Parameter Estimation for Linear Dynamical Systems. Zoubin Ghahramani. Georey E. Hinton. University of Toronto. Toronto, Canada M5S 1A4

Size: px
Start display at page:

Download "Parameter Estimation for Linear Dynamical Systems. Zoubin Ghahramani. Georey E. Hinton. University of Toronto. Toronto, Canada M5S 1A4"

Transcription

1 Parameter Estimation for Linear Dynamical Systems Zoubin Ghahramani Georey E. Hinton Department of Computer Science University of Toronto 6 King's College Road Toronto, Canada M5S A4 zoubin@cs.toronto.edu Technical Report CRG-TR-96- February, 996 Abstract Linear systems have been used extensively in engineering to model and control the behavior of dynamical systems. In this note, we present the Expectation Maximization (EM) algorithm for estimating the parameters of linear systems (Shumway and Stoer, 98). We also point out the relationship between linear dynamical systems, factor analysis, and hidden Markov models. Introduction The goal of this note is to introduce the EM algorithm for estimating the parameters of linear dynamical systems (LDS). Such linear systems can be used both for supervised and unsupervised modeling of time series. We rst describe the model and then briey point out its relation to factor analysis and other data modeling techniques. The Model Linear time-invariant dynamical systems, also known as linear Gaussian state-space models, can be described by the following two equations: x t+ = Ax t + w t () y t = Cx t + v t : () Time is indexed by the discrete index t. The output y t is a linear function of the state, x t, and the state at one time step depends linearly on the previous state. Both state and output noise, w t and v t, are zero-mean normally distributed random variables with covariance matrices Q and R, respectively. Only the output of the system is observed, the state and all the noise variables are hidden. Rather than regarding the state as a deterministic value corrupted by random noise, we combine the state variable and the state noise variable into a single Gaussian random

2 variable; we form a similar combination for the output. Based on () and () we can write the conditional densities for the state and output, P (y t jx t ) = exp [y t Cx t ] 0 R [y t Cx t ] () p= jrj = (3) P (x t jx t ) = exp [x t Ax t ] 0 Q [x t Ax t ] () k= jqj = (4) A sequence of T output vectors (y ; y ; : : : ; y T ) is denoted by fyg; a subsequence (y t0 ; y t0 +; : : : ; y t ) by fyg t t0 ; similarly for the states. By the Markov property implicit in this model, P (fxg; fyg) = P (x ) TY P (x t jx t ) Assuming a Gaussian initial state density P (x ) = exp [x ] 0 V [x ] Therefore, the joint log probability is a sum of quadratic terms, log P (fxg; fyg) = t= TY t= [y t Cx t ] 0 R [y t Cx t ] T [x t Ax t ] 0 Q [x t Ax t ] P (y t jx t ): (5) () k= jv j = : (6) log jrj T log jqj [x ] 0 V [x ] log jv T (p + k) j log : (7) Often the inputs to the system can also be observed. In this case, the goal is to model the input{output response of a system. Denoting the inputs by u t, the state equation is x t+ = Ax t + Bu t + w t : (8) where B is the input matrix relating inputs linearly to states. We will present the learning algorithm for the output-only case, although the extensions to the input{output case are straightforward. If only the outputs of the system can be observed the problem can be seen as an unsupervised problem. That is, the goal is to model the unconditional density of the observations. If both inputs and outputs are observed, the problem becomes supervised, modeling the conditional density of the output given the input. Related Methods In its unsupervised incarnation, this model is an extension of maximum likelihood factor analysis (Everitt, 984). The factor, x t, evolves over time according to linear dynamics. In factor analysis, a further assumption is made that the output noise along each dimension

3 is uncorrelated, i.e. that R is diagonal. The goal of factor analysis is therefore to compress the correlational structure of the data into the values of the lower dimensional factors, while allowing independent noise terms to model the uncorrelated noise. The assumption of a diagonal R matrix can also be easily incorporated into the estimation procedure for the parameters of a linear dynamical system. The linear dynamical system can also be seen as a continuous-state analogue of the hidden Markov model (HMM; see Rabiner and Juang, 986, for a review). The forward part of the forward-backward algorithm from HMMs is computed by the well-known Kalman lter in LDSs; similarly, the backward part is computed by using Rauch's recursion (Rauch, 963). Together, these two recursions can be used to solve the problem of inferring the probabilities probabilities of the states given the observation sequence (known in engineering as the smoothing problem). These posterior probabilities form the basis of the E step of the EM algorithm. Finally, linear dynamical systems can also be represented as graphical probabilistic models (sometimes referred to as belief networks). The Kalman-Rauch recursions are special cases of the probability propagation algorithms that have been developed for graphical models (Lauritzen and Spiegelhalter, 988; Pearl, 988). The EM Algorithm Shumway and Stoer (98) presented an EM algorithm for linear dynamical systems where the observation matrix, C, is known. Since then, many authors have presented closely related models and extensions, also t with the EM algorithm (Shumway and Stoer, 99; Kim, 994; Athaide, 995). Here we present a basic form of the EM algorithm with C unknown, an obvious modication of Shumway and Stoer's original work. This note is meant as a succinct review of this literature for those wishing to implement learning in linear dynamical systems. The E step of EM requires computing the expected log likelihood, Q = E[log P (fxg; fyg)jfyg]: (9) This quantity depends on three expectations E[x t jfyg], E[x t x 0 t jfyg], E[x tx 0 t jfyg] which we will denote by the symbols: ^x t E[x t jfyg] (0) P t E[x t x 0 tjfyg] () P t;t E[x t x 0 t jfyg]: () Note that the state estimate, ^x t, diers from the one computed in a Kalman lter in that it depends on past and future observations; the Kalman lter estimates E[x t jfyg t ] (Anderson and Moore, 979). We rst describe the M step of the parameter estimation algorithm before showing how the above expectations are computed in the E step. 3

4 The M step The parameters of this system are A, C, R, Q,, V. Each of these is re-estimated by taking the corresponding partial derivative of the expected log likelihood, setting to zero, and solving. This results in the following: Output = t= C new = R y t^x 0 t + t= y t^x 0 t t=! T X t= R CP t = 0 (3) P t! (4) Output noise = T R t= R new = T y ty 0 t C^x ty 0 t + CP tc 0 = 0 (5) t= (y t y 0 t C new^x t y 0 t) (6) State dynamics = Q P t;t + Q AP t = 0 (7) A new =! X T P t;t P t! (8) State noise covariance: = T Q = T Q (P t AP t ;t P t;t A 0 + AP t A 0 ) = 0 Q new = T P t A new P t A new P t ;t! P t ;t! (9) (0) Initial state = (^x )V = 0 () new = ^x () 4

5 Initial state = V (P ^x 0 ^x ) (3) V new = P ^x ^x 0 (4) The above equations can be readily generalized to multiple observation sequences, with one subtlety regarding the estimate of the initial state covariance. Assume N observation sequences of length T, let ^x (i) t be the estimate of state at time t given the i th sequence, and Then the initial state covariance is The E step ^x t = N V new = P ^x ^x 0 + N NX i= NX i= ^x (i) t : [^x (i) ^x ] [^x (i) ^x ] 0 : (5) Using x t to denote E(x t jfyg ), and Vt Kalman lter forward recursions: to denote Var(x t jfyg ), we obtain the following x t t = Ax t t (6) Vt t = AV t t A0 + Q (7) K t = Vt t C 0 (CVt t C 0 + R) (8) x t t = x t t + K t (y t Cx t t ) (9) Vt t = Vt t K t CVt t ; (30) where x 0 = and V 0 = V. Following Shumway and Stoer (98), to compute ^x t x T t and P t Vt T + x T t xt 0 t one performs a set of backward recursions using J t = V t t A0 (V t t ) (3) x T t = x t t + J t (x T t V T t = V t t + J t (V T t Axt t ) (3) V t t )J 0 t : (33) We also require P t;t V T + t;t xt t xt 0 t, which can be obtained through the backward recursions V T t ;t = V t t J 0 t + J t (V T t t;t AVt )J 0 t ; (34) which is initialized V T T;T = (I K T C)A V T T : 5

6 References Anderson, B. D. O. and Moore, J. B. (979). Optimal Filtering. Prentice-Hall, Englewood Clis, NJ. Athaide, C. R. (995). Likelihood Evaluation and State Estimation for Nonlinear State Space Models. Ph.D. Thesis, Graduate Group in Managerial Science and Applied Economics, University of Pennsylvania, Philadelphia, PA. Everitt, B. S. (984). An Introduction to Latent Variable Models. Chapman and Hall, London. Kim, C.-J. (994). Dynamic linear models with Markov-switching. J. Econometrics, 60:{. Lauritzen, S. L. and Spiegelhalter, D. J. (988). Local computations with probabilities on graphical structures and their application to expert systems. J. Royal Statistical Society B, pages 57{4. Pearl, J. (988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Mateo, CA. Rabiner, L. R. and Juang, B. H. (986). An Introduction to hidden Markov models. IEEE Acoustics, Speech & Signal Processing Magazine, 3:4{6. Rauch, H. E. (963). Solutions to the linear smoothing problem. IEEE Transactions on Automatic Control, 8:37{37. Shumway, R. H. and Stoer, D. S. (98). An approach to time series smoothing and forecasting using the EM algorithm. J. Time Series Analysis, 3(4):53{64. Shumway, R. H. and Stoer, D. S. (99). Dynamic linear models with switching. J. Amer. Stat. Assoc., 86:763{769. 6

Deterministic Sampling-based Switching Kalman Filtering for Vehicle Tracking

Deterministic Sampling-based Switching Kalman Filtering for Vehicle Tracking Proceedings of the IEEE ITSC 2006 2006 IEEE Intelligent Transportation Systems Conference Toronto, Canada, September 17-20, 2006 WA4.1 Deterministic Sampling-based Switching Kalman Filtering for Vehicle

More information

Bayesian networks - Time-series models - Apache Spark & Scala

Bayesian networks - Time-series models - Apache Spark & Scala Bayesian networks - Time-series models - Apache Spark & Scala Dr John Sandiford, CTO Bayes Server Data Science London Meetup - November 2014 1 Contents Introduction Bayesian networks Latent variables Anomaly

More information

Probability and Random Variables. Generation of random variables (r.v.)

Probability and Random Variables. Generation of random variables (r.v.) Probability and Random Variables Method for generating random variables with a specified probability distribution function. Gaussian And Markov Processes Characterization of Stationary Random Process Linearly

More information

Course: Model, Learning, and Inference: Lecture 5

Course: Model, Learning, and Inference: Lecture 5 Course: Model, Learning, and Inference: Lecture 5 Alan Yuille Department of Statistics, UCLA Los Angeles, CA 90095 yuille@stat.ucla.edu Abstract Probability distributions on structured representation.

More information

Bayesian Statistics: Indian Buffet Process

Bayesian Statistics: Indian Buffet Process Bayesian Statistics: Indian Buffet Process Ilker Yildirim Department of Brain and Cognitive Sciences University of Rochester Rochester, NY 14627 August 2012 Reference: Most of the material in this note

More information

EE 570: Location and Navigation

EE 570: Location and Navigation EE 570: Location and Navigation On-Line Bayesian Tracking Aly El-Osery 1 Stephen Bruder 2 1 Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA 2 Electrical and Computer Engineering

More information

Linear Threshold Units

Linear Threshold Units Linear Threshold Units w x hx (... w n x n w We assume that each feature x j and each weight w j is a real number (we will relax this later) We will study three different algorithms for learning linear

More information

State Space Time Series Analysis

State Space Time Series Analysis State Space Time Series Analysis p. 1 State Space Time Series Analysis Siem Jan Koopman http://staff.feweb.vu.nl/koopman Department of Econometrics VU University Amsterdam Tinbergen Institute 2011 State

More information

A Unifying Review of Linear Gaussian Models

A Unifying Review of Linear Gaussian Models REVIEW Communicated by Steven Nowlan A Unifying Review of Linear Gaussian Models Sam Roweis Computation and Neural Systems, California Institute of Technology, Pasadena, CA 91125, U.S.A. Zoubin Ghahramani

More information

Advanced Signal Processing and Digital Noise Reduction

Advanced Signal Processing and Digital Noise Reduction Advanced Signal Processing and Digital Noise Reduction Saeed V. Vaseghi Queen's University of Belfast UK WILEY HTEUBNER A Partnership between John Wiley & Sons and B. G. Teubner Publishers Chichester New

More information

Introduction to Kalman Filtering

Introduction to Kalman Filtering Introduction to Kalman Filtering A set of two lectures Maria Isabel Ribeiro Associate Professor Instituto Superior écnico / Instituto de Sistemas e Robótica June All rights reserved INRODUCION O KALMAN

More information

11. Time series and dynamic linear models

11. Time series and dynamic linear models 11. Time series and dynamic linear models Objective To introduce the Bayesian approach to the modeling and forecasting of time series. Recommended reading West, M. and Harrison, J. (1997). models, (2 nd

More information

Kalman Filter Applied to a Active Queue Management Problem

Kalman Filter Applied to a Active Queue Management Problem IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 9, Issue 4 Ver. III (Jul Aug. 2014), PP 23-27 Jyoti Pandey 1 and Prof. Aashih Hiradhar 2 Department

More information

Statistics Graduate Courses

Statistics Graduate Courses Statistics Graduate Courses STAT 7002--Topics in Statistics-Biological/Physical/Mathematics (cr.arr.).organized study of selected topics. Subjects and earnable credit may vary from semester to semester.

More information

Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model

Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model 1 September 004 A. Introduction and assumptions The classical normal linear regression model can be written

More information

System Identification for Acoustic Comms.:

System Identification for Acoustic Comms.: System Identification for Acoustic Comms.: New Insights and Approaches for Tracking Sparse and Rapidly Fluctuating Channels Weichang Li and James Preisig Woods Hole Oceanographic Institution The demodulation

More information

Understanding and Applying Kalman Filtering

Understanding and Applying Kalman Filtering Understanding and Applying Kalman Filtering Lindsay Kleeman Department of Electrical and Computer Systems Engineering Monash University, Clayton 1 Introduction Objectives: 1. Provide a basic understanding

More information

CCNY. BME I5100: Biomedical Signal Processing. Linear Discrimination. Lucas C. Parra Biomedical Engineering Department City College of New York

CCNY. BME I5100: Biomedical Signal Processing. Linear Discrimination. Lucas C. Parra Biomedical Engineering Department City College of New York BME I5100: Biomedical Signal Processing Linear Discrimination Lucas C. Parra Biomedical Engineering Department CCNY 1 Schedule Week 1: Introduction Linear, stationary, normal - the stuff biology is not

More information

CS229 Lecture notes. Andrew Ng

CS229 Lecture notes. Andrew Ng CS229 Lecture notes Andrew Ng Part X Factor analysis Whenwehavedatax (i) R n thatcomesfromamixtureofseveral Gaussians, the EM algorithm can be applied to fit a mixture model. In this setting, we usually

More information

Hardware Implementation of Probabilistic State Machine for Word Recognition

Hardware Implementation of Probabilistic State Machine for Word Recognition IJECT Vo l. 4, Is s u e Sp l - 5, Ju l y - Se p t 2013 ISSN : 2230-7109 (Online) ISSN : 2230-9543 (Print) Hardware Implementation of Probabilistic State Machine for Word Recognition 1 Soorya Asokan, 2

More information

Trend and Seasonal Components

Trend and Seasonal Components Chapter 2 Trend and Seasonal Components If the plot of a TS reveals an increase of the seasonal and noise fluctuations with the level of the process then some transformation may be necessary before doing

More information

Least Squares Estimation

Least Squares Estimation Least Squares Estimation SARA A VAN DE GEER Volume 2, pp 1041 1045 in Encyclopedia of Statistics in Behavioral Science ISBN-13: 978-0-470-86080-9 ISBN-10: 0-470-86080-4 Editors Brian S Everitt & David

More information

CS 2750 Machine Learning. Lecture 1. Machine Learning. http://www.cs.pitt.edu/~milos/courses/cs2750/ CS 2750 Machine Learning.

CS 2750 Machine Learning. Lecture 1. Machine Learning. http://www.cs.pitt.edu/~milos/courses/cs2750/ CS 2750 Machine Learning. Lecture Machine Learning Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square, x5 http://www.cs.pitt.edu/~milos/courses/cs75/ Administration Instructor: Milos Hauskrecht milos@cs.pitt.edu 539 Sennott

More information

Real-time Visual Tracker by Stream Processing

Real-time Visual Tracker by Stream Processing Real-time Visual Tracker by Stream Processing Simultaneous and Fast 3D Tracking of Multiple Faces in Video Sequences by Using a Particle Filter Oscar Mateo Lozano & Kuzahiro Otsuka presented by Piotr Rudol

More information

Bayesian Machine Learning (ML): Modeling And Inference in Big Data. Zhuhua Cai Google, Rice University caizhua@gmail.com

Bayesian Machine Learning (ML): Modeling And Inference in Big Data. Zhuhua Cai Google, Rice University caizhua@gmail.com Bayesian Machine Learning (ML): Modeling And Inference in Big Data Zhuhua Cai Google Rice University caizhua@gmail.com 1 Syllabus Bayesian ML Concepts (Today) Bayesian ML on MapReduce (Next morning) Bayesian

More information

Some probability and statistics

Some probability and statistics Appendix A Some probability and statistics A Probabilities, random variables and their distribution We summarize a few of the basic concepts of random variables, usually denoted by capital letters, X,Y,

More information

A Multi-Model Filter for Mobile Terminal Location Tracking

A Multi-Model Filter for Mobile Terminal Location Tracking A Multi-Model Filter for Mobile Terminal Location Tracking M. McGuire, K.N. Plataniotis The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 1 King s College

More information

Lecture 8: Signal Detection and Noise Assumption

Lecture 8: Signal Detection and Noise Assumption ECE 83 Fall Statistical Signal Processing instructor: R. Nowak, scribe: Feng Ju Lecture 8: Signal Detection and Noise Assumption Signal Detection : X = W H : X = S + W where W N(, σ I n n and S = [s, s,...,

More information

CS 688 Pattern Recognition Lecture 4. Linear Models for Classification

CS 688 Pattern Recognition Lecture 4. Linear Models for Classification CS 688 Pattern Recognition Lecture 4 Linear Models for Classification Probabilistic generative models Probabilistic discriminative models 1 Generative Approach ( x ) p C k p( C k ) Ck p ( ) ( x Ck ) p(

More information

Univariate and Multivariate Methods PEARSON. Addison Wesley

Univariate and Multivariate Methods PEARSON. Addison Wesley Time Series Analysis Univariate and Multivariate Methods SECOND EDITION William W. S. Wei Department of Statistics The Fox School of Business and Management Temple University PEARSON Addison Wesley Boston

More information

Statistics in Retail Finance. Chapter 6: Behavioural models

Statistics in Retail Finance. Chapter 6: Behavioural models Statistics in Retail Finance 1 Overview > So far we have focussed mainly on application scorecards. In this chapter we shall look at behavioural models. We shall cover the following topics:- Behavioural

More information

Christfried Webers. Canberra February June 2015

Christfried Webers. Canberra February June 2015 c Statistical Group and College of Engineering and Computer Science Canberra February June (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 829 c Part VIII Linear Classification 2 Logistic

More information

Principle Component Analysis and Partial Least Squares: Two Dimension Reduction Techniques for Regression

Principle Component Analysis and Partial Least Squares: Two Dimension Reduction Techniques for Regression Principle Component Analysis and Partial Least Squares: Two Dimension Reduction Techniques for Regression Saikat Maitra and Jun Yan Abstract: Dimension reduction is one of the major tasks for multivariate

More information

A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking

A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking 174 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 2, FEBRUARY 2002 A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking M. Sanjeev Arulampalam, Simon Maskell, Neil

More information

Solutions to Exam in Speech Signal Processing EN2300

Solutions to Exam in Speech Signal Processing EN2300 Solutions to Exam in Speech Signal Processing EN23 Date: Thursday, Dec 2, 8: 3: Place: Allowed: Grades: Language: Solutions: Q34, Q36 Beta Math Handbook (or corresponding), calculator with empty memory.

More information

Stock Option Pricing Using Bayes Filters

Stock Option Pricing Using Bayes Filters Stock Option Pricing Using Bayes Filters Lin Liao liaolin@cs.washington.edu Abstract When using Black-Scholes formula to price options, the key is the estimation of the stochastic return variance. In this

More information

A STATE-SPACE METHOD FOR LANGUAGE MODELING. Vesa Siivola and Antti Honkela. Helsinki University of Technology Neural Networks Research Centre

A STATE-SPACE METHOD FOR LANGUAGE MODELING. Vesa Siivola and Antti Honkela. Helsinki University of Technology Neural Networks Research Centre A STATE-SPACE METHOD FOR LANGUAGE MODELING Vesa Siivola and Antti Honkela Helsinki University of Technology Neural Networks Research Centre Vesa.Siivola@hut.fi, Antti.Honkela@hut.fi ABSTRACT In this paper,

More information

Conditional Random Fields: An Introduction

Conditional Random Fields: An Introduction Conditional Random Fields: An Introduction Hanna M. Wallach February 24, 2004 1 Labeling Sequential Data The task of assigning label sequences to a set of observation sequences arises in many fields, including

More information

Applications to Data Smoothing and Image Processing I

Applications to Data Smoothing and Image Processing I Applications to Data Smoothing and Image Processing I MA 348 Kurt Bryan Signals and Images Let t denote time and consider a signal a(t) on some time interval, say t. We ll assume that the signal a(t) is

More information

MUSICAL INSTRUMENT FAMILY CLASSIFICATION

MUSICAL INSTRUMENT FAMILY CLASSIFICATION MUSICAL INSTRUMENT FAMILY CLASSIFICATION Ricardo A. Garcia Media Lab, Massachusetts Institute of Technology 0 Ames Street Room E5-40, Cambridge, MA 039 USA PH: 67-53-0 FAX: 67-58-664 e-mail: rago @ media.

More information

Discrete Frobenius-Perron Tracking

Discrete Frobenius-Perron Tracking Discrete Frobenius-Perron Tracing Barend J. van Wy and Michaël A. van Wy French South-African Technical Institute in Electronics at the Tshwane University of Technology Staatsartillerie Road, Pretoria,

More information

Estimating an ARMA Process

Estimating an ARMA Process Statistics 910, #12 1 Overview Estimating an ARMA Process 1. Main ideas 2. Fitting autoregressions 3. Fitting with moving average components 4. Standard errors 5. Examples 6. Appendix: Simple estimators

More information

10-601. Machine Learning. http://www.cs.cmu.edu/afs/cs/academic/class/10601-f10/index.html

10-601. Machine Learning. http://www.cs.cmu.edu/afs/cs/academic/class/10601-f10/index.html 10-601 Machine Learning http://www.cs.cmu.edu/afs/cs/academic/class/10601-f10/index.html Course data All up-to-date info is on the course web page: http://www.cs.cmu.edu/afs/cs/academic/class/10601-f10/index.html

More information

Monotonicity Hints. Abstract

Monotonicity Hints. Abstract Monotonicity Hints Joseph Sill Computation and Neural Systems program California Institute of Technology email: joe@cs.caltech.edu Yaser S. Abu-Mostafa EE and CS Deptartments California Institute of Technology

More information

Master s thesis tutorial: part III

Master s thesis tutorial: part III for the Autonomous Compliant Research group Tinne De Laet, Wilm Decré, Diederik Verscheure Katholieke Universiteit Leuven, Department of Mechanical Engineering, PMA Division 30 oktober 2006 Outline General

More information

Parametric Statistical Modeling

Parametric Statistical Modeling Parametric Statistical Modeling ECE 275A Statistical Parameter Estimation Ken Kreutz-Delgado ECE Department, UC San Diego Ken Kreutz-Delgado (UC San Diego) ECE 275A SPE Version 1.1 Fall 2012 1 / 12 Why

More information

Component Ordering in Independent Component Analysis Based on Data Power

Component Ordering in Independent Component Analysis Based on Data Power Component Ordering in Independent Component Analysis Based on Data Power Anne Hendrikse Raymond Veldhuis University of Twente University of Twente Fac. EEMCS, Signals and Systems Group Fac. EEMCS, Signals

More information

An Introduction to the Kalman Filter

An Introduction to the Kalman Filter An Introduction to the Kalman Filter Greg Welch 1 and Gary Bishop 2 TR 95041 Department of Computer Science University of North Carolina at Chapel Hill Chapel Hill, NC 275993175 Updated: Monday, July 24,

More information

Time Series and Forecasting

Time Series and Forecasting Chapter 22 Page 1 Time Series and Forecasting A time series is a sequence of observations of a random variable. Hence, it is a stochastic process. Examples include the monthly demand for a product, the

More information

Bayes and Naïve Bayes. cs534-machine Learning

Bayes and Naïve Bayes. cs534-machine Learning Bayes and aïve Bayes cs534-machine Learning Bayes Classifier Generative model learns Prediction is made by and where This is often referred to as the Bayes Classifier, because of the use of the Bayes rule

More information

Introduction to Algorithmic Trading Strategies Lecture 2

Introduction to Algorithmic Trading Strategies Lecture 2 Introduction to Algorithmic Trading Strategies Lecture 2 Hidden Markov Trading Model Haksun Li haksun.li@numericalmethod.com www.numericalmethod.com Outline Carry trade Momentum Valuation CAPM Markov chain

More information

Simple Methods and Procedures Used in Forecasting

Simple Methods and Procedures Used in Forecasting Simple Methods and Procedures Used in Forecasting The project prepared by : Sven Gingelmaier Michael Richter Under direction of the Maria Jadamus-Hacura What Is Forecasting? Prediction of future events

More information

Statistical machine learning, high dimension and big data

Statistical machine learning, high dimension and big data Statistical machine learning, high dimension and big data S. Gaïffas 1 14 mars 2014 1 CMAP - Ecole Polytechnique Agenda for today Divide and Conquer principle for collaborative filtering Graphical modelling,

More information

Evaluation of Machine Learning Techniques for Green Energy Prediction

Evaluation of Machine Learning Techniques for Green Energy Prediction arxiv:1406.3726v1 [cs.lg] 14 Jun 2014 Evaluation of Machine Learning Techniques for Green Energy Prediction 1 Objective Ankur Sahai University of Mainz, Germany We evaluate Machine Learning techniques

More information

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMS091)

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMS091) Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMS091) Magnus Wiktorsson Centre for Mathematical Sciences Lund University, Sweden Lecture 5 Sequential Monte Carlo methods I February

More information

Nonlinear Programming Methods.S2 Quadratic Programming

Nonlinear Programming Methods.S2 Quadratic Programming Nonlinear Programming Methods.S2 Quadratic Programming Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard A linearly constrained optimization problem with a quadratic objective

More information

LONG TERM FOREIGN CURRENCY EXCHANGE RATE PREDICTIONS

LONG TERM FOREIGN CURRENCY EXCHANGE RATE PREDICTIONS LONG TERM FOREIGN CURRENCY EXCHANGE RATE PREDICTIONS The motivation of this work is to predict foreign currency exchange rates between countries using the long term economic performance of the respective

More information

Sequential Tracking in Pricing Financial Options using Model Based and Neural Network Approaches

Sequential Tracking in Pricing Financial Options using Model Based and Neural Network Approaches Sequential Tracking in Pricing Financial Options using Model Based and Neural Network Approaches Mahesan Niranjan Cambridge University Engineering Department Cambridge CB2 IPZ, England niranjan@eng.cam.ac.uk

More information

Particle Filter-Based On-Line Estimation of Spot (Cross-)Volatility with Nonlinear Market Microstructure Noise Models. Jan C.

Particle Filter-Based On-Line Estimation of Spot (Cross-)Volatility with Nonlinear Market Microstructure Noise Models. Jan C. Particle Filter-Based On-Line Estimation of Spot (Cross-)Volatility with Nonlinear Market Microstructure Noise Models Jan C. Neddermeyer (joint work with Rainer Dahlhaus, University of Heidelberg) DZ BANK

More information

We shall turn our attention to solving linear systems of equations. Ax = b

We shall turn our attention to solving linear systems of equations. Ax = b 59 Linear Algebra We shall turn our attention to solving linear systems of equations Ax = b where A R m n, x R n, and b R m. We already saw examples of methods that required the solution of a linear system

More information

Multivariate Normal Distribution

Multivariate Normal Distribution Multivariate Normal Distribution Lecture 4 July 21, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Lecture #4-7/21/2011 Slide 1 of 41 Last Time Matrices and vectors Eigenvalues

More information

Investigation of Optimal Alarm System Performance for Anomaly Detection

Investigation of Optimal Alarm System Performance for Anomaly Detection Investigation of Optimal Alarm System Performance for Anomaly Detection Rodney A. Martin, Ph.D. NASA Ames Research Center Intelligent Data Understanding Group Mail Stop 269-1 Moffett Field, CA 94035-1000

More information

Factor analysis. Angela Montanari

Factor analysis. Angela Montanari Factor analysis Angela Montanari 1 Introduction Factor analysis is a statistical model that allows to explain the correlations between a large number of observed correlated variables through a small number

More information

Machine Learning and Data Analysis overview. Department of Cybernetics, Czech Technical University in Prague. http://ida.felk.cvut.

Machine Learning and Data Analysis overview. Department of Cybernetics, Czech Technical University in Prague. http://ida.felk.cvut. Machine Learning and Data Analysis overview Jiří Kléma Department of Cybernetics, Czech Technical University in Prague http://ida.felk.cvut.cz psyllabus Lecture Lecturer Content 1. J. Kléma Introduction,

More information

A Reliability Point and Kalman Filter-based Vehicle Tracking Technique

A Reliability Point and Kalman Filter-based Vehicle Tracking Technique A Reliability Point and Kalman Filter-based Vehicle Tracing Technique Soo Siang Teoh and Thomas Bräunl Abstract This paper introduces a technique for tracing the movement of vehicles in consecutive video

More information

Gaussian Processes in Machine Learning

Gaussian Processes in Machine Learning Gaussian Processes in Machine Learning Carl Edward Rasmussen Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany carl@tuebingen.mpg.de WWW home page: http://www.tuebingen.mpg.de/ carl

More information

Classification Problems

Classification Problems Classification Read Chapter 4 in the text by Bishop, except omit Sections 4.1.6, 4.1.7, 4.2.4, 4.3.3, 4.3.5, 4.3.6, 4.4, and 4.5. Also, review sections 1.5.1, 1.5.2, 1.5.3, and 1.5.4. Classification Problems

More information

1 Maximum likelihood estimation

1 Maximum likelihood estimation COS 424: Interacting with Data Lecturer: David Blei Lecture #4 Scribes: Wei Ho, Michael Ye February 14, 2008 1 Maximum likelihood estimation 1.1 MLE of a Bernoulli random variable (coin flips) Given N

More information

Forecast covariances in the linear multiregression dynamic model.

Forecast covariances in the linear multiregression dynamic model. Forecast covariances in the linear multiregression dynamic model. Catriona M Queen, Ben J Wright and Casper J Albers The Open University, Milton Keynes, MK7 6AA, UK February 28, 2007 Abstract The linear

More information

An Introduction to Neural Networks

An Introduction to Neural Networks An Introduction to Vincent Cheung Kevin Cannons Signal & Data Compression Laboratory Electrical & Computer Engineering University of Manitoba Winnipeg, Manitoba, Canada Advisor: Dr. W. Kinsner May 27,

More information

Logistic Regression. Jia Li. Department of Statistics The Pennsylvania State University. Logistic Regression

Logistic Regression. Jia Li. Department of Statistics The Pennsylvania State University. Logistic Regression Logistic Regression Department of Statistics The Pennsylvania State University Email: jiali@stat.psu.edu Logistic Regression Preserve linear classification boundaries. By the Bayes rule: Ĝ(x) = arg max

More information

The Basics of Graphical Models

The Basics of Graphical Models The Basics of Graphical Models David M. Blei Columbia University October 3, 2015 Introduction These notes follow Chapter 2 of An Introduction to Probabilistic Graphical Models by Michael Jordan. Many figures

More information

4F7 Adaptive Filters (and Spectrum Estimation) Least Mean Square (LMS) Algorithm Sumeetpal Singh Engineering Department Email : sss40@eng.cam.ac.

4F7 Adaptive Filters (and Spectrum Estimation) Least Mean Square (LMS) Algorithm Sumeetpal Singh Engineering Department Email : sss40@eng.cam.ac. 4F7 Adaptive Filters (and Spectrum Estimation) Least Mean Square (LMS) Algorithm Sumeetpal Singh Engineering Department Email : sss40@eng.cam.ac.uk 1 1 Outline The LMS algorithm Overview of LMS issues

More information

Principal components analysis

Principal components analysis CS229 Lecture notes Andrew Ng Part XI Principal components analysis In our discussion of factor analysis, we gave a way to model data x R n as approximately lying in some k-dimension subspace, where k

More information

INDIRECT INFERENCE (prepared for: The New Palgrave Dictionary of Economics, Second Edition)

INDIRECT INFERENCE (prepared for: The New Palgrave Dictionary of Economics, Second Edition) INDIRECT INFERENCE (prepared for: The New Palgrave Dictionary of Economics, Second Edition) Abstract Indirect inference is a simulation-based method for estimating the parameters of economic models. Its

More information

Introduction to the Finite Element Method (FEM)

Introduction to the Finite Element Method (FEM) Introduction to the Finite Element Method (FEM) ecture First and Second Order One Dimensional Shape Functions Dr. J. Dean Discretisation Consider the temperature distribution along the one-dimensional

More information

Introduction to General and Generalized Linear Models

Introduction to General and Generalized Linear Models Introduction to General and Generalized Linear Models General Linear Models - part I Henrik Madsen Poul Thyregod Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby

More information

15.062 Data Mining: Algorithms and Applications Matrix Math Review

15.062 Data Mining: Algorithms and Applications Matrix Math Review .6 Data Mining: Algorithms and Applications Matrix Math Review The purpose of this document is to give a brief review of selected linear algebra concepts that will be useful for the course and to develop

More information

Lecture 7: Finding Lyapunov Functions 1

Lecture 7: Finding Lyapunov Functions 1 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.243j (Fall 2003): DYNAMICS OF NONLINEAR SYSTEMS by A. Megretski Lecture 7: Finding Lyapunov Functions 1

More information

1 2 3 1 1 2 x = + x 2 + x 4 1 0 1

1 2 3 1 1 2 x = + x 2 + x 4 1 0 1 (d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which

More information

Sales Rate and Cumulative Sales Forecasting Using Kalman Filtering Techniques

Sales Rate and Cumulative Sales Forecasting Using Kalman Filtering Techniques 1 Sales Rate and Cumulative Sales Forecasting Using Kalman Filtering Techniques Michael Munroe, Intel Corporation Ted Hench, Arizona State University, 480 614 1496, ted.hench@asu.edu Matthew Timmons, Arizona

More information

Data a systematic approach

Data a systematic approach Pattern Discovery on Australian Medical Claims Data a systematic approach Ah Chung Tsoi Senior Member, IEEE, Shu Zhang, Markus Hagenbuchner Member, IEEE Abstract The national health insurance system in

More information

Multivariate Analysis (Slides 13)

Multivariate Analysis (Slides 13) Multivariate Analysis (Slides 13) The final topic we consider is Factor Analysis. A Factor Analysis is a mathematical approach for attempting to explain the correlation between a large set of variables

More information

Digital Imaging and Multimedia. Filters. Ahmed Elgammal Dept. of Computer Science Rutgers University

Digital Imaging and Multimedia. Filters. Ahmed Elgammal Dept. of Computer Science Rutgers University Digital Imaging and Multimedia Filters Ahmed Elgammal Dept. of Computer Science Rutgers University Outlines What are Filters Linear Filters Convolution operation Properties of Linear Filters Application

More information

Monte Carlo-based statistical methods (MASM11/FMS091)

Monte Carlo-based statistical methods (MASM11/FMS091) Monte Carlo-based statistical methods (MASM11/FMS091) Magnus Wiktorsson Centre for Mathematical Sciences Lund University, Sweden Lecture 6 Sequential Monte Carlo methods II February 7, 2014 M. Wiktorsson

More information

A hidden Markov model for criminal behaviour classification

A hidden Markov model for criminal behaviour classification RSS2004 p.1/19 A hidden Markov model for criminal behaviour classification Francesco Bartolucci, Institute of economic sciences, Urbino University, Italy. Fulvia Pennoni, Department of Statistics, University

More information

SAS Software to Fit the Generalized Linear Model

SAS Software to Fit the Generalized Linear Model SAS Software to Fit the Generalized Linear Model Gordon Johnston, SAS Institute Inc., Cary, NC Abstract In recent years, the class of generalized linear models has gained popularity as a statistical modeling

More information

Time Series Analysis

Time Series Analysis JUNE 2012 Time Series Analysis CONTENT A time series is a chronological sequence of observations on a particular variable. Usually the observations are taken at regular intervals (days, months, years),

More information

Dimension Reduction. Wei-Ta Chu 2014/10/22. Multimedia Content Analysis, CSIE, CCU

Dimension Reduction. Wei-Ta Chu 2014/10/22. Multimedia Content Analysis, CSIE, CCU 1 Dimension Reduction Wei-Ta Chu 2014/10/22 2 1.1 Principal Component Analysis (PCA) Widely used in dimensionality reduction, lossy data compression, feature extraction, and data visualization Also known

More information

Maximum likelihood estimation of mean reverting processes

Maximum likelihood estimation of mean reverting processes Maximum likelihood estimation of mean reverting processes José Carlos García Franco Onward, Inc. jcpollo@onwardinc.com Abstract Mean reverting processes are frequently used models in real options. For

More information

Learning outcomes. Knowledge and understanding. Competence and skills

Learning outcomes. Knowledge and understanding. Competence and skills Syllabus Master s Programme in Statistics and Data Mining 120 ECTS Credits Aim The rapid growth of databases provides scientists and business people with vast new resources. This programme meets the challenges

More information

Signal processing tools for largescale network monitoring: a state of the art

Signal processing tools for largescale network monitoring: a state of the art Signal processing tools for largescale network monitoring: a state of the art Kavé Salamatian Université de Savoie Outline Introduction & Methodologies Anomaly detection basic Statistical anomaly detection

More information

Data, Measurements, Features

Data, Measurements, Features Data, Measurements, Features Middle East Technical University Dep. of Computer Engineering 2009 compiled by V. Atalay What do you think of when someone says Data? We might abstract the idea that data are

More information

Mathieu St-Pierre. Denis Gingras Dr. Ing.

Mathieu St-Pierre. Denis Gingras Dr. Ing. Comparison between the unscented Kalman filter and the extended Kalman filter for the position estimation module of an integrated navigation information system Mathieu St-Pierre Electrical engineering

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 4: classical linear and quadratic discriminants. 1 / 25 Linear separation For two classes in R d : simple idea: separate the classes

More information

Linear Classification. Volker Tresp Summer 2015

Linear Classification. Volker Tresp Summer 2015 Linear Classification Volker Tresp Summer 2015 1 Classification Classification is the central task of pattern recognition Sensors supply information about an object: to which class do the object belong

More information

How To Solve A Sequential Mca Problem

How To Solve A Sequential Mca Problem Monte Carlo-based statistical methods (MASM11/FMS091) Jimmy Olsson Centre for Mathematical Sciences Lund University, Sweden Lecture 6 Sequential Monte Carlo methods II February 3, 2012 Changes in HA1 Problem

More information

2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system

2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system 1. Systems of linear equations We are interested in the solutions to systems of linear equations. A linear equation is of the form 3x 5y + 2z + w = 3. The key thing is that we don t multiply the variables

More information

Language Modeling. Chapter 1. 1.1 Introduction

Language Modeling. Chapter 1. 1.1 Introduction Chapter 1 Language Modeling (Course notes for NLP by Michael Collins, Columbia University) 1.1 Introduction In this chapter we will consider the the problem of constructing a language model from a set

More information

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued). MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0

More information