F = 0. x ψ = y + z (1) y ψ = x + z (2) z ψ = x + y (3)


 Mervin Booth
 1 years ago
 Views:
Transcription
1 MATH 255 FINAL NAME: Instructions: You must include all the steps in your derivations/answers. Reduce answers as much as possible, but use exact arithmetic. Write neatly, please, and show all steps. Scientists and engineers uphold very high standards of ethics: the work you submit in this exam must be yours. Be prepared to explain your answers in person. Also, please document your take home final: keep all of your calculations (work not included in your final exam submission until you get a final grade in your class).. (25 pts) Consider the vector field F = y + z, x + z, x + y. Determine whether the vector field is conservative and if so, find an associated scalar potential ψ(x, y, z). F =. Hence, conservative and thus F = ψ(x, y, z). We write x ψ = y + z () y ψ = x + z (2) z ψ = x + y (3) Integrate () with respect to x: ψ = (y + z)x + h(y, z). Differentiate this expression and match to (2): ψ y = x + y h = x + z. Hence y h(y, z) = z, which we integrate with respect to y: h(y, z) = yz + f(z). Hence ψ + (y + z)x + yz + f(z). We differentiate this expression with respect to z and match to (3): z ψ = x + y + f (z) = x + y, hence f (z) = which we integrate in z to get f(z) = c, a constant. Hence ψ = (y + z)x + yz + c.
2 2. (5 pts) Assume g is a scalar function and f a vector function. Use the identity [gf] = fg + g f to compute the divergence of F = r. Here r = xî + yĵ + zˆk, and r 3 r = x 2 + y 2 + z 2, the magnitude of r. r = 3. and r 3 = 3r 5 r. Hence F = rr 3 + r 3 r. Hence F = 3r 3 3r 5 r r = 3r 3 3r 5 r 2 =. 2
3 3. ( pts) Find a vector normal to the surface z = x 2 /4 y 2 /6. It does not have to be a unit vector. let g = z x 2 /4 y 2 /6 =. A level set. Now, Note that this is not a unit vector. N = g. g = ˆk + 2 xî( x2 /4 y 2 /6) /2 + 8 yĵ( x2 /4 y 2 /6) /2 This can be written as If g = z + x 2 /4 y 2 /6 =, then N = ˆk + y [xî + 4z 4ĵ]. N = ˆk y [xî + 4z 4ĵ]. 3
4 4. (5 pts) Find the circulation C F dr, where C is the perimeter of the triangle given by the plane 2x + y + z = 2, in the first octant. The field F = 3xzĵ. Answer: you can do it as a line integral or as a surface integral: Here we use Stokes s Theorem: C F dr = S Fˆndσ. S is the triangle. As a surface integral: We compute curlf = 3( xˆk + zˆk). n = g/ g, where g = 2x + y + z 2 =, or ˆn = 6 (2î + ĵ + ˆk). The differential surface: Hence the integral to be solved is S Fˆndσ = dσ = dxdy ˆn ˆk = 6dxdy. 2 2x As a line integral: F dr = 3xzdy. Hence C F dr = y 2 zdy + 2 3( 4x y + 2)dydx =. 3x(2 y)dy + 3xzdy =, since in the first integral z =, in the second one x =, and in the third z = and the limits of integration are. 4
5 5. ( pts) Find the surface area 2πah, of the side of a cylinder of radius a and height h using either the projection method or the Jacobiantransformation method Answer: parametrize, Then r(u, v) = a cos uî + a sin uĵ + vˆk. r r =< a sin u, a cos u, > u v =<,, >. Hence r u r =< a cos u, a sin u, >. v Finally, < a cos u, a sin u, > = a, u 2π, and v h. Then side ds = h 2π adudv = 2πah. 5
6 6. (25 pts) Let F = P (x, y, z)î + Q(x, y, z)ĵ + R(x, y, z)ˆk be a vector field. Derive the conditions on F that guarantee that C F dr is path independent. Here, r = xî + yĵ + zˆk, the path starts at P and ends at P, two points in 3D space. Write out explicitly the line integral in scalar form. Match the exact differential dψ = ψ dx integral. dx + ψ dy ψ dy + dz dz to the integrand of the line Find conditions on F that associate it to the different components of the exact differential. Write a vector identity that encapsulates the conditions on F found above. Write the answer to the integral in terms of ψ. Answer: C F dr = C P dx+qdy +Rdz. Now if F =, then P dx+qdy +Rdz = dψ, where dψ = x ψdx + y ψdy + z ψdz. Hence C F dr = P P dψ = ψ(p ) ψ(p ). 6
7 7. (3 pts) Let ρ(x, y, z) = z 3 be the density of a solid. Compute its total mass V ρdv, where V is bounded by z =, z = 4+sin(2x)+cos(2y), and π x π and π y π. Hint: exploit the Divergence Theorem. Answer: we use V FdV = S F ds. We let F = 4 z4ˆk, so that F = z 3. So we then compute the surface integral S F ds, where S is the surface of the box. The integral S 4 z4ˆk ds = flat bottom surface 4 z4ˆk ds+ sides of box 4 z4ˆk ds+ wavy top 4 z4ˆk ds. Since z = on the flat bottom surface, the first integral on the right hand side is zero. Since the dot product of F and the normal to the sides of the box is zero, no contribution from that integral. Hence Hence, S wavy top 4 z4ˆk ds = wavy top 4 z4ˆk ds. 4 z4ˆk ds = square 4 z4ˆk ˆn dxdy ˆn ˆk. on the wavy top, F = 4 [4 + sin(2x) + cos(2y)]4ˆk. Hence square π π 4 [4 + sin(2x) + cos(2y)]4 dxdy = π π 4 [4 + sin(2x) + cos(2y)]4 dxdy. The integrand contributes just a few nonzero terms. To find these, first expand a = (4 + cos(2y)), then (a + exp(i2x) exp( i2x) 2i ) 4 will have only the terms a 4 + 3a 2 + 3/8 nonsinusoidal in x. Then we expand (4 + exp(2y)/2 + exp( 2y)/2) 4 and (4 + exp(2y)/2 + exp( 2y)/2) 2 and retain only the nonsinusoidal terms in y. We thus obtain π π π π 4 [4 + sin(2x) + cos(2y)]4 dxdy = π π π π dxdy = 47π2 /4. 7
8 8. (3 pts) Consider a rectangular region D of the x y plane that excludes the origin. Find p such that the circulation on the perimeter of the region D is zero, for where r 2 = x 2 + y 2. F = y3 r p î xy2 r p ĵ, Answer: Compute the curl and set it to zero. We obtain p = 4. That is, if p = 4. curlf = ˆk[ y 2 r p ( r 2 px 2 r 2 py 2 + 4] = ˆk[ y 2 r p ( r 2 r 2 p + 4) =, 8
9 9. (4 pts) Let R be a region in a plane that has a unit normal ˆn = a, b, c and boundary C. Let F = bz, cx, ay. (a) Show that F = ˆn. (b) Show that the area of R is given by C F dr. (c) Consider a curve C given by r = 5 sin t, 3 cos t, 2 sin t, for t 2π. Prove that C lies in a plane by showing that r dr dt is constant for all t. (d) Use part (b) to find the area of the region enclosed by C in part (c). Hint: find the unit normal consistent with the orientation of C. Answer: This can be done as a surface or line integral thanks to Stokes theorem. In part (a) all you need to do is to compute F = ˆn. In part (b), F dr = ( F) ds = ˆn ds = ds = R. C R We compute v = 5 cos t, 3 sin t, 2 cos t, and then the cross product r v = 78 2,, which is a constant vector, for all t. To find a unit normal vector we compute r(π/2) r() = 5,, 2, 3,, and r(3π/2) r() = 5, 3, 2. Taking the cross product and normalizing n = 3 2,, 5. Hence F = 3, 5x, 2y. Thus, F v = 3(52 sin 2 t cos 2 t). Finally, 2π dtf v = 3 2 2π R R dt( ) = 3 3 π. 9
10 . Optional, extra credit. Worth up to 5 pts. Caculate the surface area of a hemisphere x 2 + y 2 + z 2 = 9. Answer: one can work this out using spherical or cylindrical polar coordinates. Recall that the surface of a sphere is 4πr 2, where r is its radius. Hence, the surface of this hemisphere is 8π. Using spherical coordinates, the surface S of a hemisphere is S = π/2 dφ 2π 9 sin φ = 8π π/2 dφ sin φ = 8π. Using cylindrical coordinates and the projection technique we find that the normal to the hemisphere is ˆr = r/ r. Hence ˆk ˆn = z/3, z >. So the surface area can be found by projecting on the x y plane which makes a shadow of a circle of radius 3. Thus S = R dxdy 2π 3 z/3 = 3 dθ rdr 3 = 6π 9 r 2 rdr 9 r 2. then a change of variable u = 9 r 2, so that du/2 = rdr, leads to the expected result after the integration 3π 9 u /2 du = 6πu /2 9 = 8π.. Optional, extra credit. Worth up to 5 pts. CHAPTER4 REVIEW, number 45. Answer: F = κ T, where T = exp( x 2 y 2 z 2 ). Let ρ 2 = x 2 + y 2 + z 2. Hence, F = 2κ exp( ρ 2 )r. We use the divergence theorem to find the total flux across the unit sphere, centered at the origin: F ds = FdV, S we use the volume integral. We need the divf = 2(3 2ρ 2 ) exp( ρ 2 ) unit sphere Fρ2 sin ψdρdφdψ = 2κ Integrating in θ and ψ, 6κπ V π 2π dψ sin ψ dθ dρρ 2 F. ρ 2 (3 2ρ 2 ) exp( ρ 2 )dρ = 6κπ ( 2ρ 3 exp( ρ 2 ) ρ= = 32πκ.
( 1)2 + 2 2 + 2 2 = 9 = 3 We would like to make the length 6. The only vectors in the same direction as v are those
1.(6pts) Which of the following vectors has the same direction as v 1,, but has length 6? (a), 4, 4 (b),, (c) 4,, 4 (d), 4, 4 (e) 0, 6, 0 The length of v is given by ( 1) + + 9 3 We would like to make
More informationUnderstanding the FiniteDifference TimeDomain Method. John B. Schneider
Understanding the FiniteDifference TimeDomain Method John B. Schneider June, 015 ii Contents 1 Numeric Artifacts 7 1.1 Introduction...................................... 7 1. Finite Precision....................................
More information3. INNER PRODUCT SPACES
. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.
More informationEXAMPLE 6 Find the gradient vector field of f x, y x 2 y y 3. Plot the gradient vector field together with a contour map of f. How are they related?
9 HAPTER 3 VETOR ALULU 4 _4 4 _4 FIGURE 5 EXAMPLE 6 Find the gradient vector field of f, 3. Plot the gradient vector field together with a contour map of f. How are the related? OLUTION The gradient vector
More information5.7 Maximum and Minimum Values
5.7 Maximum and Minimum Values Objectives Icandefinecriticalpoints. I know the di erence between local and absolute minimums/maximums. I can find local maximum(s), minimum(s), and saddle points for a given
More information2 Integrating Both Sides
2 Integrating Both Sides So far, the only general method we have for solving differential equations involves equations of the form y = f(x), where f(x) is any function of x. The solution to such an equation
More informationFigure 2.1: Center of mass of four points.
Chapter 2 Bézier curves are named after their inventor, Dr. Pierre Bézier. Bézier was an engineer with the Renault car company and set out in the early 196 s to develop a curve formulation which would
More informationI. Vectors and Geometry in Two and Three Dimensions
I. Vectors and Geometry in Two and Three Dimensions I.1 Points and Vectors Each point in two dimensions may be labeled by two coordinates (a,b) which specify the position of the point in some units with
More informationFoundations of Data Science 1
Foundations of Data Science John Hopcroft Ravindran Kannan Version /4/204 These notes are a first draft of a book being written by Hopcroft and Kannan and in many places are incomplete. However, the notes
More informationFoundations of Data Science 1
Foundations of Data Science John Hopcroft Ravindran Kannan Version 2/8/204 These notes are a first draft of a book being written by Hopcroft and Kannan and in many places are incomplete. However, the notes
More informationPartial Differential Equations: Graduate Level Problems and Solutions. Igor Yanovsky
Partial Differential Equations: Graduate Level Problems and Solutions Igor Yanovsky Partial Differential Equations Igor Yanovsky, 5 Disclaimer: This handbook is intended to assist graduate students with
More information13. Write the decimal approximation of 9,000,001 9,000,000, rounded to three significant
æ If 3 + 4 = x, then x = 2 gold bar is a rectangular solid measuring 2 3 4 It is melted down, and three equal cubes are constructed from this gold What is the length of a side of each cube? 3 What is the
More information+ 4θ 4. We want to minimize this function, and we know that local minima occur when the derivative equals zero. Then consider
Math Xb Applications of Trig Derivatives 1. A woman at point A on the shore of a circular lake with radius 2 miles wants to arrive at the point C diametrically opposite A on the other side of the lake
More information= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that
Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without
More informationDEFINITION 5.1.1 A complex number is a matrix of the form. x y. , y x
Chapter 5 COMPLEX NUMBERS 5.1 Constructing the complex numbers One way of introducing the field C of complex numbers is via the arithmetic of matrices. DEFINITION 5.1.1 A complex number is a matrix of
More informationA Modern Course on Curves and Surfaces. Richard S. Palais
A Modern Course on Curves and Surfaces Richard S. Palais Contents Lecture 1. Introduction 1 Lecture 2. What is Geometry 4 Lecture 3. Geometry of InnerProduct Spaces 7 Lecture 4. Linear Maps and the Euclidean
More information(2) f(x) = o(g(x)) as x ( little o ) if lim. f(x)
1. Introduction To perturbation Theory & Asymptotic Expansions Example 1.0.1. Consider x = ε coshx (1.1) For ε 0 we cannot solve this in closed form. (Note: ε = 0 x = ) The equation defines a function
More informationIntroduction to Differential Calculus. Christopher Thomas
Mathematics Learning Centre Introduction to Differential Calculus Christopher Thomas c 1997 University of Sydney Acknowledgements Some parts of this booklet appeared in a similar form in the booklet Review
More informationMean Value Coordinates
Mean Value Coordinates Michael S. Floater Abstract: We derive a generalization of barycentric coordinates which allows a vertex in a planar triangulation to be expressed as a convex combination of its
More informationA NoNonsense Introduction to General Relativity
A NoNonsense Introduction to General Relativity Sean M. Carroll Enrico Fermi Institute and Department of Physics, University of Chicago, Chicago, IL, 60637 carroll@theory.uchicago.edu c 2001 1 1 Introduction
More informationThe General Cauchy Theorem
Chapter 3 The General Cauchy Theorem In this chapter, we consider two basic questions. First, for a given open set Ω, we try to determine which closed paths in Ω have the property that f(z) dz = 0for every
More informationSOLUTIONS FOR PROBLEM SET 2
SOLUTIONS FOR PROBLEM SET 2 A: There exist primes p such that p+6k is also prime for k = 1,2 and 3. One such prime is p = 11. Another such prime is p = 41. Prove that there exists exactly one prime p such
More informationMatthias Beck Gerald Marchesi Dennis Pixton Lucas Sabalka
Matthias Beck Gerald Marchesi Dennis Pixton Lucas Sabalka Version.5 Matthias Beck A First Course in Complex Analysis Version.5 Gerald Marchesi Department of Mathematics Department of Mathematical Sciences
More informationLEARNING OBJECTIVES FOR THIS CHAPTER
CHAPTER 6 Woman teaching geometry, from a fourteenthcentury edition of Euclid s geometry book. Inner Product Spaces In making the definition of a vector space, we generalized the linear structure (addition
More informationA First Course in General Relativity Bernard F Schutz. Solutions to Selected Exercises
A First Course in General Relativity Bernard F Schutz (2 nd Edition, Cambridge University Press, 2009) Solutions to Selected Exercises (Version 1.0, November 2009) To the user of these solutions: This
More informationSpaceTime Approach to NonRelativistic Quantum Mechanics
R. P. Feynman, Rev. of Mod. Phys., 20, 367 1948 SpaceTime Approach to NonRelativistic Quantum Mechanics R.P. Feynman Cornell University, Ithaca, New York Reprinted in Quantum Electrodynamics, edited
More information1 Sets and Set Notation.
LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most
More informationClassical Mechanics. Joel A. Shapiro
Classical Mechanics Joel A. Shapiro April 21, 2003 Copyright C 1994, 1997 by Joel A. Shapiro All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
More informationA UNIQUENESS RESULT FOR THE CONTINUITY EQUATION IN TWO DIMENSIONS. Dedicated to Constantine Dafermos on the occasion of his 70 th birthday
A UNIQUENESS RESULT FOR THE CONTINUITY EQUATION IN TWO DIMENSIONS GIOVANNI ALBERTI, STEFANO BIANCHINI, AND GIANLUCA CRIPPA Dedicated to Constantine Dafermos on the occasion of his 7 th birthday Abstract.
More informationThe whole of analytic number theory rests on one marvellous formula due to Leonhard Euler (17071783): n s = primes p. 1 p
Chapter Euler s Product Formula. The Product Formula The whole of analytic number theory rests on one marvellous formula due to Leonhard Euler (707783): n N, n>0 n s = primes p ( p s ). Informally, we
More information