasing Linear Functions. Decreasing Linear Functions 3.5 Increasing, Decreasing, Max, and Min So far we have been describing graphs using quantitative information. That s just a fancy way to say that we ve been using numbers. Specifically, we have described

More information

FUNDAMENTALS OF LANDSCAPE TECHNOLOGY GSD Harvard University Graduate School of Design Department of Landscape Architecture Fall 2006

FUNDAMENTALS OF LANDSCAPE TECHNOLOGY GSD Harvard University Graduate School of Design Department of Landscape Architecture Fall 2006 FUNDAMENTALS OF LANDSCAPE TECHNOLOGY GSD Harvard University Graduate School of Design Department of Landscape Architecture Fall 2006 6106/ M2 BASICS OF GRADING AND SURVEYING Laura Solano, Lecturer Name

More information

Topographic Maps Practice Questions and Answers Revised October 2007

Topographic Maps Practice Questions and Answers Revised October 2007 Topographic Maps Practice Questions and Answers Revised October 2007 1. In the illustration shown below what navigational features are represented by A, B, and C? Note that A is a critical city in defining

More information

Watershed Delineation

Watershed Delineation ooooo Appendix D: Watershed Delineation Department of Environmental Protection Stream Survey Manual 113 Appendix D: Watershed Delineation Imagine a watershed as an enormous bowl. As water falls onto the

More information

Slope and Topographic Maps

Slope and Topographic Maps Slope and Topographic Maps Lesson Plan Cube Fellow: Kenneth A. Macpherson Teacher Mentor: Sandra Fugett Goal: The goal is for students to gain a more intuitive understanding of slope. This will be accomplished

More information

Map Patterns and Finding the Strike and Dip from a Mapped Outcrop of a Planar Surface

Map Patterns and Finding the Strike and Dip from a Mapped Outcrop of a Planar Surface Map Patterns and Finding the Strike and Dip from a Mapped Outcrop of a Planar Surface Topographic maps represent the complex curves of earth s surface with contour lines that represent the intersection

More information

Chapter 5: Working with contours

Chapter 5: Working with contours Introduction Contoured topographic maps contain a vast amount of information about the three-dimensional geometry of the land surface and the purpose of this chapter is to consider some of the ways in

More information

Map reading made easy

Map reading made easy Map reading made easy What is a map? A map is simply a plan of the ground on paper. The plan is usually drawn as the land would be seen from directly above. A map will normally have the following features:

More information

ACTIVITY 9.1 ANSWERS AND EXPLANATIONS

ACTIVITY 9.1 ANSWERS AND EXPLANATIONS ACTIVITY 9.1 ANSWERS AND EXPLANATIONS 9.1A. Latitude: 40 S Longitude: 20 W 9.1B. 1. north 24 east; azimuth of 24 2. south 24 west; azimuth of 204 9.1C. 1. center SW1/4, NE1/4, SE1/4, sec. 11, T1S, R2W

More information

Graphical Integration Exercises Part Four: Reverse Graphical Integration

Graphical Integration Exercises Part Four: Reverse Graphical Integration D-4603 1 Graphical Integration Exercises Part Four: Reverse Graphical Integration Prepared for the MIT System Dynamics in Education Project Under the Supervision of Dr. Jay W. Forrester by Laughton Stanley

More information

OBJECTIVES. Identify the means by which latitude and longitude were created and the science upon which they are based.

OBJECTIVES. Identify the means by which latitude and longitude were created and the science upon which they are based. Name: Key OBJECTIVES Correctly define: isolines, gradient, topographic map, contour interval, hachured lines, profile, latitude, longitude, hydrosphere, lithosphere, atmosphere, elevation, model EARTH

More information

Topographic Survey. Topographic Survey. Topographic Survey. Topographic Survey. CIVL 1101 Surveying - Introduction to Topographic Modeling 1/8

Topographic Survey. Topographic Survey. Topographic Survey. Topographic Survey. CIVL 1101 Surveying - Introduction to Topographic Modeling 1/8 IVL 1 Surveying - Introduction to Topographic Modeling 1/8 Introduction Topography - defined as the shape or configuration or relief or three dimensional quality of a surface Topography maps are very useful

More information

Examples of Data Representation using Tables, Graphs and Charts

Examples of Data Representation using Tables, Graphs and Charts Examples of Data Representation using Tables, Graphs and Charts This document discusses how to properly display numerical data. It discusses the differences between tables and graphs and it discusses various

More information

Objectives. Materials

Objectives. Materials Activity 4 Objectives Understand what a slope field represents in terms of Create a slope field for a given differential equation Materials TI-84 Plus / TI-83 Plus Graph paper Introduction One of the ways

More information

PLOTTING DATA AND INTERPRETING GRAPHS

PLOTTING DATA AND INTERPRETING GRAPHS PLOTTING DATA AND INTERPRETING GRAPHS Fundamentals of Graphing One of the most important sets of skills in science and mathematics is the ability to construct graphs and to interpret the information they

More information

Geography River Study Resource Higher

Geography River Study Resource Higher Geography River Study Resource Higher 4304 Autumn 1998 HIGHER STILL Geography River Study Resource Higher Support Materials θρστ υϖ CONTENTS Introduction Collecting river flow data Measuring the width

More information

x x y y Then, my slope is =. Notice, if we use the slope formula, we ll get the same thing: m =

x x y y Then, my slope is =. Notice, if we use the slope formula, we ll get the same thing: m = Slope and Lines The slope of a line is a ratio that measures the incline of the line. As a result, the smaller the incline, the closer the slope is to zero and the steeper the incline, the farther the

More information

3D Drawing. Single Point Perspective with Diminishing Spaces

3D Drawing. Single Point Perspective with Diminishing Spaces 3D Drawing Single Point Perspective with Diminishing Spaces The following document helps describe the basic process for generating a 3D representation of a simple 2D plan. For this exercise we will be

More information

Calculus Vocabulary without the Technical Mumbo Jumbo

Calculus Vocabulary without the Technical Mumbo Jumbo Calculus Vocabulary without the Technical Mumbo Jumbo Limits and Continuity By: Markis Gardner Table of Contents Average Rate of Change... 4 Average Speed... 5 Connected Graph... 6 Continuity at a point...

More information

3D Drawing. Single Point Perspective with Diminishing Spaces

3D Drawing. Single Point Perspective with Diminishing Spaces 3D Drawing Single Point Perspective with Diminishing Spaces The following document helps describe the basic process for generating a 3D representation of a simple 2D plan. For this exercise we will be

More information

This satellite photo was taken on October 29th, 2011 and locates the project neighborhood and site for the project.

This satellite photo was taken on October 29th, 2011 and locates the project neighborhood and site for the project. Page 1 of 6 N This satellite photo was taken on October 29th, 2011 and locates the project neighborhood and site for the project. The following page is the Assessor s Parcel Map which was used in coordination

More information

Chapter 8 Graphs and Functions:

Chapter 8 Graphs and Functions: Chapter 8 Graphs and Functions: Cartesian axes, coordinates and points 8.1 Pictorially we plot points and graphs in a plane (flat space) using a set of Cartesian axes traditionally called the x and y axes

More information

Plot the following two points on a graph and draw the line that passes through those two points. Find the rise, run and slope of that line.

Plot the following two points on a graph and draw the line that passes through those two points. Find the rise, run and slope of that line. Objective # 6 Finding the slope of a line Material: page 117 to 121 Homework: worksheet NOTE: When we say line... we mean straight line! Slope of a line: It is a number that represents the slant of a line

More information

EARS 5 Problem Set #3 Should I invest in flood insurance? Handed out Friday 1 August Due Friday 8 August

EARS 5 Problem Set #3 Should I invest in flood insurance? Handed out Friday 1 August Due Friday 8 August EARS 5 Problem Set #3 Should I invest in flood insurance? Handed out Friday August Due Friday 8 August One of the best strategies for managing floods is through rational land use planning. This requires

More information

EdExcel Decision Mathematics 1

EdExcel Decision Mathematics 1 EdExcel Decision Mathematics 1 Linear Programming Section 1: Formulating and solving graphically Notes and Examples These notes contain subsections on: Formulating LP problems Solving LP problems Minimisation

More information

Cut and Fill Calculations. Cut and Fill Calculations. Cut and Fill Calculations. Cut and Fill Calculations. Cut and Fill Calculations

Cut and Fill Calculations. Cut and Fill Calculations. Cut and Fill Calculations. Cut and Fill Calculations. Cut and Fill Calculations CIVL Cut-and-Fill - Part / Calculation of the cut-and-fill is an essential component to any site development project CIVL Cut-and-Fill - Part / From the topographic data of the site, different alternative

More information

720 Contour Grading. General. References. Resources. Definitions

720 Contour Grading. General. References. Resources. Definitions 720 Contour Grading General Contour grading directs water to a desired point, prevents erosion, provides noise deflection, provides visual fit of the facility into the landscape, and protects desirable

More information

Valor Christian High School Mrs. Bogar Biology Graphing Fun with a Paper Towel Lab

Valor Christian High School Mrs. Bogar Biology Graphing Fun with a Paper Towel Lab 1 Valor Christian High School Mrs. Bogar Biology Graphing Fun with a Paper Towel Lab I m sure you ve wondered about the absorbency of paper towel brands as you ve quickly tried to mop up spilled soda from

More information

Why should we learn this? One real-world connection is to find the rate of change in an airplane s altitude. The Slope of a Line VOCABULARY

Why should we learn this? One real-world connection is to find the rate of change in an airplane s altitude. The Slope of a Line VOCABULARY Wh should we learn this? The Slope of a Line Objectives: To find slope of a line given two points, and to graph a line using the slope and the -intercept. One real-world connection is to find the rate

More information

Simple Regression Theory I 2010 Samuel L. Baker

Simple Regression Theory I 2010 Samuel L. Baker SIMPLE REGRESSION THEORY I 1 Simple Regression Theory I 2010 Samuel L. Baker Regression analysis lets you use data to explain and predict. A simple regression line drawn through data points In Assignment

More information

Elements of a graph. Click on the links below to jump directly to the relevant section

Elements of a graph. Click on the links below to jump directly to the relevant section Click on the links below to jump directly to the relevant section Elements of a graph Linear equations and their graphs What is slope? Slope and y-intercept in the equation of a line Comparing lines on

More information

UNIVERSITY OF WASHINGTON Facilities Services Design Guide. Civil. Topographical Survey. Design Evaluation. Construction Submittals

UNIVERSITY OF WASHINGTON Facilities Services Design Guide. Civil. Topographical Survey. Design Evaluation. Construction Submittals This section applies to design standards and procedures involved in the field location and plotting of all natural objects and surface improvements. This section also includes the requirements for submittal

More information

The fairy tale Hansel and Gretel tells the story of a brother and sister who

The fairy tale Hansel and Gretel tells the story of a brother and sister who Piecewise Functions Developing the Graph of a Piecewise Function Learning Goals In this lesson, you will: Develop the graph of a piecewise function from a contet with or without a table of values. Represent

More information

Business Statistics & Presentation of Data BASIC MATHEMATHICS MATH0101

Business Statistics & Presentation of Data BASIC MATHEMATHICS MATH0101 Business Statistics & Presentation of Data BASIC MATHEMATHICS MATH0101 1 STATISTICS??? Numerical facts eg. the number of people living in a certain town, or the number of cars using a traffic route each

More information

Review of Fundamental Mathematics

Review of Fundamental Mathematics Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools

More information

Earth Coordinates & Grid Coordinate Systems

Earth Coordinates & Grid Coordinate Systems Earth Coordinates & Grid Coordinate Systems How do we model the earth? Datums Datums mathematically describe the surface of the Earth. Accounts for mean sea level, topography, and gravity models. Projections

More information

Linear Equations. Find the domain and the range of the following set. {(4,5), (7,8), (-1,3), (3,3), (2,-3)}

Linear Equations. Find the domain and the range of the following set. {(4,5), (7,8), (-1,3), (3,3), (2,-3)} Linear Equations Domain and Range Domain refers to the set of possible values of the x-component of a point in the form (x,y). Range refers to the set of possible values of the y-component of a point in

More information

PREFACE. The many TRADOC service schools and DOD agencies that produce the ACCP materials administered by the AIPD develop them to the DETC standards.

PREFACE. The many TRADOC service schools and DOD agencies that produce the ACCP materials administered by the AIPD develop them to the DETC standards. PREFACE The Army Institute for Professional Development (AIPD) administers the consolidated Army Correspondence Course Program (ACCP), which provides highquality, economical training to its users. The

More information

Section 1.4 Graphs of Linear Inequalities

Section 1.4 Graphs of Linear Inequalities Section 1.4 Graphs of Linear Inequalities A Linear Inequality and its Graph A linear inequality has the same form as a linear equation, except that the equal symbol is replaced with any one of,,

More information

What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b.

What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b. PRIMARY CONTENT MODULE Algebra - Linear Equations & Inequalities T-37/H-37 What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of

More information

Create a folder on your network drive called DEM. This is where data for the first part of this lesson will be stored.

Create a folder on your network drive called DEM. This is where data for the first part of this lesson will be stored. In this lesson you will create a Digital Elevation Model (DEM). A DEM is a gridded array of elevations. In its raw form it is an ASCII, or text, file. First, you will interpolate elevations on a topographic

More information

Background Why Evaluate the Physical Characteristics of a Stream? Pebble Count Method

Background Why Evaluate the Physical Characteristics of a Stream? Pebble Count Method Background Why Evaluate the Physical Characteristics of a Stream? A stream is the carpenter of its own edifice Stream channels and floodplains are constantly adjusting to the amount of water and sediment

More information

2Digital tablets or computer scanners can

2Digital tablets or computer scanners can Appendix A Measuring Lake Surface Area Lake surface area can be measured with a bathymetric map using any of the following techniques: 1One of the most accurate methods is to use a planimeter to trace

More information

Appendix C: Graphs. Vern Lindberg

Appendix C: Graphs. Vern Lindberg Vern Lindberg 1 Making Graphs A picture is worth a thousand words. Graphical presentation of data is a vital tool in the sciences and engineering. Good graphs convey a great deal of information and can

More information

Bar Graphs and Dot Plots

Bar Graphs and Dot Plots CONDENSED L E S S O N 1.1 Bar Graphs and Dot Plots In this lesson you will interpret and create a variety of graphs find some summary values for a data set draw conclusions about a data set based on graphs

More information

You might be surprised to know that the word T-shirt wasn t really used until

You might be surprised to know that the word T-shirt wasn t really used until Hot Shirts Using Tables, Graphs, and Equations, Part 2 Learning Goals In this lesson, you will: Use different methods to represent a problem situation. Estimate values of expressions that involve decimals.

More information

Short-Run Production and Costs

Short-Run Production and Costs Short-Run Production and Costs The purpose of this section is to discuss the underlying work of firms in the short-run the production of goods and services. Why is understanding production important to

More information

Motion Graphs. Plotting distance against time can tell you a lot about motion. Let's look at the axes:

Motion Graphs. Plotting distance against time can tell you a lot about motion. Let's look at the axes: Motion Graphs 1 Name Motion Graphs Describing the motion of an object is occasionally hard to do with words. Sometimes graphs help make motion easier to picture, and therefore understand. Remember: Motion

More information

A HANDS-ON APPROACH TO UNDERSTANDING TOPOGRAPHIC MAPS AND THEIR CONSTRUCTION

A HANDS-ON APPROACH TO UNDERSTANDING TOPOGRAPHIC MAPS AND THEIR CONSTRUCTION A HANDS-ON APPROACH TO UNDERSTANDING TOPOGRAPHIC MAPS AND THEIR CONSTRUCTION Department of Geology and Environmental Science La Salle University Philadelphia, Pennsylvania This article originally appeared

More information

LONGITUDINAL PROFILE COMPLETION

LONGITUDINAL PROFILE COMPLETION LONGITUDINAL PROFILE COMPLETION Course of the trench bottom determine using drawn cross-sections plot (refer to fig. 0630) according to the stationing direction: right-sided... dotted line left-sided...

More information

Graphing Linear Equations

Graphing Linear Equations Graphing Linear Equations I. Graphing Linear Equations a. The graphs of first degree (linear) equations will always be straight lines. b. Graphs of lines can have Positive Slope Negative Slope Zero slope

More information

SUMMARY REPORT ON COMPARISON OF THE QUARRY SLOPE ANGLES ADJACENT TO THREE KINGS RESERVE

SUMMARY REPORT ON COMPARISON OF THE QUARRY SLOPE ANGLES ADJACENT TO THREE KINGS RESERVE SUMMARY REPORT ON COMPARISON OF THE QUARRY SLOPE ANGLES ADJACENT TO THREE KINGS RESERVE (Dated: July 2008) FOR Prepared By: Graeme W. Fulton B.Sc. (Hons), Mining and Petroleum Engineering, MAusIMM Terra

More information

Graphing Motion. Every Picture Tells A Story

Graphing Motion. Every Picture Tells A Story Graphing Motion Every Picture Tells A Story Read and interpret motion graphs Construct and draw motion graphs Determine speed, velocity and accleration from motion graphs If you make a graph by hand it

More information

INTRODUCTION TO DESKTOP PUBLISHING

INTRODUCTION TO DESKTOP PUBLISHING INTRODUCTION TO DESKTOP PUBLISHING Desktop publishing uses page layout software and a personal computer to combine text, type, drawings, and images on a page to create books, newsletters, marketing brochures,

More information

Writing the Equation of a Line in Slope-Intercept Form

Writing the Equation of a Line in Slope-Intercept Form Writing the Equation of a Line in Slope-Intercept Form Slope-Intercept Form y = mx + b Example 1: Give the equation of the line in slope-intercept form a. With y-intercept (0, 2) and slope -9 b. Passing

More information

Accuplacer Arithmetic Study Guide

Accuplacer Arithmetic Study Guide Testing Center Student Success Center Accuplacer Arithmetic Study Guide I. Terms Numerator: which tells how many parts you have (the number on top) Denominator: which tells how many parts in the whole

More information

Perimeter, Area, and Volume

Perimeter, Area, and Volume Perimeter is a measurement of length. It is the distance around something. We use perimeter when building a fence around a yard or any place that needs to be enclosed. In that case, we would measure the

More information

Climbing Stairs. Goals. Launch 4.1 4.1

Climbing Stairs. Goals. Launch 4.1 4.1 4.1 Climbing Stairs Goals Introduce students to the concept of slope as the ratio of vertical change to between two points on a line or ratio of rise over run Use slope to sketch a graph of a line with

More information

TYPES OF NUMBERS. Example 2. Example 1. Problems. Answers

TYPES OF NUMBERS. Example 2. Example 1. Problems. Answers TYPES OF NUMBERS When two or more integers are multiplied together, each number is a factor of the product. Nonnegative integers that have exactly two factors, namely, one and itself, are called prime

More information

ROAD SURVEYING Section I. RECONNAISSANCE SURVEY PREPARATION AND SCOPE

ROAD SURVEYING Section I. RECONNAISSANCE SURVEY PREPARATION AND SCOPE CHAPTER 2 ROAD SURVEYING Section I. RECONNAISSANCE SURVEY PREPARATION AND SCOPE The reconnaissance survey is an extensive study of an entire area that might be used for a road or airfield. Its purpose

More information

3.4 Limits at Infinity - Asymptotes

3.4 Limits at Infinity - Asymptotes 3.4 Limits at Infinity - Asymptotes Definition 3.3. If f is a function defined on some interval (a, ), then f(x) = L means that values of f(x) are very close to L (keep getting closer to L) as x. The line

More information

WHAT MAPS SHOW US Maps do 4 things:

WHAT MAPS SHOW US Maps do 4 things: WHAT MAPS SHOW US Maps show us a range of features, for example: Landforms: Settlement: Communication: Land Use: Geology: Other Info: - hills - valleys - mountains - isolated dwellings - farms - villages

More information

Laboratory #8: Structural Geology Thinking in 3D

Laboratory #8: Structural Geology Thinking in 3D Name: Lab day: Tuesday Wednesday Thursday ENVG /SC 10110-20110L Planet Earth Laboratory Laboratory #8: Structural Geology Thinking in 3D http://www.nd.edu/~cneal/physicalgeo/lab-structural/index.html Readings:

More information

Anamorphic Projection Photographic Techniques for setting up 3D Chalk Paintings

Anamorphic Projection Photographic Techniques for setting up 3D Chalk Paintings Anamorphic Projection Photographic Techniques for setting up 3D Chalk Paintings By Wayne and Cheryl Renshaw. Although it is centuries old, the art of street painting has been going through a resurgence.

More information

Microsoft Excel 2010 Charts and Graphs

Microsoft Excel 2010 Charts and Graphs Microsoft Excel 2010 Charts and Graphs Email: training@health.ufl.edu Web Page: http://training.health.ufl.edu Microsoft Excel 2010: Charts and Graphs 2.0 hours Topics include data groupings; creating

More information

Chapter 4: Representation of relief

Chapter 4: Representation of relief Introduction To this point in our discussion of maps we have been concerned only with their planimetric properties, those relating to the location of features in two-dimensional space. But of course we

More information

Leica 3D Disto Application Veranda / Conservatory

Leica 3D Disto Application Veranda / Conservatory Leica 3D Disto Application Veranda / Conservatory What do you need to know? 1) What position you are going to fit the Veranda in? 2) What is the height and width? 3) What is the length? 4) Is the wall

More information

Laboratory 6: Topographic Maps

Laboratory 6: Topographic Maps Name: Laboratory 6: Topographic Maps Part 1: Construct a topographic map of the Egyptian Pyramid of Khafre A topographic map is a two-dimensional representation of a three-dimensional space. Topographic

More information

Parallel and Perpendicular. We show a small box in one of the angles to show that the lines are perpendicular.

Parallel and Perpendicular. We show a small box in one of the angles to show that the lines are perpendicular. CONDENSED L E S S O N. Parallel and Perpendicular In this lesson you will learn the meaning of parallel and perpendicular discover how the slopes of parallel and perpendicular lines are related use slopes

More information

The Point-Slope Form

The Point-Slope Form 7. The Point-Slope Form 7. OBJECTIVES 1. Given a point and a slope, find the graph of a line. Given a point and the slope, find the equation of a line. Given two points, find the equation of a line y Slope

More information

Maps A Primer for Content & Production of Topographic Base Maps For Design Presented by SurvBase, LLC

Maps A Primer for Content & Production of Topographic Base Maps For Design Presented by SurvBase, LLC Maps A Primer for Content & Production of Topographic Base Maps For Design Presented by Definition and Purpose of, Map: a representation of the whole or a part of an area. Maps serve a wide range of purposes.

More information

Part 1: Background - Graphing

Part 1: Background - Graphing Department of Physics and Geology Graphing Astronomy 1401 Equipment Needed Qty Computer with Data Studio Software 1 1.1 Graphing Part 1: Background - Graphing In science it is very important to find and

More information

GEOENGINE MSc in Geomatics Engineering (Master Thesis) Anamelechi, Falasy Ebere

GEOENGINE MSc in Geomatics Engineering (Master Thesis) Anamelechi, Falasy Ebere Master s Thesis: ANAMELECHI, FALASY EBERE Analysis of a Raster DEM Creation for a Farm Management Information System based on GNSS and Total Station Coordinates Duration of the Thesis: 6 Months Completion

More information

Printing Letters Correctly

Printing Letters Correctly Printing Letters Correctly The ball and stick method of teaching beginners to print has been proven to be the best. Letters formed this way are easier for small children to print, and this print is similar

More information

Materials & Loading Tutorial

Materials & Loading Tutorial Materials & Loading Tutorial 2-1 Materials & Loading Tutorial This tutorial will demonstrate how to model a more complex multimaterial slope, with both pore water pressure and an external load. MODEL FEATURES:

More information

1.3 LINEAR EQUATIONS IN TWO VARIABLES. Copyright Cengage Learning. All rights reserved.

1.3 LINEAR EQUATIONS IN TWO VARIABLES. Copyright Cengage Learning. All rights reserved. 1.3 LINEAR EQUATIONS IN TWO VARIABLES Copyright Cengage Learning. All rights reserved. What You Should Learn Use slope to graph linear equations in two variables. Find the slope of a line given two points

More information

What Does the Normal Distribution Sound Like?

What Does the Normal Distribution Sound Like? What Does the Normal Distribution Sound Like? Ananda Jayawardhana Pittsburg State University ananda@pittstate.edu Published: June 2013 Overview of Lesson In this activity, students conduct an investigation

More information

Site Development Information Worksheet for single family residential development

Site Development Information Worksheet for single family residential development Site Development Information Worksheet for single family residential development Project description: Address: Owner Name: Phone No. Date Signature & phone number of Individual who Completed this Worksheet

More information

2.2 Derivative as a Function

2.2 Derivative as a Function 2.2 Derivative as a Function Recall that we defined the derivative as f (a) = lim h 0 f(a + h) f(a) h But since a is really just an arbitrary number that represents an x-value, why don t we just use x

More information

. 58 58 60 62 64 66 68 70 72 74 76 78 Father s height (inches)

. 58 58 60 62 64 66 68 70 72 74 76 78 Father s height (inches) PEARSON S FATHER-SON DATA The following scatter diagram shows the heights of 1,0 fathers and their full-grown sons, in England, circa 1900 There is one dot for each father-son pair Heights of fathers and

More information

LINEAR FUNCTIONS. Form Equation Note Standard Ax + By = C A and B are not 0. A > 0

LINEAR FUNCTIONS. Form Equation Note Standard Ax + By = C A and B are not 0. A > 0 LINEAR FUNCTIONS As previousl described, a linear equation can be defined as an equation in which the highest eponent of the equation variable is one. A linear function is a function of the form f ( )

More information

Review Sheet for Third Midterm Mathematics 1300, Calculus 1

Review Sheet for Third Midterm Mathematics 1300, Calculus 1 Review Sheet for Third Midterm Mathematics 1300, Calculus 1 1. For f(x) = x 3 3x 2 on 1 x 3, find the critical points of f, the inflection points, the values of f at all these points and the endpoints,

More information

Roof Tutorial. Chapter 3:

Roof Tutorial. Chapter 3: Chapter 3: Roof Tutorial The majority of Roof Tutorial describes some common roof styles that can be created using settings in the Wall Specification dialog and can be completed independent of the other

More information

CHAPTER 9 SURVEYING TERMS AND ABBREVIATIONS

CHAPTER 9 SURVEYING TERMS AND ABBREVIATIONS CHAPTER 9 SURVEYING TERMS AND ABBREVIATIONS Surveying Terms 9-2 Standard Abbreviations 9-6 9-1 A) SURVEYING TERMS Accuracy - The degree of conformity with a standard, or the degree of perfection attained

More information

Basic Elements of Reading Plans

Basic Elements of Reading Plans Center for Land Use Education and Research at the University of Connecticut Basic Elements of Reading Plans University of Connecticut. The University of Connecticut supports all state and federal laws

More information

Unit 6 Direction and angle

Unit 6 Direction and angle Unit 6 Direction and angle Three daily lessons Year 4 Spring term Unit Objectives Year 4 Recognise positions and directions: e.g. describe and find the Page 108 position of a point on a grid of squares

More information

Section 1.1 Linear Equations: Slope and Equations of Lines

Section 1.1 Linear Equations: Slope and Equations of Lines Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of

More information

Performance Objectives

Performance Objectives 3 Read Maps and Aerial Photos WRITING SAMPLE (training guide) Stephen X. Arthur, technical writer 2005 www.transcanfilm.com/stephenarthur First draft. Copyright 1996, BC Ministry of Forests / BC Institute

More information

Determine If An Equation Represents a Function

Determine If An Equation Represents a Function Question : What is a linear function? The term linear function consists of two parts: linear and function. To understand what these terms mean together, we must first understand what a function is. The

More information

Research question: How does the velocity of the balloon depend on how much air is pumped into the balloon?

Research question: How does the velocity of the balloon depend on how much air is pumped into the balloon? Katie Chang 3A For this balloon rocket experiment, we learned how to plan a controlled experiment that also deepened our understanding of the concepts of acceleration and force on an object. My partner

More information

GRAPHING LINEAR EQUATIONS IN TWO VARIABLES

GRAPHING LINEAR EQUATIONS IN TWO VARIABLES GRAPHING LINEAR EQUATIONS IN TWO VARIABLES The graphs of linear equations in two variables are straight lines. Linear equations may be written in several forms: Slope-Intercept Form: y = mx+ b In an equation

More information

Chapter 1 Introducing GIS

Chapter 1 Introducing GIS Chapter Introducing GIS Learning objectives Learn what geographic information systems are used for Learn how GIS layers work Differentiate between GIS features and surfaces Obtain preliminary knowledge

More information

HSPA 10 CSI Investigation Height and Foot Length: An Exercise in Graphing

HSPA 10 CSI Investigation Height and Foot Length: An Exercise in Graphing HSPA 10 CSI Investigation Height and Foot Length: An Exercise in Graphing In this activity, you will play the role of crime scene investigator. The remains of two individuals have recently been found trapped

More information

DIAMOND PROBLEMS 1.1.1

DIAMOND PROBLEMS 1.1.1 DIAMOND PROBLEMS 1.1.1 In every Diamond Problem, the product of the two side numbers (left and right) is the top number and their sum is the bottom number. Diamond Problems are an excellent way of practicing

More information

Inv 1 5. Draw 2 different shapes, each with an area of 15 square units and perimeter of 16 units.

Inv 1 5. Draw 2 different shapes, each with an area of 15 square units and perimeter of 16 units. Covering and Surrounding: Homework Examples from ACE Investigation 1: Questions 5, 8, 21 Investigation 2: Questions 6, 7, 11, 27 Investigation 3: Questions 6, 8, 11 Investigation 5: Questions 15, 26 ACE

More information

RAMPS RAMP HEADROOM: The minimum headroom in all parts of the means of egress ramp shall not be less than 80 inches.

RAMPS RAMP HEADROOM: The minimum headroom in all parts of the means of egress ramp shall not be less than 80 inches. RAMPS 1010.5.1 - RAMP WIDTH: The minimum width of an egress ramp shall not be less than that required for corridors by Section 1016.2. A ramp that is provided, but not as an egress ramp, shall not be less

More information

Project Setup and Data Management Tutorial

Project Setup and Data Management Tutorial Project Setup and Heavy Construction Edition Version 1.20 Corporate Office Trimble Navigation Limited Engineering and Construction Division 5475 Kellenburger Road Dayton, Ohio 45424-1099 U.S.A. Phone:

More information

PowerScore Test Preparation (800) 545-1750

PowerScore Test Preparation (800) 545-1750 Question 1 Test 1, Second QR Section (version 1) List A: 0, 5,, 15, 20... QA: Standard deviation of list A QB: Standard deviation of list B Statistics: Standard Deviation Answer: The two quantities are

More information