6.1 Factoring Polynomials with Common Factors. Copyright Cengage Learning. All rights reserved.

Size: px
Start display at page:

Download "6.1 Factoring Polynomials with Common Factors. Copyright Cengage Learning. All rights reserved."

Transcription

1 6.1 Factoring Polynomials with Common Factors Copyright Cengage Learning. All rights reserved. 1

2 What You Will Learn Find the greatest common factor of two or more expressions Factor out the greatest common monomials factor from polynomials Factor polynomials by grouping 2

3 Greatest Common Factor 3

4 Greatest Common Factor You have used the Distributive Property to multiply polynomials. In this chapter, you will study the reverse process, which is factoring. Multiplying Polynomials Factoring Polynomials 4

5 Greatest Common Factor To factor an expression efficiently, you need to understand the concept of the greatest common factor of two (or more) integers or terms. You have learned that the greatest common factor of two or more integers is the greatest integer that is a factor of each integer. For example, the greatest common factor of 12 = and 30 = is 2 3 = 6. 5

6 Example 1 Finding the Greatest Common Factor To find the greatest common factor of 5x 2 y 2 and 30x 3 y, first factor each term. 5x 2 y 2 = 5 x x y y = (5x 2 y)(y) 30x 3 y = x x x y = (5x 2 y)(6x) So, you can conclude that the greatest common factor is 5x 2 y. 6

7 Example 2 Finding the Greatest Common Factor To find the greatest common factor of 8x 5, 20x 3, and 16x 4 first factor each term. 8x 5 = x x x x x = (4x 3 )(4x 2 ) 20x 3 = x x x = (4x 3 )(5) 16x 4 = x x x x = (4x 3 )(4x) So, you can conclude that the greatest common factor is 4x 3. 7

8 Common Monomial Factor 8

9 Dividing a Polynomial by a Binomial Consider the polynomial 8x x x 3. The greatest common factor, 4x 3, of these terms is the greatest common monomial factor of the polynomial. When you use the Distributive Property to remove this factor from each term of the polynomial, you are factoring out the greatest common monomial factor. 8x x x 3 = 4x 3 (2x 2 ) + 4x 3 (4x) + 4x 3 (5) = 4x 3 (2x 2 + 4x + 5) Factor each term. Factor out common monomial factor. 9

10 Example 3 Greatest Common Monomial Factor Factor out the greatest common monomial factor from 6x 18. Solution: The greatest common integer factor of 6x and 18 is 6. There is no common variable factor. 6x 18 = 6(x) 6(3) Greatest common monomial factor is 6. = 6(x 3) Factor 6 out of each term. 10

11 Example 4 Greatest Common Monomial Factor Factor out the greatest common monomial factor from 10y 3 25y 2. Solution: For the terms 10y 3 25y 2, 5 is the greatest common integers factor and y 2 is the highest-power common variable factor. 10y 3 25y 2 = 5y 2 (2y) 5y 2 (5) = 5y 2 (2y 5) Greatest common factor is 5y 2. Factor 5y 2 out of each term. 11

12 Greatest Common Monomial The greatest common monomial factor of the terms of a polynomial is usually considered to have a positive coefficient. However, sometimes it is convenient to factor a negative number out of a polynomial. 12

13 Example 8 A Negative Common Monomial Factor Factor the polynomial 2x 2 + 8x 12 in two ways. a. Factor out a common monomial factor of 2. b. Factor out a common monomial factor of 2. Solution: a. To factor out the common monomial factor of 2, write the following. 2x 2 + 8x 12 = 2( x 2 ) + 2(4x) + 2( 6) Factor each term. = 2( x 2 + 4x 6) Factored form 13

14 Example 8 A Negative Common Monomial Factor b. To factor 2 out of the polynomial, write the following. 2x 2 + 8x 12 = 2(x 2 ) + ( 2)( 4x) + ( 2)(6) cont d Factor each term. = 2(x 2 4x + 6) Factored form Check this result by multiplying (x 2 4x + 6) by 2. When you do, you will obtain the original polynomial. 14

15 Greatest Common Monomial With experience, you should be able to omit writing the first step shown in Example 8. For instance, to factor 2 out of 2x 2 + 8x 12, you could simply write 2x 2 + 8x 12 = 2(x 2 4x + 6). 15

16 Factoring by Grouping 16

17 Factoring by Grouping There are occasions when the common factor of an expression is not simply a monomial. For instance, the expression x 2 (x 2) + 3(x 2) has the common binomial factor (x 2). Factoring out this common factor produces x 2 (x 2) + 3(x 2) = (x 2)(x 2 + 3). This type of factoring is part of a more general procedure called factoring by grouping. 17

18 Example 9 Common Binomial Factors Factor each expression. a. 5x 2 (7x 1) 3(7x 1) b. 2x(3x 4) + (3x 4) c. 3y 2 (y 3) + 4(3 y) Solution: a. Each of the terms of this expression has a binomial factor of (7x 1). 5x 2 (7x 1) 3(7x 1) = (7x 1)(5x 2 3) 18

19 Example 9 Common Binomial Factors b. Each of the terms of this expression has a binomial factor of (3x 4). cont d 2x(3x 4) + (3x 4) = (3x 4)(2x + 1) Be sure you see that when (3x 4) is factored out of itself, you are left with the factor 1. This follows from the fact that (3x 4)(1) = (3x 4). c. 3y 2 (y 3) + 4(3 y) = 3y 2 (y 3) 4(y 3) = (y 3)(3y 2 4) Write 4(3 y) as 4(y 3). Common factor is (y 3). 19

20 Factoring by Grouping In Example 9, the polynomials were already grouped so that it was easy to determine the common binomial factors. In practice, you will have to do the grouping as well as the factoring. To see how this works, consider the expression x 3 + 2x 2 + 3x + 6 and try to factor it. Note first that there is no common monomial factor to take out of all four terms. 20

21 Factoring by Grouping But suppose you group the first two terms together and the last two terms together. x 3 + 2x 2 + 3x + 6 = (x 3 + 2x 2 ) + (3x + 6) = x 2 (x + 2) + 3(x + 2) = (x + 2)(x 2 + 3) Group terms. Factor out common monomial factor in each group. Factored form When factoring by grouping, be sure to group terms that have a common monomial factor. For example, in the polynomial above, you should not group the first term x 3 with the fourth term 6. 21

22 Example 10 Factoring by Grouping Factor x 3 + 2x 2 + x + 2. Solution: x 3 + 2x 2 + x + 2 = (x 3 + 2x 2 ) + (x + 2) = x 2 (x + 2) + (x + 2) = (x + 2)(x 2 + 1) Group terms. Factor out common monomial factor in each group. Factored form 22

23 Factoring by Grouping Note that in Example 10 the polynomial is factored by grouping the first and second terms and the third and fourth terms. You could just as easily have grouped the first and third terms and the second and fourth terms, as follows. x 3 + 2x 2 + x + 2 = (x 3 + x) + (2x 2 + 2) = x(x 2 + 1) + 2(x 2 + 1) = (x 2 + 1)(x + 2) You can always check to see that you have factored an expression correctly by multiplying the factors and comparing the result with the original expression. 23

24 Example 12 Geometry: Area of a Rectangle The area of a rectangle of width (2x 1) feet is (2x 3 + 2x x 2 ) square feet, as shown below. Factor this expression to determine the length of the rectangle. 24

25 Example 12 Geometry: Area of a Rectangle Solution Verbal Model: cont d Labels: Area = 2x 3 + 2x x 2 (square feet) Width = 2x 1 Equation: 2x 3 + 4x x 2 2 = (2x 3 + 4x) + ( x 2 2) Group terms. (feet) = 2x(x 2 + 2) + (x 2 + 2) = (x 2 + 2)(2x 1) Factor out common monomial factor in each group. Factored form The length of the rectangle is (x 2 + 2) feet. 25

26 Homework: Page 272 # down Page 273 # 45, 47, 49 Page 274 # down

When factoring, we look for greatest common factor of each term and reverse the distributive property and take out the GCF.

When factoring, we look for greatest common factor of each term and reverse the distributive property and take out the GCF. Factoring: reversing the distributive property. The distributive property allows us to do the following: When factoring, we look for greatest common factor of each term and reverse the distributive property

More information

Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder).

Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder). Math 50, Chapter 8 (Page 1 of 20) 8.1 Common Factors Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder). Find all the factors of a. 44 b. 32

More information

Greatest Common Factor (GCF) Factoring

Greatest Common Factor (GCF) Factoring Section 4 4: Greatest Common Factor (GCF) Factoring The last chapter introduced the distributive process. The distributive process takes a product of a monomial and a polynomial and changes the multiplication

More information

Algebra Success. [OBJECTIVE] The student will learn how to multiply monomials and polynomials.

Algebra Success. [OBJECTIVE] The student will learn how to multiply monomials and polynomials. Algebra Success T697 [OBJECTIVE] The student will learn how to multiply monomials and polynomials. [MATERIALS] Student pages S269 S278 Transparencies T704, T705, T707, T709, T711, T713, T715 Red and yellow

More information

Name Date Block. Algebra 1 Laws of Exponents/Polynomials Test STUDY GUIDE

Name Date Block. Algebra 1 Laws of Exponents/Polynomials Test STUDY GUIDE Name Date Block Know how to Algebra 1 Laws of Eponents/Polynomials Test STUDY GUIDE Evaluate epressions with eponents using the laws of eponents: o a m a n = a m+n : Add eponents when multiplying powers

More information

7-2 Factoring by GCF. Warm Up Lesson Presentation Lesson Quiz. Holt McDougal Algebra 1

7-2 Factoring by GCF. Warm Up Lesson Presentation Lesson Quiz. Holt McDougal Algebra 1 7-2 Factoring by GCF Warm Up Lesson Presentation Lesson Quiz Algebra 1 Warm Up Simplify. 1. 2(w + 1) 2. 3x(x 2 4) 2w + 2 3x 3 12x Find the GCF of each pair of monomials. 3. 4h 2 and 6h 2h 4. 13p and 26p

More information

Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III

Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III Name Date Adding and Subtracting Polynomials Algebra Standard 10.0 A polynomial is a sum of one ore more monomials. Polynomial

More information

1.3 Polynomials and Factoring

1.3 Polynomials and Factoring 1.3 Polynomials and Factoring Polynomials Constant: a number, such as 5 or 27 Variable: a letter or symbol that represents a value. Term: a constant, variable, or the product or a constant and variable.

More information

Factor Polynomials Completely

Factor Polynomials Completely 9.8 Factor Polynomials Completely Before You factored polynomials. Now You will factor polynomials completely. Why? So you can model the height of a projectile, as in Ex. 71. Key Vocabulary factor by grouping

More information

Chapter 4. Polynomials

Chapter 4. Polynomials 4.1. Add and Subtract Polynomials KYOTE Standards: CR 8; CA 2 Chapter 4. Polynomials Polynomials in one variable are algebraic expressions such as 3x 2 7x 4. In this example, the polynomial consists of

More information

Mth 95 Module 2 Spring 2014

Mth 95 Module 2 Spring 2014 Mth 95 Module Spring 014 Section 5.3 Polynomials and Polynomial Functions Vocabulary of Polynomials A term is a number, a variable, or a product of numbers and variables raised to powers. Terms in an expression

More information

Factoring and Applications

Factoring and Applications Factoring and Applications What is a factor? The Greatest Common Factor (GCF) To factor a number means to write it as a product (multiplication). Therefore, in the problem 48 3, 4 and 8 are called the

More information

Factoring Trinomials of the Form x 2 bx c

Factoring Trinomials of the Form x 2 bx c 4.2 Factoring Trinomials of the Form x 2 bx c 4.2 OBJECTIVES 1. Factor a trinomial of the form x 2 bx c 2. Factor a trinomial containing a common factor NOTE The process used to factor here is frequently

More information

Factoring - Trinomials where a = 1

Factoring - Trinomials where a = 1 6.3 Factoring - Trinomials where a = 1 Objective: Factor trinomials where the coefficient of x 2 is one. Factoring with three terms, or trinomials, is the most important type of factoring to be able to

More information

NSM100 Introduction to Algebra Chapter 5 Notes Factoring

NSM100 Introduction to Algebra Chapter 5 Notes Factoring Section 5.1 Greatest Common Factor (GCF) and Factoring by Grouping Greatest Common Factor for a polynomial is the largest monomial that divides (is a factor of) each term of the polynomial. GCF is the

More information

Factoring Polynomials

Factoring Polynomials Factoring Polynomials Factoring Factoring is the process of writing a polynomial as the product of two or more polynomials. The factors of 6x 2 x 2 are 2x + 1 and 3x 2. In this section, we will be factoring

More information

2x 2x 2 8x. Now, let s work backwards to FACTOR. We begin by placing the terms of the polynomial inside the cells of the box. 2x 2

2x 2x 2 8x. Now, let s work backwards to FACTOR. We begin by placing the terms of the polynomial inside the cells of the box. 2x 2 Activity 23 Math 40 Factoring using the BOX Team Name (optional): Your Name: Partner(s): 1. (2.) Task 1: Factoring out the greatest common factor Mini Lecture: Factoring polynomials is our focus now. Factoring

More information

Operations with Algebraic Expressions: Multiplication of Polynomials

Operations with Algebraic Expressions: Multiplication of Polynomials Operations with Algebraic Expressions: Multiplication of Polynomials The product of a monomial x monomial To multiply a monomial times a monomial, multiply the coefficients and add the on powers with the

More information

Tool 1. Greatest Common Factor (GCF)

Tool 1. Greatest Common Factor (GCF) Chapter 4: Factoring Review Tool 1 Greatest Common Factor (GCF) This is a very important tool. You must try to factor out the GCF first in every problem. Some problems do not have a GCF but many do. When

More information

Algebra Cheat Sheets

Algebra Cheat Sheets Sheets Algebra Cheat Sheets provide you with a tool for teaching your students note-taking, problem-solving, and organizational skills in the context of algebra lessons. These sheets teach the concepts

More information

Polynomials and Factoring

Polynomials and Factoring 7.6 Polynomials and Factoring Basic Terminology A term, or monomial, is defined to be a number, a variable, or a product of numbers and variables. A polynomial is a term or a finite sum or difference of

More information

Factoring, Solving. Equations, and Problem Solving REVISED PAGES

Factoring, Solving. Equations, and Problem Solving REVISED PAGES 05-W4801-AM1.qxd 8/19/08 8:45 PM Page 241 Factoring, Solving Equations, and Problem Solving 5 5.1 Factoring by Using the Distributive Property 5.2 Factoring the Difference of Two Squares 5.3 Factoring

More information

LESSON 6.2 POLYNOMIAL OPERATIONS I

LESSON 6.2 POLYNOMIAL OPERATIONS I LESSON 6.2 POLYNOMIAL OPERATIONS I Overview In business, people use algebra everyday to find unknown quantities. For example, a manufacturer may use algebra to determine a product s selling price in order

More information

Algebra Unit 6 Syllabus revised 2/27/13 Exponents and Polynomials

Algebra Unit 6 Syllabus revised 2/27/13 Exponents and Polynomials Algebra Unit 6 Syllabus revised /7/13 1 Objective: Multiply monomials. Simplify expressions involving powers of monomials. Pre-assessment: Exponents, Fractions, and Polynomial Expressions Lesson: Pages

More information

Unit 1: Polynomials. Expressions: - mathematical sentences with no equal sign. Example: 3x + 2

Unit 1: Polynomials. Expressions: - mathematical sentences with no equal sign. Example: 3x + 2 Pure Math 0 Notes Unit : Polynomials Unit : Polynomials -: Reviewing Polynomials Epressions: - mathematical sentences with no equal sign. Eample: Equations: - mathematical sentences that are equated with

More information

Unit 3: Algebra. Date Topic Page (s) Algebra Terminology 2. Variables and Algebra Tiles 3 5. Like Terms 6 8. Adding/Subtracting Polynomials 9 12

Unit 3: Algebra. Date Topic Page (s) Algebra Terminology 2. Variables and Algebra Tiles 3 5. Like Terms 6 8. Adding/Subtracting Polynomials 9 12 Unit 3: Algebra Date Topic Page (s) Algebra Terminology Variables and Algebra Tiles 3 5 Like Terms 6 8 Adding/Subtracting Polynomials 9 1 Expanding Polynomials 13 15 Introduction to Equations 16 17 One

More information

expression is written horizontally. The Last terms ((2)( 4)) because they are the last terms of the two polynomials. This is called the FOIL method.

expression is written horizontally. The Last terms ((2)( 4)) because they are the last terms of the two polynomials. This is called the FOIL method. A polynomial of degree n (in one variable, with real coefficients) is an expression of the form: a n x n + a n 1 x n 1 + a n 2 x n 2 + + a 2 x 2 + a 1 x + a 0 where a n, a n 1, a n 2, a 2, a 1, a 0 are

More information

3.1. RATIONAL EXPRESSIONS

3.1. RATIONAL EXPRESSIONS 3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers

More information

Factoring A Quadratic Polynomial

Factoring A Quadratic Polynomial Factoring A Quadratic Polynomial If we multiply two binomials together, the result is a quadratic polynomial: This multiplication is pretty straightforward, using the distributive property of multiplication

More information

Pre-Algebra Interactive Chalkboard Copyright by The McGraw-Hill Companies, Inc. Send all inquiries to:

Pre-Algebra Interactive Chalkboard Copyright by The McGraw-Hill Companies, Inc. Send all inquiries to: Pre-Algebra Interactive Chalkboard Copyright by The McGraw-Hill Companies, Inc. Send all inquiries to: GLENCOE DIVISION Glencoe/McGraw-Hill 8787 Orion Place Columbus, Ohio 43240 Click the mouse button

More information

Addition and Multiplication of Polynomials

Addition and Multiplication of Polynomials LESSON 0 addition and multiplication of polynomials LESSON 0 Addition and Multiplication of Polynomials Base 0 and Base - Recall the factors of each of the pieces in base 0. The unit block (green) is x.

More information

Factors and Products

Factors and Products CHAPTER 3 Factors and Products What You ll Learn use different strategies to find factors and multiples of whole numbers identify prime factors and write the prime factorization of a number find square

More information

15.1 Factoring Polynomials

15.1 Factoring Polynomials LESSON 15.1 Factoring Polynomials Use the structure of an expression to identify ways to rewrite it. Also A.SSE.3? ESSENTIAL QUESTION How can you use the greatest common factor to factor polynomials? EXPLORE

More information

Polynomials. 4-4 to 4-8

Polynomials. 4-4 to 4-8 Polynomials 4-4 to 4-8 Learning Objectives 4-4 Polynomials Monomials, binomials, and trinomials Degree of a polynomials Evaluating polynomials functions Polynomials Polynomials are sums of these "variables

More information

Factoring Special Polynomials

Factoring Special Polynomials 6.6 Factoring Special Polynomials 6.6 OBJECTIVES 1. Factor the difference of two squares 2. Factor the sum or difference of two cubes In this section, we will look at several special polynomials. These

More information

Simplifying Algebraic Fractions

Simplifying Algebraic Fractions 5. Simplifying Algebraic Fractions 5. OBJECTIVES. Find the GCF for two monomials and simplify a fraction 2. Find the GCF for two polynomials and simplify a fraction Much of our work with algebraic fractions

More information

Unit 3 Polynomials Study Guide

Unit 3 Polynomials Study Guide Unit Polynomials Study Guide 7-5 Polynomials Part 1: Classifying Polynomials by Terms Some polynomials have specific names based upon the number of terms they have: # of Terms Name 1 Monomial Binomial

More information

( ) FACTORING. x In this polynomial the only variable in common to all is x.

( ) FACTORING. x In this polynomial the only variable in common to all is x. FACTORING Factoring is similar to breaking up a number into its multiples. For example, 10=5*. The multiples are 5 and. In a polynomial it is the same way, however, the procedure is somewhat more complicated

More information

Multiplying Polynomials by Monomials A.APR.1

Multiplying Polynomials by Monomials A.APR.1 ? LESSON 14.3 ESSENTIAL QUESTION Multiplying Polynomials by Monomials How can you multiply polynomials by monomials? A.APR.1 Understand that polynomials form a system analogous to the integers, namely,

More information

Pre-Calculus II Factoring and Operations on Polynomials

Pre-Calculus II Factoring and Operations on Polynomials Factoring... 1 Polynomials...1 Addition of Polynomials... 1 Subtraction of Polynomials...1 Multiplication of Polynomials... Multiplying a monomial by a monomial... Multiplying a monomial by a polynomial...

More information

8-1 Adding and Subtracting Polynomials

8-1 Adding and Subtracting Polynomials Determine whether each expression is a polynomial. If it is a polynomial, find the degree and determine whether it is a monomial, binomial, or trinomial. 1. 7ab + 6b 2 2a 3 yes; 3; trinomial 2. 2y 5 +

More information

FACTORING OUT COMMON FACTORS

FACTORING OUT COMMON FACTORS 278 (6 2) Chapter 6 Factoring 6.1 FACTORING OUT COMMON FACTORS In this section Prime Factorization of Integers Greatest Common Factor Finding the Greatest Common Factor for Monomials Factoring Out the

More information

Solving Quadratic Equations by Completing the Square

Solving Quadratic Equations by Completing the Square 9. Solving Quadratic Equations by Completing the Square 9. OBJECTIVES 1. Solve a quadratic equation by the square root method. Solve a quadratic equation by completing the square. Solve a geometric application

More information

Difference of Squares and Perfect Square Trinomials

Difference of Squares and Perfect Square Trinomials 4.4 Difference of Squares and Perfect Square Trinomials 4.4 OBJECTIVES 1. Factor a binomial that is the difference of two squares 2. Factor a perfect square trinomial In Section 3.5, we introduced some

More information

MATH 10034 Fundamental Mathematics IV

MATH 10034 Fundamental Mathematics IV MATH 0034 Fundamental Mathematics IV http://www.math.kent.edu/ebooks/0034/funmath4.pdf Department of Mathematical Sciences Kent State University January 2, 2009 ii Contents To the Instructor v Polynomials.

More information

SIMPLIFYING ALGEBRAIC FRACTIONS

SIMPLIFYING ALGEBRAIC FRACTIONS Tallahassee Community College 5 SIMPLIFYING ALGEBRAIC FRACTIONS In arithmetic, you learned that a fraction is in simplest form if the Greatest Common Factor (GCF) of the numerator and the denominator is

More information

FACTORING ax 2 bx c. Factoring Trinomials with Leading Coefficient 1

FACTORING ax 2 bx c. Factoring Trinomials with Leading Coefficient 1 5.7 Factoring ax 2 bx c (5-49) 305 5.7 FACTORING ax 2 bx c In this section In Section 5.5 you learned to factor certain special polynomials. In this section you will learn to factor general quadratic polynomials.

More information

7-8 Multiplying Polynomials

7-8 Multiplying Polynomials 7-8 Multiplying Polynomials California Standards 10.0 Students add, subtract, multiply, and divide monomials and polynomials. Students solve multistep problems, including word problems, by using these

More information

6.1 Add & Subtract Polynomial Expression & Functions

6.1 Add & Subtract Polynomial Expression & Functions 6.1 Add & Subtract Polynomial Expression & Functions Objectives 1. Know the meaning of the words term, monomial, binomial, trinomial, polynomial, degree, coefficient, like terms, polynomial funciton, quardrtic

More information

MATH 90 CHAPTER 6 Name:.

MATH 90 CHAPTER 6 Name:. MATH 90 CHAPTER 6 Name:. 6.1 GCF and Factoring by Groups Need To Know Definitions How to factor by GCF How to factor by groups The Greatest Common Factor Factoring means to write a number as product. a

More information

Factoring. Factoring Monomials Monomials can often be factored in more than one way.

Factoring. Factoring Monomials Monomials can often be factored in more than one way. Factoring Factoring is the reverse of multiplying. When we multiplied monomials or polynomials together, we got a new monomial or a string of monomials that were added (or subtracted) together. For example,

More information

SPECIAL PRODUCTS AND FACTORS

SPECIAL PRODUCTS AND FACTORS CHAPTER 442 11 CHAPTER TABLE OF CONTENTS 11-1 Factors and Factoring 11-2 Common Monomial Factors 11-3 The Square of a Monomial 11-4 Multiplying the Sum and the Difference of Two Terms 11-5 Factoring the

More information

Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.

Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P. MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called

More information

A Concrete Introduction. to the Abstract Concepts. of Integers and Algebra using Algebra Tiles

A Concrete Introduction. to the Abstract Concepts. of Integers and Algebra using Algebra Tiles A Concrete Introduction to the Abstract Concepts of Integers and Algebra using Algebra Tiles Table of Contents Introduction... 1 page Integers 1: Introduction to Integers... 3 2: Working with Algebra Tiles...

More information

CAHSEE on Target UC Davis, School and University Partnerships

CAHSEE on Target UC Davis, School and University Partnerships UC Davis, School and University Partnerships CAHSEE on Target Mathematics Curriculum Published by The University of California, Davis, School/University Partnerships Program 006 Director Sarah R. Martinez,

More information

By reversing the rules for multiplication of binomials from Section 4.6, we get rules for factoring polynomials in certain forms.

By reversing the rules for multiplication of binomials from Section 4.6, we get rules for factoring polynomials in certain forms. SECTION 5.4 Special Factoring Techniques 317 5.4 Special Factoring Techniques OBJECTIVES 1 Factor a difference of squares. 2 Factor a perfect square trinomial. 3 Factor a difference of cubes. 4 Factor

More information

6.3 FACTORING ax 2 bx c WITH a 1

6.3 FACTORING ax 2 bx c WITH a 1 290 (6 14) Chapter 6 Factoring e) What is the approximate maximum revenue? f) Use the accompanying graph to estimate the price at which the revenue is zero. y Revenue (thousands of dollars) 300 200 100

More information

Polynomial Expression

Polynomial Expression DETAILED SOLUTIONS AND CONCEPTS - POLYNOMIAL EXPRESSIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! PLEASE NOTE

More information

Chapter 8. Quadratic Equations and Functions

Chapter 8. Quadratic Equations and Functions Chapter 8. Quadratic Equations and Functions 8.1. Solve Quadratic Equations KYOTE Standards: CR 0; CA 11 In this section, we discuss solving quadratic equations by factoring, by using the square root property

More information

Chapter R.4 Factoring Polynomials

Chapter R.4 Factoring Polynomials Chapter R.4 Factoring Polynomials Introduction to Factoring To factor an expression means to write the expression as a product of two or more factors. Sample Problem: Factor each expression. a. 15 b. x

More information

COWLEY COUNTY COMMUNITY COLLEGE REVIEW GUIDE Compass Algebra Level 2

COWLEY COUNTY COMMUNITY COLLEGE REVIEW GUIDE Compass Algebra Level 2 COWLEY COUNTY COMMUNITY COLLEGE REVIEW GUIDE Compass Algebra Level This study guide is for students trying to test into College Algebra. There are three levels of math study guides. 1. If x and y 1, what

More information

Topic: Special Products and Factors Subtopic: Rules on finding factors of polynomials

Topic: Special Products and Factors Subtopic: Rules on finding factors of polynomials Quarter I: Special Products and Factors and Quadratic Equations Topic: Special Products and Factors Subtopic: Rules on finding factors of polynomials Time Frame: 20 days Time Frame: 3 days Content Standard:

More information

Veterans Upward Bound Algebra I Concepts - Honors

Veterans Upward Bound Algebra I Concepts - Honors Veterans Upward Bound Algebra I Concepts - Honors Brenda Meery Kaitlyn Spong Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) www.ck12.org Chapter 6. Factoring CHAPTER

More information

Factoring (pp. 1 of 4)

Factoring (pp. 1 of 4) Factoring (pp. 1 of 4) Algebra Review Try these items from middle school math. A) What numbers are the factors of 4? B) Write down the prime factorization of 7. C) 6 Simplify 48 using the greatest common

More information

Factoring a Difference of Two Squares. Factoring a Difference of Two Squares

Factoring a Difference of Two Squares. Factoring a Difference of Two Squares 284 (6 8) Chapter 6 Factoring 87. Tomato soup. The amount of metal S (in square inches) that it takes to make a can for tomato soup is a function of the radius r and height h: S 2 r 2 2 rh a) Rewrite this

More information

Math PreCalc 20 Chapter 4 Review of Factoring. Questions to try. 2. x 2 6xy x x x x 2 y + 8xy

Math PreCalc 20 Chapter 4 Review of Factoring. Questions to try. 2. x 2 6xy x x x x 2 y + 8xy Math PreCalc 20 Chapter 4 Review of Factoring Multiplying (Expanding) Type 1: Monomial x Binomial Monomial x Trinomial Ex: 3(x + 4) = 3x + 12-2(x 2 + 2x 1) = -2x 2 4x + 2 Multiply the following: 1. 5(x

More information

A.3. Polynomials and Factoring. Polynomials. What you should learn. Definition of a Polynomial in x. Why you should learn it

A.3. Polynomials and Factoring. Polynomials. What you should learn. Definition of a Polynomial in x. Why you should learn it Appendi A.3 Polynomials and Factoring A23 A.3 Polynomials and Factoring What you should learn Write polynomials in standard form. Add,subtract,and multiply polynomials. Use special products to multiply

More information

POLYNOMIAL FUNCTIONS

POLYNOMIAL FUNCTIONS POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a

More information

Name Intro to Algebra 2. Unit 1: Polynomials and Factoring

Name Intro to Algebra 2. Unit 1: Polynomials and Factoring Name Intro to Algebra 2 Unit 1: Polynomials and Factoring Date Page Topic Homework 9/3 2 Polynomial Vocabulary No Homework 9/4 x In Class assignment None 9/5 3 Adding and Subtracting Polynomials Pg. 332

More information

6.4 Special Factoring Rules

6.4 Special Factoring Rules 6.4 Special Factoring Rules OBJECTIVES 1 Factor a difference of squares. 2 Factor a perfect square trinomial. 3 Factor a difference of cubes. 4 Factor a sum of cubes. By reversing the rules for multiplication

More information

MATH 65 NOTEBOOK CERTIFICATIONS

MATH 65 NOTEBOOK CERTIFICATIONS MATH 65 NOTEBOOK CERTIFICATIONS Review Material from Math 60 2.5 4.3 4.4a Chapter #8: Systems of Linear Equations 8.1 8.2 8.3 Chapter #5: Exponents and Polynomials 5.1 5.2a 5.2b 5.3 5.4 5.5 5.6a 5.7a 1

More information

FACTORING POLYNOMIALS

FACTORING POLYNOMIALS 296 (5-40) Chapter 5 Exponents and Polynomials where a 2 is the area of the square base, b 2 is the area of the square top, and H is the distance from the base to the top. Find the volume of a truncated

More information

This is Factoring and Solving by Factoring, chapter 6 from the book Beginning Algebra (index.html) (v. 1.0).

This is Factoring and Solving by Factoring, chapter 6 from the book Beginning Algebra (index.html) (v. 1.0). This is Factoring and Solving by Factoring, chapter 6 from the book Beginning Algebra (index.html) (v. 1.0). This book is licensed under a Creative Commons by-nc-sa 3.0 (http://creativecommons.org/licenses/by-nc-sa/

More information

Math 25 Activity 6: Factoring Advanced

Math 25 Activity 6: Factoring Advanced Instructor! Math 25 Activity 6: Factoring Advanced Last week we looked at greatest common factors and the basics of factoring out the GCF. In this second activity, we will discuss factoring more difficult

More information

Factoring Polynomials

Factoring Polynomials UNIT 11 Factoring Polynomials You can use polynomials to describe framing for art. 396 Unit 11 factoring polynomials A polynomial is an expression that has variables that represent numbers. A number can

More information

POLYNOMIALS and FACTORING

POLYNOMIALS and FACTORING POLYNOMIALS and FACTORING Exponents ( days); 1. Evaluate exponential expressions. Use the product rule for exponents, 1. How do you remember the rules for exponents?. How do you decide which rule to use

More information

THE INTEGERS CHAPTER TABLE OF CONTENTS

THE INTEGERS CHAPTER TABLE OF CONTENTS CHAPTER THE INTEGERS In golf tournaments, a player s standing after each hole is often recorded on the leaderboard as the number of strokes above or below a standard for that hole called a par. A player

More information

Wentzville School District Algebra 1: Unit 8 Stage 1 Desired Results

Wentzville School District Algebra 1: Unit 8 Stage 1 Desired Results Wentzville School District Algebra 1: Unit 8 Stage 1 Desired Results Unit Title: Quadratic Expressions & Equations Course: Algebra I Unit 8 - Quadratic Expressions & Equations Brief Summary of Unit: At

More information

1.3 Algebraic Expressions

1.3 Algebraic Expressions 1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,

More information

Algebra 1 Chapter 08 review

Algebra 1 Chapter 08 review Name: Class: Date: ID: A Algebra 1 Chapter 08 review Multiple Choice Identify the choice that best completes the statement or answers the question. Simplify the difference. 1. (4w 2 4w 8) (2w 2 + 3w 6)

More information

Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers. Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used

More information

5.1 FACTORING OUT COMMON FACTORS

5.1 FACTORING OUT COMMON FACTORS C H A P T E R 5 Factoring he sport of skydiving was born in the 1930s soon after the military began using parachutes as a means of deploying troops. T Today, skydiving is a popular sport around the world.

More information

Exponents and Polynomials

Exponents and Polynomials Because of permissions issues, some material (e.g., photographs) has been removed from this chapter, though reference to it may occur in the tet. The omitted content was intentionally deleted and is not

More information

Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra:

Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra: Partial Fractions Combining fractions over a common denominator is a familiar operation from algebra: From the standpoint of integration, the left side of Equation 1 would be much easier to work with than

More information

Factoring - Grouping

Factoring - Grouping 6.2 Factoring - Grouping Objective: Factor polynomials with four terms using grouping. The first thing we will always do when factoring is try to factor out a GCF. This GCF is often a monomial like in

More information

ID: A

ID: A Name: Class: Date: --------------------- ---------------- -------- ID: A Chapter 8: Factoring Polynomials--Review Multiple Choice Identify the choice that best completes the statement or answers the question.

More information

ACTIVITY: Multiplying Binomials Using Algebra Tiles. Work with a partner. Six different algebra tiles are shown below.

ACTIVITY: Multiplying Binomials Using Algebra Tiles. Work with a partner. Six different algebra tiles are shown below. 7.3 Multiplying Polynomials How can you multiply two binomials? 1 ACTIVITY: Multiplying Binomials Using Algebra Tiles Work with a partner. Six different algebra tiles are shown below. 1 1 x x x x Write

More information

(2 4 + 9)+( 7 4) + 4 + 2

(2 4 + 9)+( 7 4) + 4 + 2 5.2 Polynomial Operations At times we ll need to perform operations with polynomials. At this level we ll just be adding, subtracting, or multiplying polynomials. Dividing polynomials will happen in future

More information

In algebra, factor by rewriting a polynomial as a product of lower-degree polynomials

In algebra, factor by rewriting a polynomial as a product of lower-degree polynomials Algebra 2 Notes SOL AII.1 Factoring Polynomials Mrs. Grieser Name: Date: Block: Factoring Review Factor: rewrite a number or expression as a product of primes; e.g. 6 = 2 3 In algebra, factor by rewriting

More information

6.1 The Greatest Common Factor; Factoring by Grouping

6.1 The Greatest Common Factor; Factoring by Grouping 386 CHAPTER 6 Factoring and Applications 6.1 The Greatest Common Factor; Factoring by Grouping OBJECTIVES 1 Find the greatest common factor of a list of terms. 2 Factor out the greatest common factor.

More information

Chapter 4 -- Decimals

Chapter 4 -- Decimals Chapter 4 -- Decimals $34.99 decimal notation ex. The cost of an object. ex. The balance of your bank account ex The amount owed ex. The tax on a purchase. Just like Whole Numbers Place Value - 1.23456789

More information

Factoring Trinomials using Algebra Tiles Student Activity

Factoring Trinomials using Algebra Tiles Student Activity Factoring Trinomials using Algebra Tiles Student Activity Materials: Algebra Tiles (student set) Worksheet: Factoring Trinomials using Algebra Tiles Algebra Tiles: Each algebra tile kits should contain

More information

Polynomials - Multiplying

Polynomials - Multiplying 5.5 Polynomials - Multiplying Multiplying polynomials can take several different forms based on what we are multiplying. We will first look at multiplying monomials, then monomials by polynomials and finish

More information

APPLICATIONS AND MODELING WITH QUADRATIC EQUATIONS

APPLICATIONS AND MODELING WITH QUADRATIC EQUATIONS APPLICATIONS AND MODELING WITH QUADRATIC EQUATIONS Now that we are starting to feel comfortable with the factoring process, the question becomes what do we use factoring to do? There are a variety of classic

More information

A. Factoring out the Greatest Common Factor.

A. Factoring out the Greatest Common Factor. DETAILED SOLUTIONS AND CONCEPTS - FACTORING POLYNOMIAL EXPRESSIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you!

More information

MTH 092 College Algebra Essex County College Division of Mathematics Sample Review Questions 1 Created January 17, 2006

MTH 092 College Algebra Essex County College Division of Mathematics Sample Review Questions 1 Created January 17, 2006 MTH 092 College Algebra Essex County College Division of Mathematics Sample Review Questions Created January 7, 2006 Math 092, Elementary Algebra, covers the mathematical content listed below. In order

More information

Using the ac Method to Factor

Using the ac Method to Factor 4.6 Using the ac Method to Factor 4.6 OBJECTIVES 1. Use the ac test to determine factorability 2. Use the results of the ac test 3. Completely factor a trinomial In Sections 4.2 and 4.3 we used the trial-and-error

More information