Unit Ionic and Covalent Bonds

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Unit Ionic and Covalent Bonds"

Transcription

1 Unit Ionic and Covalent Bonds Electron Configuration in Ionic Bonding Ionic Bonds Bonding in Metals Valence Electrons Electrons in the highest occupied energy level of an element s atoms Examples Mg: 1s 2 2s 2 2p 6 3s 2 2 valence e - in level 3 Br: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 5 7 valence e - in level 4 Identification of group number gives valence electrons for the representative elements Group 1A elements (i.e., hydrogen, lithium, etc.) have 1 valence electron Group 6A elements (i.e., oxygen, sulfur, etc.) have 6 valence electrons Usually the only electrons used in chemical bonds Only electrons shown in the electron dot structures Electron Dot Structures Oxygen Nitrogen Sodium Calcium (6 valence e - ) (5 valence e - ) (1 valence e) (2 valence e - )

2 Electron Configurations for Ions Ions strive to become like noble gases Octet rule Atoms tend to achieve the electron configuration of a noble gas Ions strive to have 8 valence electrons Metals will lose electrons to go back to a noble gas configuration in the greatest energy level of their electron configurations Nonmetals will gain electrons to go to a noble gas configuration in the greatest energy level of their electron configurations Transition metals will go to a pseudo-noble gas configuration in their electron configurations Electron Configurations for Cations 1s 2 2s 2 2p 6 3s 1 1s 2 2s 2 2p 6 + e - 8 valence electrons in the highest energy level Electron Configurations for Cations Electron Configurations for Cations 1s 2 2s 2 2p 6 3s 2 1s 2 2s 2 2p 6 + 2e - 8 valence electrons in the highest energy level 1s 2 2s 2 2p 6 3s 2 3p 1 1s 2 2s 2 2p 6 + 3e - 8 valence electrons in the highest energy level

3 Electron Configurations for Cations (Transition Metals) Ideally, transition metals would have to lose their d orbital electrons to achieve a noble gas configuration. Example: Cobalt (1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 7 ) would have to lose nine electrons to get back to a noble gas configuration. Transition metals can have pseudo-noble gas electron configurations by typically losing the s orbital electrons. 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 7 1s 2 2s 2 2p 6 3s 2 3p 6 3d 7 15 electrons in the outer energy level Still a pseudo-noble gas configuration because of the s and p orbitals being filled Electron Configurations for Anions 1s 2 2s 2 2p 3 + 3e - 1s 2 2s 2 2p 6 8 valence electrons in the highest energy level Electron Configurations for Anions Electron Configurations for Anions 1s 2 2s 2 2p 4 + 2e - 1s 2 2s 2 2p 6 8 valence electrons in the highest energy level 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 5 + 1e - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 8 valence electrons in the highest energy level

4 -- Ionic Bonds -- Ionic Bonds Forces of attraction that bind oppositely charged ions Examples Sodium chloride Na + attracted to a Cl - Aluminum bromide Al 3+ attracted to 3 Br - Electromagnetic attraction Transfer (NOT sharing) of electron(s) from one neutral atom to another neutral atom to create ions Each ion will have an octet in the outer shell Exceptions: transition metals -- Ionic Bonds -- Formation of Ionic Bonds 1s 2 2s 2 2p 6 3s 1 1s 2 2s 2 2p 6 3s 2 3p 5 1s 2 2s 2 2p 6 1s 2 2s 2 2p 6 3s 2 3p 6 Transfer of the 3s 1 electron of the Na to the p orbital of the Cl Both ions now have octets -- Ionic Bonds -- Formation of Ionic Bonds -- Ionic Bonds -- Aragonite (CaCO 3 ) Barite (BaSO 4 ) Calcite (CaCO 3 ) 1s 2 2s 2 2p 6 3s 2 1s 2 2s 2 2p 4 1s 2 2s 2 2p 6 1s 2 2s 2 2p 6 Transfer of the 3s 2 electrons of the Mg to the p orbital of the O Both ions now have octets Hematite (Fe 2 O 3 ) Pyrite (FeS 2 ) Crystalline solids result from structured arrangements of ionic bonds.

5 -- Ionic Bonds -- Properties of Ionic Most ionic compounds are crystalline solids. Ions are arranged in repeating, three-dimensional patterns. Fourteen kinds of arrangements Coordination number Number of ions of opposite charge that surround the ion in a crystal -- Ionic Bonds -- Properties of Ionic Sodium chloride (NaCl) -- Ionic Bonds -- Properties of Ionic Cesium chloride (CsCl) Face-centered cubic structure Coordination number of 6 (6 Cl - ions around each Na + ion) Simple cubic structure Coordination number of 8 (8 Cl - ions around each Cs + ion)

6 -- Bonding in Metals -- Metallic Bonds and Metallic Properties Metallic Bonds Consist of the attraction of free-floating valence electrons for positivelycharged metal ions What hold the metal together Allow for malleability (ability to reshape and bend) Allow for conductivity Alloys Mixtures of two or more elements, at least one of which is a metal Generally made by melting a mixture of the elements and then cooling the mixture Properties are often superior to lone metals Steels The Nature of Covalent Bonds Bonding Theories Polar Bonds and Molecules Chapter 16: Covalent Bonding Single Covalent Bonds Two atoms share one pair of electrons Each atom ideally achieves an octet in a covalent bond so that they resemble the electron configuration of a noble gas The Nature of Covalent Bonds Structural formula is a chemical formula showing the arrangment of atoms in a molecule

7 Array of sodium ions and chloride ions: Collection of water molecules: Formula unit of sodium chloride: Molecule of water: Na + Cl - H O H Chemical formula: NaCl Chemical formula: H 2 O Single Covalent Bonds Covalent bonds result from combinations of nonmetals (I.e., group 4A, 5A, 6A, and 7A elements) Single Covalent Bonds - Halogens Unshared pairs Also known as lone pairs Pairs of valence electrons that are not shared between atoms of a molecule Unshared pairs do not change form in a structural formula

8 Single Covalent Bonds Larger Molecules Single Covalent Bonds Larger Molecules Single Covalent Bonds Larger Molecules Spreading out the electrons More stability Less energy required Preferred arrangements Double Covalent Bonds Bonds that involve two shared pairs of electrons Used to attain stable noble-gas configurations

9 Double Covalent Bonds Double Covalent Bonds -- Exceptions Oxygen gas (O 2 ) Expectation: formation of a double-bond to achieve octets Evidence: formation of a single-bond with two electrons in the gas being unpaired Triple Covalent Bonds Bonds that involve three shared pairs of electrons Used to attain stable noble-gas configurations Coordinate Covalent Bonds Covalent bond in which an atom contributes both bonding electrons Structural formulas of coordinate covalent bonds show the bonds as arrows that point from the atom donating the pair of electrons to the atom receiving them Examples Carbon monoxide (CO) Ammonium ion (NH 4+ ) Sulfur dioxide (SO 2 )

10 Coordinate Covalent Bonds Carbon Monoxide (CO) Coordinate Covalent Bonds Ammonium Ion (NH 4+ ) An octet has been achieved for each molecule, but nitrogen contributes the electrons needed. An octet has been achieved for each molecule, but oxygen contributes the electrons needed. Bond Dissociation Energies Total energy required to sever the bond between two covalently bonded atoms High in carbon compounds, resulting in high stability of carbon compounds Table 16.3, page 448 Resonance Example: H H kj H + H This means that it would require 435 kj of energy to break the bond between the two atoms in a hydrogen gas molecule (H 2 ). Structures that occur when it is possible to write two or more valid Lewis dot structures that have the same number of electron pairs for a molecule or ion Structures are in constant resonance NOTE: Single bonds are longer than double bonds; double bonds are longer than triple bonds

11 Exceptions to the Octet Rule Impossibilities occur where using the octet rule does not work. Examples: Nitrogen dioxide (NO 2 ) Oxygen gas (O 2 ) Phosphorus pentachloride (PCl 5 ) Sulfur hexafluoride (SF 6 ) Exceptions to the Octet Rule Nitrogen Dioxide (NO 2 ) Exceptions to the Octet Rule Phosphorus Pentachloride (PCl 5 ) Exceptions to the Octet Rule Sulfur Hexafluoride (SF 6 )

12 Exceptions to the Octet Rule Cases for exceptions More than 8 valence electrons Less than 8 valence electrons How to draw Typically, the central atom will be the first one listed in the formula. Hydrogens and halogens will typically surround the central atom. Diamagnetic Substance weakly repelled by a magnetic field Paramagnetic Substance strongly attracted to a magnetic field These substances have molecules containing two or more unpaired electrons. Not to be confused with ferromagnetism (as with magnets) Mass if offset in a magnetic field Chapter 16: Covalent Bonding Bonding Theories Molecular Orbitals Covalent bonding occurs as a result of an imbalance between the attractions and the repulsions of the nuclei and the electrons of the atoms. If two atoms don t bond, the repulsion between nuclei of two atoms and the atoms electrons is greater than the attractions of the electrons to the opposing nuclei. If two atoms do bond, the attractions of the electrons to the opposing nuclei is greater than the repulsion between nuclei of the two atoms and the atoms electrons. Pi bonds ( ) and sigma bonds ( ) are responsible for covalent bonding. Overlapping of orbitals cause bonds. Sharing of electrons from overlapping Symmetrical bonding VSEPR Theory Valence Shell Electron Pair Repulsion Theory Electron pairs around atoms tend to be as far apart as possible. Similar charges (I.e., negative charges from electrons) tend to repel each other and want to be spaced apart at maximum angles. Used to predict molecular geometries Bond angles Angles between bonds Spacing apart as far as possible Lone pairs of electrons will repel bonded atoms a bit more than expected toward each other around the central atom

13 Species type: AX 3 Geometry: Trigonal planar Predicted bond angle(s): 120 Species type: AX 4 Geometry: Tetrahedral Predicted bond angle(s): geometry: CO 3 2- : geometry: CH 4 : Species type: AX 5 Geometry: Trigonal bipyramidal Predicted bond angle(s): 90, 120, 180 Species type: AX 6 Geometry: Octahedral Predicted bond angle(s): 90, 180 geometry: PCl 5 : geometry: SF 6 :

14 Species type: AX 2 E 2 (E: lone electron pair around the central atom) Geometry: Bent Predicted bond angle(s): H 2 O: Species type: AX 2 E 3 (E: lone electron pair around the central atom) Geometry: Linear Predicted bond angle(s): 180 geometry: XeF 2 : Species type: AX 3 E 2 (E: lone electron pair around the central atom) Geometry: T-shaped Predicted bond angle(s): 90, 180 geometry: F 3 : Species type: AX 4 E (E: lone electron pair around the central atom) Geometry: See-saw Predicted bond angle(s): 90, 120, 180 geometry: SeCl 4 :

15 Species type: AX 4 E 2 (E: lone electron pair around the central atom) Geometry: Square planar Predicted bond angle(s): 90, 180 geometry: XeF 4 : Species type: AX 5 E (E: lone electron pair around the central atom) Geometry: Square pyramidal Predicted bond angle(s): 90, 180 geometry: ClF 5 : Hybrid Orbitals Hybridization Atomic orbitals mix to form the same total number of equivalent hybrid orbitals Number of hybrid orbitals is equal to the number of atomic orbitals that are mixed Classifications sp: One s orbital is mixed with one p orbital sp 2 : One s orbital is mixed with two p orbitals sp 3 : One s orbital is mixed with three p orbitals Explains why atoms that should not be able to bond covalently can bond Based on the number of electrons pairs Unshared as well as shared electron pairs can be located in hybrid orbitals sp 3 hybridization : hydrogen electrons bonding with carbon electrons Carbon should only be able to bond with two other electron orbitals normally, but it can bond with four when its orbitals are hybridized.

16 Number of electron pairs Hybrid Orbitals and Their Geometries Atomic Orbitals Hybrid Orbitals Geometry Examples 2 s, one p sp Linear BeF 2, CO 2 Chapter 16: Covalent Bonding Polar Bonds and Molecules 3 s, two p sp 2 Trigonal planar 4 s, three p sp 3 Tetrahedron BF 3, CO 3 2-, SO 3 CH 4, NH 3, H 2 O -- Polar Bonds and Molecules -- Bond Polarity The Tug of War The pairs of electrons that are bonds between atoms are pulled between the nuclei of the atoms in a bond. The electronegativities of the atoms determine the winner. Classifications for Bonds Nonpolar covalent When atoms pull the bond equally Happens with two atoms of equal electronegativity, most often using the same atoms Examples: H 2, O 2, N 2 Polar covalent When atoms pull the bond unequally Happens with two atoms of different electronegativities Example: HCl, HF, NH -- Polar Bonds and Molecules -- Bond Polarity Electronegativities and Bond Types See page 405, Table 14.2 for electronegativities. H: 2.1 Cl: 3.0 Since hydrogen is less, it will have the positive partial charge while chlorine has the negative partial charge = 0.9 HCl is polar covalent difference Nonpolar covalent bond H H (0.0 difference) difference difference Moderately covalent bond Very polar covalent bond H Cl (0.9 difference) H F (1.9 difference) difference Ionic bond Na + Cl - (2.1 difference)

17 -- Polar Bonds and Molecules -- Polar Molecules Dipole Molecule that has two poles Example: HCl from the previous page Polar vs. Nonpolar Water will be polar (charge goes from bottom to top even though the two cancel out sideways) Carbon dioxide will be nonpolar because the charges cancel out in all directions. -- Polar Bonds and Molecules -- Attractions Between Molecules van der Waals forces Two types: dispersion forces and dipole interactions Dispersion forces Weakest of all molecular interactions Caused by movement of electrons Strength increases as number of electrons in the molecule increases Examples: Br-Br, F-F, etc. Dipole interactions Occurs when polar molecules are attracted to one another Partial charge ( +) of one polar molecule is attracted to the opposite partial charge ( -) of another molecule -- Polar Bonds and Molecules -- Attractions Between Molecules Hydrogen bonding Hydrogen covalently bonded to a very electronegative atom is also weakly bonded to an unshared electron pair of another electronegative atom Example: water Characteristics of Ionic and Covalent Characteristic Ionic Compound Covalent Compound Representative unit Formula unit Molecule Bond formation Transfer of electrons Sharing of electrons Types of elements Metals and nonmetals Nonmetals Physical state at room temperature Solid Solid, liquid, gas Melting point High (> 300 C) Low (< 300 C) Solubility in water Usually high High to low Electrical conductivity of aqueous solution Good conductor Poor conductor or doesn t conduct at all

Chapter 11. Chemical Bonds: The Formation of Compounds from Atoms

Chapter 11. Chemical Bonds: The Formation of Compounds from Atoms Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms 1 11.1 Periodic Trends in atomic properties 11.1 Periodic Trends in atomic properties design of periodic table is based on observing properties

More information

CHAPTER NOTES CHAPTER 16. Covalent Bonding

CHAPTER NOTES CHAPTER 16. Covalent Bonding CHAPTER NOTES CHAPTER 16 Covalent Bonding Goals : To gain an understanding of : NOTES: 1. Valence electron and electron dot notation. 2. Stable electron configurations. 3. Covalent bonding. 4. Polarity

More information

CHEMISTRY BONDING REVIEW

CHEMISTRY BONDING REVIEW Answer the following questions. CHEMISTRY BONDING REVIEW 1. What are the three kinds of bonds which can form between atoms? The three types of Bonds are Covalent, Ionic and Metallic. Name Date Block 2.

More information

EXPERIMENT 9 Dot Structures and Geometries of Molecules

EXPERIMENT 9 Dot Structures and Geometries of Molecules EXPERIMENT 9 Dot Structures and Geometries of Molecules INTRODUCTION Lewis dot structures are our first tier in drawing molecules and representing bonds between the atoms. The method was first published

More information

Laboratory 11: Molecular Compounds and Lewis Structures

Laboratory 11: Molecular Compounds and Lewis Structures Introduction Laboratory 11: Molecular Compounds and Lewis Structures Molecular compounds are formed by sharing electrons between non-metal atoms. A useful theory for understanding the formation of molecular

More information

Theme 3: Bonding and Molecular Structure. (Chapter 8)

Theme 3: Bonding and Molecular Structure. (Chapter 8) Theme 3: Bonding and Molecular Structure. (Chapter 8) End of Chapter questions: 5, 7, 9, 12, 15, 18, 23, 27, 28, 32, 33, 39, 43, 46, 67, 77 Chemical reaction valence electrons of atoms rearranged (lost,

More information

The Lewis electron dot structures below indicate the valence electrons for elements in Groups 1-2 and Groups 13-18

The Lewis electron dot structures below indicate the valence electrons for elements in Groups 1-2 and Groups 13-18 AP EMISTRY APTER REVIEW APTER 7: VALENT BNDING You should understand the nature of the covalent bond. You should be able to draw the Lewis electron-dot structure for any atom, molecule, or polyatomic ion.

More information

CHAPTER 6 Chemical Bonding

CHAPTER 6 Chemical Bonding CHAPTER 6 Chemical Bonding SECTION 1 Introduction to Chemical Bonding OBJECTIVES 1. Define Chemical bond. 2. Explain why most atoms form chemical bonds. 3. Describe ionic and covalent bonding.. 4. Explain

More information

ch9 and 10 practice test

ch9 and 10 practice test 1. Which of the following covalent bonds is the most polar (highest percent ionic character)? A. Al I B. Si I C. Al Cl D. Si Cl E. Si P 2. What is the hybridization of the central atom in ClO 3? A. sp

More information

Chapter 9-10 practice test

Chapter 9-10 practice test Class: Date: Chapter 9-10 practice test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which one of the following is most likely to be an ionic compound?

More information

Question 4.2: Write Lewis dot symbols for atoms of the following elements: Mg, Na, B, O, N, Br.

Question 4.2: Write Lewis dot symbols for atoms of the following elements: Mg, Na, B, O, N, Br. Question 4.1: Explain the formation of a chemical bond. A chemical bond is defined as an attractive force that holds the constituents (atoms, ions etc.) together in a chemical species. Various theories

More information

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts 8.1 Types of Chemical Bonds A. Ionic Bonding 1. Electrons are transferred 2. Metals react with nonmetals 3. Ions paired have lower energy

More information

CHAPTER 6 REVIEW. Chemical Bonding. Answer the following questions in the space provided.

CHAPTER 6 REVIEW. Chemical Bonding. Answer the following questions in the space provided. Name Date lass APTER 6 REVIEW hemical Bonding SETIN 1 SRT ANSWER Answer the following questions in the space provided. 1. a A chemical bond between atoms results from the attraction between the valence

More information

A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is called a(n)

A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is called a(n) Chemistry I ATOMIC BONDING PRACTICE QUIZ Mr. Scott Select the best answer. 1) A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is

More information

EXAM 4 CH (Blackstock) November 30, 2006

EXAM 4 CH (Blackstock) November 30, 2006 EXAM 4 CH101.004 (Blackstock) November 30, 2006 Student name (print): honor pledge: 1. Which of these choices is the general electron configuration for the outermost electrons of elements in the alkaline

More information

UNIT TEST Atomic & Molecular Structure. Name: Date:

UNIT TEST Atomic & Molecular Structure. Name: Date: SCH4U UNIT TEST Atomic & Molecular Structure Name: _ Date: Part A - Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Who postulated that electrons

More information

Lab Manual Supplement

Lab Manual Supplement Objectives 1. Learn about the structures of covalent compounds and polyatomic ions. 2. Draw Lewis structures based on valence electrons and the octet rule. 3. Construct 3-dimensional models of molecules

More information

5. Structure, Geometry, and Polarity of Molecules

5. Structure, Geometry, and Polarity of Molecules 5. Structure, Geometry, and Polarity of Molecules What you will accomplish in this experiment This experiment will give you an opportunity to draw Lewis structures of covalent compounds, then use those

More information

EXPERIMENT 17 : Lewis Dot Structure / VSEPR Theory

EXPERIMENT 17 : Lewis Dot Structure / VSEPR Theory EXPERIMENT 17 : Lewis Dot Structure / VSEPR Theory Materials: Molecular Model Kit INTRODUCTION Although it has recently become possible to image molecules and even atoms using a high-resolution microscope,

More information

Chemistry Workbook 2: Problems For Exam 2

Chemistry Workbook 2: Problems For Exam 2 Chem 1A Dr. White Updated /5/1 1 Chemistry Workbook 2: Problems For Exam 2 Section 2-1: Covalent Bonding 1. On a potential energy diagram, the most stable state has the highest/lowest potential energy.

More information

Packet 4: Bonding. Play song: (One of Mrs. Stampfel s favorite songs)

Packet 4: Bonding. Play song:  (One of Mrs. Stampfel s favorite songs) Most atoms are not Packet 4: Bonding Atoms will, or share electrons in order to achieve a stable. Octet means that the atom has in its level. If an atom achieves a stable octet it will have the same electron

More information

A pure covalent bond is an equal sharing of shared electron pair(s) in a bond. A polar covalent bond is an unequal sharing.

A pure covalent bond is an equal sharing of shared electron pair(s) in a bond. A polar covalent bond is an unequal sharing. CHAPTER EIGHT BNDING: GENERAL CNCEPT or Review 1. Electronegativity is the ability of an atom in a molecule to attract electrons to itself. Electronegativity is a bonding term. Electron affinity is the

More information

Chapter 7. Comparing Ionic and Covalent Bonds. Ionic Bonds. Types of Bonds. Quick Review of Bond Types. Covalent Bonds

Chapter 7. Comparing Ionic and Covalent Bonds. Ionic Bonds. Types of Bonds. Quick Review of Bond Types. Covalent Bonds Comparing Ionic and Covalent Bonds Chapter 7 Covalent Bonds and Molecular Structure Intermolecular forces (much weaker than bonds) must be broken Ionic bonds must be broken 1 Ionic Bonds Covalent Bonds

More information

Vocabulary: VSEPR. 3 domains on central atom. 2 domains on central atom. 3 domains on central atom NOTE: Valence Shell Electron Pair Repulsion Theory

Vocabulary: VSEPR. 3 domains on central atom. 2 domains on central atom. 3 domains on central atom NOTE: Valence Shell Electron Pair Repulsion Theory Vocabulary: VSEPR Valence Shell Electron Pair Repulsion Theory domain = any electron pair, or any double or triple bond is considered one domain. lone pair = non-bonding pair = unshared pair = any electron

More information

Lewis Dot Notation Ionic Bonds Covalent Bonds Polar Covalent Bonds Lewis Dot Notation Revisited Resonance

Lewis Dot Notation Ionic Bonds Covalent Bonds Polar Covalent Bonds Lewis Dot Notation Revisited Resonance Lewis Dot Notation Ionic Bonds Covalent Bonds Polar Covalent Bonds Lewis Dot Notation Revisited Resonance Lewis Dot notation is a way of describing the outer shell (also called the valence shell) of an

More information

Chapter 4: Structure and Properties of Ionic and Covalent Compounds

Chapter 4: Structure and Properties of Ionic and Covalent Compounds Chapter 4: Structure and Properties of Ionic and Covalent Compounds 4.1 Chemical Bonding o Chemical Bond - the force of attraction between any two atoms in a compound. o Interactions involving valence

More information

Chapter 8 Basic Concepts of Chemical Bonding

Chapter 8 Basic Concepts of Chemical Bonding Chapter 8 Basic Concepts of Chemical Bonding Why do TiCl 4 and TiCl 3 have different colors?... different chemical properties?... different physical states? Chemical Bonding and Properties Difference in

More information

Molecular Geometry and VSEPR We gratefully acknowledge Portland Community College for the use of this experiment.

Molecular Geometry and VSEPR We gratefully acknowledge Portland Community College for the use of this experiment. Molecular and VSEPR We gratefully acknowledge Portland ommunity ollege for the use of this experiment. Objectives To construct molecular models for covalently bonded atoms in molecules and polyatomic ions

More information

SOME TOUGH COLLEGE PROBLEMS! .. : 4. How many electrons should be shown in the Lewis dot structure for carbon monoxide? N O O

SOME TOUGH COLLEGE PROBLEMS! .. : 4. How many electrons should be shown in the Lewis dot structure for carbon monoxide? N O O SME TUGH CLLEGE PRBLEMS! LEWIS DT STRUCTURES 1. An acceptable Lewis dot structure for 2 is (A) (B) (C) 2. Which molecule contains one unshared pair of valence electrons? (A) H 2 (B) H 3 (C) CH 4 acl 3.

More information

Chapter 12 Review 1: Covalent Bonds and Molecular Structure

Chapter 12 Review 1: Covalent Bonds and Molecular Structure Chapter 12 Review 1: Covalent Bonds and Molecular Structure 1) How are ionic bonds and covalent bonds different, and what types of elements combine to form each? Ionic bonds result from the transfer of

More information

2. Atoms with very similar electronegativity values are expected to form

2. Atoms with very similar electronegativity values are expected to form AP hemistry Practice Test #6 hapter 8 and 9 1. Which of the following statements is incorrect? a. Ionic bonding results from the transfer of electrons from one atom to another. b. Dipole moments result

More information

Unit 28 Molecular Geometry

Unit 28 Molecular Geometry Unit 28 Molecular Geometry There are two concepts in the study of molecular geometry. One is called the Valence Shell Electron Pair Repulsion (VSEPR) model. The other is electron orbital hybridization.

More information

Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s)

Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s) BONDING MIDTERM REVIEW 7546-1 - Page 1 1) Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s) 2) The bond between hydrogen and oxygen in

More information

Chemistry B2A Chapter 12 Chemical Bonding

Chemistry B2A Chapter 12 Chemical Bonding Chemistry B2A Chapter 12 Chemical Bonding Octet rule-duet role: when undergoing chemical reaction, atoms of group 1A-7A elements tend to gain, lose, or share sufficient electrons to achieve an electron

More information

3/5/2014. iclicker Participation Question: A. MgS < AlP < NaCl B. MgS < NaCl < AlP C. NaCl < AlP < MgS D. NaCl < MgS < AlP

3/5/2014. iclicker Participation Question: A. MgS < AlP < NaCl B. MgS < NaCl < AlP C. NaCl < AlP < MgS D. NaCl < MgS < AlP Today: Ionic Bonding vs. Covalent Bonding Strengths of Covalent Bonds: Bond Energy Diagrams Bond Polarities: Nonpolar Covalent vs. Polar Covalent vs. Ionic Electronegativity Differences Dipole Moments

More information

In the box below, draw the Lewis electron-dot structure for the compound formed from magnesium and oxygen. [Include any charges or partial charges.

In the box below, draw the Lewis electron-dot structure for the compound formed from magnesium and oxygen. [Include any charges or partial charges. Name: 1) Which molecule is nonpolar and has a symmetrical shape? A) NH3 B) H2O C) HCl D) CH4 7222-1 - Page 1 2) When ammonium chloride crystals are dissolved in water, the temperature of the water decreases.

More information

CHAPTER 12: CHEMICAL BONDING

CHAPTER 12: CHEMICAL BONDING CHAPTER 12: CHEMICAL BONDING Active Learning Questions: 3-9, 11-19, 21-22 End-of-Chapter Problems: 1-36, 41-59, 60(a,b), 61(b,d), 62(a,b), 64-77, 79-89, 92-101, 106-109, 112, 115-119 An American chemist

More information

Chemical bonds between atoms involve electrons.

Chemical bonds between atoms involve electrons. Chapter 6, Section 2 Key Concept: Chemical bonds hold compounds together. BEFORE, you learned Elements combine to form compounds Electrons are located in a cloud around the nucleus Atoms can lose or gain

More information

Principal energy levels are divided into sublevels following a distinctive pattern, shown in Table 5.1 below.

Principal energy levels are divided into sublevels following a distinctive pattern, shown in Table 5.1 below. 56 Chapter 5: Electron Configuration, Lewis Dot Structure, and Molecular Shape Electron configuration. The outermost electrons surrounding an atom (the valence electrons) are responsible for the number

More information

Bonding Web Practice. Trupia

Bonding Web Practice. Trupia 1. If the electronegativity difference between the elements in compound NaX is 2.1, what is element X? bromine fluorine chlorine oxygen 2. Which bond has the greatest degree of ionic character? H Cl Cl

More information

C has 4 valence electrons, O has six electrons. The total number of electrons is 4 + 2(6) = 16.

C has 4 valence electrons, O has six electrons. The total number of electrons is 4 + 2(6) = 16. 129 Lewis Structures G. N. Lewis hypothesized that electron pair bonds between unlike elements in the second (and sometimes the third) row occurred in a way that electrons were shared such that each element

More information

Copyright 2014 Edmentum - All rights reserved. Chemistry Chemical bonding, molecular structure and Gases Blizzard Bag 2014-2015

Copyright 2014 Edmentum - All rights reserved. Chemistry Chemical bonding, molecular structure and Gases Blizzard Bag 2014-2015 Copyright 2014 Edmentum - All rights reserved. Chemistry Chemical bonding, molecular structure and Gases Blizzard Bag 2014-2015 1. Which of the following is a unit of pressure? A. newton-meters per second

More information

Bonding Practice Problems

Bonding Practice Problems NAME 1. When compared to H 2 S, H 2 O has a higher 8. Given the Lewis electron-dot diagram: boiling point because H 2 O contains stronger metallic bonds covalent bonds ionic bonds hydrogen bonds 2. Which

More information

Sharing of Electrons. Covalent Bonding Chapter 8. Ch. 8 Vocabulary OBJECTIVES. Exothermic Reaction Structural Formula (Ch. 8.3) Polar Covalent Bond

Sharing of Electrons. Covalent Bonding Chapter 8. Ch. 8 Vocabulary OBJECTIVES. Exothermic Reaction Structural Formula (Ch. 8.3) Polar Covalent Bond Ch. 8 Vocabulary 2 Covalent Bonding Chapter 8 Covalent bond Molecule Lewis Structure Sigma bond Pi bond Bond Dissociation Energy Endothermic Reaction Exothermic Reaction Structural Formula (Ch. 8.3) Polar

More information

CHEMISTRY 1710 - Practice Exam #5 - SPRING 2014 (KATZ)

CHEMISTRY 1710 - Practice Exam #5 - SPRING 2014 (KATZ) CHEMISTRY 1710 - Practice Exam #5 - SPRING 2014 (KATZ) Name: Score: This is a multiple choice exam. Choose the BEST answer from the choices which are given and write the letter for your choice in the space

More information

Valence Bond Theory - Description

Valence Bond Theory - Description Bonding and Molecular Structure - PART 2 - Valence Bond Theory and Hybridization 1. Understand and be able to describe the Valence Bond Theory description of covalent bond formation. 2. Understand and

More information

Chapter10 Tro. 4. Based on the Lewis structure, the number of electron domains in the valence shell of the CO molecule is A) 1 B) 2 C) 3 D) 4 E) 5

Chapter10 Tro. 4. Based on the Lewis structure, the number of electron domains in the valence shell of the CO molecule is A) 1 B) 2 C) 3 D) 4 E) 5 Chapter10 Tro 1. All of the geometries listed below are examples of the five basic geometries for molecules with more than 3 atoms except A) planar triangular B) octahedral C) tetrahedral D) trihedral

More information

Bonding & Molecular Shape Ron Robertson

Bonding & Molecular Shape Ron Robertson Bonding & Molecular Shape Ron Robertson r2 n:\files\courses\1110-20\2010 possible slides for web\00bondingtrans.doc The Nature of Bonding Types 1. Ionic 2. Covalent 3. Metallic 4. Coordinate covalent Driving

More information

Type of Chemical Bonds

Type of Chemical Bonds Type of Chemical Bonds Covalent bond Polar Covalent bond Ionic bond Hydrogen bond Metallic bond Van der Waals bonds. Covalent Bonds Covalent bond: bond in which one or more pairs of electrons are shared

More information

Solid Type of solid Type of particle

Solid Type of solid Type of particle QUESTION (2015:3) Complete the table below by stating the type of solid, the type of particle, and the attractive forces between the particles in each solid. Solid Type of solid Type of particle Cu(s)

More information

The Lewis structure is a model that gives a description of where the atoms, charges, bonds, and lone pairs of electrons, may be found.

The Lewis structure is a model that gives a description of where the atoms, charges, bonds, and lone pairs of electrons, may be found. CEM110 Week 12 Notes (Chemical Bonding) Page 1 of 8 To help understand molecules (or radicals or ions), VSEPR shapes, and properties (such as polarity and bond length), we will draw the Lewis (or electron

More information

Test 8: Review Questions

Test 8: Review Questions Name: Thursday, February 14, 2008 Test 8: Review Questions 1. Based on bond type, which compound has the highest melting point? 1. CH OH 3. CaCl 3 2 2. C H 4. CCl 6 14 4 2. Which compound contains ionic

More information

COVALENT BONDING. [MH5; Chapter 7]

COVALENT BONDING. [MH5; Chapter 7] COVALENT BONDING [MH5; Chapter 7] Covalent bonds occur when electrons are equally shared between two atoms. The electrons are not always equally shared by both atoms; these bonds are said to be polar covalent.

More information

5. Which of the following is the correct Lewis structure for SOCl 2

5. Which of the following is the correct Lewis structure for SOCl 2 Unit C Practice Problems Chapter 8 1. Draw the lewis structures for the following molecules: a. BeF 2 b. SO 3 c. CNS 1- d. NO 2. The correct Lewis symbol for ground state carbon is a) b) c) d) e) 3. Which

More information

Unit 3: Quantum Theory, Periodicity and Chemical Bonding. Chapter 10: Chemical Bonding II Molecular Geometry & Intermolecular Forces

Unit 3: Quantum Theory, Periodicity and Chemical Bonding. Chapter 10: Chemical Bonding II Molecular Geometry & Intermolecular Forces onour Chemistry Unit 3: Quantum Theory, Periodicity and Chemical Bonding Chapter 10: Chemical Bonding II Molecular Geometry & Intermolecular orces 10.1: Molecular Geometry Molecular Structure: - the three-dimensional

More information

5. Which of the following subatomic particles are most important in determining the chemical reactivity and physical properties of an atom?

5. Which of the following subatomic particles are most important in determining the chemical reactivity and physical properties of an atom? 1. For the following compounds draw the Lewis Structure and determine: (a) The # of Bonding Pairs (b) The # of Lone pairs (c) The electron domain shape (d) The molecular shape (e) Hybridization (f) Whether

More information

Chemistry 105, Chapter 7 Exercises

Chemistry 105, Chapter 7 Exercises hemistry 15, hapter 7 Exercises Types of Bonds 1. Using the periodic table classify the bonds in the following compounds as ionic or covalent. If covalent, classify the bond as polar or not. Mg2 4 i2 a(3)2

More information

A REVIEW OF GENERAL CHEMISTRY: ELECTRONS, BONDS AND MOLECULAR PROPERTIES

A REVIEW OF GENERAL CHEMISTRY: ELECTRONS, BONDS AND MOLECULAR PROPERTIES A REVIEW OF GENERAL CEMISTRY: ELECTRONS, BONDS AND MOLECULAR PROPERTIES A STUDENT SOULD BE ABLE TO: 1. Draw Lewis (electron dot and line) structural formulas for simple compounds and ions from molecular

More information

Name: Intermolecular Forces Practice Exam Date:

Name: Intermolecular Forces Practice Exam Date: Name: Intermolecular Forces Practice Exam Date: 1. At STP, fluorine is a gas and bromine is a liquid because, compared to fluorine, bromine has 1) stronger covalent bonds 2) stronger intermolecular forces

More information

Molecular Geometry and Chemical Bonding Theory

Molecular Geometry and Chemical Bonding Theory Chapter 10 Molecular Geometry and Chemical Bonding Theory Concept Check 10.1 An atom in a molecule is surrounded by four pairs of electrons, one lone pair and three bonding pairs. Describe how the four

More information

3.4 Covalent Bonds and Lewis Structures

3.4 Covalent Bonds and Lewis Structures 3.4 Covalent Bonds and Lewis Structures The Lewis Model of Chemical Bonding In 1916 G. N. Lewis proposed that atoms combine in order to achieve a more stable electron configuration. Maximum stability results

More information

Ionic and Covalent Bonds

Ionic and Covalent Bonds Ionic and Covalent Bonds Ionic Bonds Transfer of Electrons When metals bond with nonmetals, electrons are from the metal to the nonmetal The becomes a cation and the becomes an anion. The between the cation

More information

Ionic and Metallic Bonding

Ionic and Metallic Bonding Ionic and Metallic Bonding BNDING AND INTERACTINS 71 Ions For students using the Foundation edition, assign problems 1, 3 5, 7 12, 14, 15, 18 20 Essential Understanding Ions form when atoms gain or lose

More information

SHAPES OF MOLECULES (VSEPR MODEL)

SHAPES OF MOLECULES (VSEPR MODEL) 1 SAPES MLEULES (VSEPR MDEL) Valence Shell Electron-Pair Repulsion model - Electron pairs surrounding atom spread out as to minimize repulsion. - Electron pairs can be bonding pairs (including multiple

More information

ACE PRACTICE TEST Chapter 8, Quiz 3

ACE PRACTICE TEST Chapter 8, Quiz 3 ACE PRACTICE TEST Chapter 8, Quiz 3 1. Using bond energies, calculate the heat in kj for the following reaction: CH 4 + 4 F 2 CF 4 + 4 HF. Use the following bond energies: CH = 414 kj/mol, F 2 = 155 kj/mol,

More information

Chemical Bonding: Covalent Systems Written by Rebecca Sunderman, Ph.D Week 1, Winter 2012, Matter & Motion

Chemical Bonding: Covalent Systems Written by Rebecca Sunderman, Ph.D Week 1, Winter 2012, Matter & Motion Chemical Bonding: Covalent Systems Written by Rebecca Sunderman, Ph.D Week 1, Winter 2012, Matter & Motion A covalent bond is a bond formed due to a sharing of electrons. Lewis structures provide a description

More information

We will not be doing these type of calculations however, if interested then can read on your own

We will not be doing these type of calculations however, if interested then can read on your own Chemical Bond Lattice Energies and Types of Ions Na (s) + 1/2Cl 2 (g) NaCl (s) ΔH= -411 kj/mol Energetically favored: lower energy Like a car rolling down a hill We will not be doing these type of calculations

More information

Self Assessment_Ochem I

Self Assessment_Ochem I UTID: 2013 Objective Test Section Identify the choice that best completes the statement or answers the question. There is only one correct answer; please carefully bubble your choice on the scantron sheet.

More information

Chapter 6 Assessment. Name: Class: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question.

Chapter 6 Assessment. Name: Class: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: ID: A Chapter 6 Assessment Multiple Choice Identify the choice that best completes the statement or answers the question. 1. When an atom loses an electron, it forms a(n) a. anion. c.

More information

CHEM 1301 SECOND TEST REVIEW. Covalent bonds are sharing of electrons (ALWAYS valence electrons). Use Lewis structures to show this sharing.

CHEM 1301 SECOND TEST REVIEW. Covalent bonds are sharing of electrons (ALWAYS valence electrons). Use Lewis structures to show this sharing. CEM 1301 SECOND TEST REVIEW Lewis Structures Covalent bonds are sharing of electrons (ALWAYS valence electrons). Use Lewis structures to show this sharing. Rules OCTET RULE an atom would like to have 8

More information

Health Science Chemistry I CHEM-1180 Experiment No. 15 Molecular Models (Revised 05/22/2015)

Health Science Chemistry I CHEM-1180 Experiment No. 15 Molecular Models (Revised 05/22/2015) (Revised 05/22/2015) Introduction In the early 1900s, the chemist G. N. Lewis proposed that bonds between atoms consist of two electrons apiece and that most atoms are able to accommodate eight electrons

More information

Sample Exercise 8.1 Magnitudes of Lattice Energies

Sample Exercise 8.1 Magnitudes of Lattice Energies Sample Exercise 8.1 Magnitudes of Lattice Energies Without consulting Table 8.2, arrange the following ionic compounds in order of increasing lattice energy: NaF, CsI, and CaO. Analyze: From the formulas

More information

Background: Electron Dot Formula Basics

Background: Electron Dot Formula Basics Background: Electron Dot Formula Basics 1. What do the dots in an electron dot formula represent? 2. Describe the pattern of electron dot formulas as you move from left to right in a period of the Periodic

More information

Exam 2 Chemistry 65 Summer 2015. Score:

Exam 2 Chemistry 65 Summer 2015. Score: Name: Exam 2 Chemistry 65 Summer 2015 Score: Instructions: Clearly circle the one best answer 1. Valence electrons are electrons located A) in the outermost energy level of an atom. B) in the nucleus of

More information

Chapter 10 Molecular Geometry and Chemical Bonding Theory

Chapter 10 Molecular Geometry and Chemical Bonding Theory Chem 1: Chapter 10 Page 1 Chapter 10 Molecular Geometry and Chemical Bonding Theory I) VSEPR Model Valence-Shell Electron-Pair Repulsion Model A) Model predicts Predicts electron arrangement and molecular

More information

Chapter 2 The Chemical Context of Life

Chapter 2 The Chemical Context of Life Chapter 2 The Chemical Context of Life Multiple-Choice Questions 1) About 25 of the 92 natural elements are known to be essential to life. Which four of these 25 elements make up approximately 96% of living

More information

Chapter 8 Basic Concepts of the Chemical Bonding

Chapter 8 Basic Concepts of the Chemical Bonding Chapter 8 Basic Concepts of the Chemical Bonding 1. There are paired and unpaired electrons in the Lewis symbol for a phosphorus atom. (a). 4, 2 (b). 2, 4 (c). 4, 3 (d). 2, 3 Explanation: Read the question

More information

Chapter 11: Chemical Bonds: The Formation of Compounds from Atoms

Chapter 11: Chemical Bonds: The Formation of Compounds from Atoms Chapter 11: Chemical Bonds: The Formation of Compounds from Atoms Name: Many of the concepts in this chapter come from the idea that elements are always trying to obtain 8 valence electrons because this

More information

Exercises Topic 2: Molecules

Exercises Topic 2: Molecules hemistry for Biomedical Engineering. Exercises Topic 2 Authors: ors: Juan Baselga & María González Exercises Topic 2: Molecules 1. Using hybridization concepts and VSEPR model describe the molecular geometry

More information

Chem 121 Problem Set V Lewis Structures, VSEPR and Polarity

Chem 121 Problem Set V Lewis Structures, VSEPR and Polarity hemistry 121 Problem set V olutions - 1 hem 121 Problem et V Lewis tructures, VEPR and Polarity AWER 1. pecies Elecronegativity difference in bond Bond Polarity Mp 3 E = 3.0-3.0 = 0 for - very weakly polar

More information

VSEPR Theory, Valence Bond Theory, Characteristic of Covalent Compounds. VSEPR theory was proposed by Gillespie and Nyholm to explain the shapes of molecules and ions.. The orbital which contains the bonded

More information

2C Intermolecular forces, structure and properties:

2C Intermolecular forces, structure and properties: Electronegativity and polarity Polar and non-polar bonds: 1) Non-Polar bonds: 2C Intermolecular forces, structure and properties: A covalent bond shares an electron pair: In a hydrogen molecule, the electrons

More information

CHAPTER 10 THE SHAPES OF MOLECULES

CHAPTER 10 THE SHAPES OF MOLECULES ATER 10 TE AE MLEULE EMIAL ETI BED READIG RBLEM B10.1 lan: Examine the Lewis structure, noting the number of regions of electron density around the carbon and nitrogen atoms in the two resonance structures.

More information

Chapter 8 Concepts of Chemical Bonding

Chapter 8 Concepts of Chemical Bonding Chapter 8 Concepts of Chemical Bonding Chemical Bonds Three types: Ionic Electrostatic attraction between ions Covalent Sharing of electrons Metallic Metal atoms bonded to several other atoms Ionic Bonding

More information

Chapter 9 - Covalent Bonding: Orbitals

Chapter 9 - Covalent Bonding: Orbitals Chapter 9 - Covalent Bonding: Orbitals 9.1 Hybridization and the Localized Electron Model A. Hybridization 1. The mixing of two or more atomic orbitals of similar energies on the same atom to produce new

More information

VSEPR Model. The Valence-Shell Electron Pair Repulsion Model. Predicting Molecular Geometry

VSEPR Model. The Valence-Shell Electron Pair Repulsion Model. Predicting Molecular Geometry VSEPR Model The structure around a given atom is determined principally by minimizing electron pair repulsions. The Valence-Shell Electron Pair Repulsion Model The valence-shell electron pair repulsion

More information

Name: Class: Date: 3) The bond angles marked a, b, and c in the molecule below are about,, and, respectively.

Name: Class: Date: 3) The bond angles marked a, b, and c in the molecule below are about,, and, respectively. Name: Class: Date: Unit 9 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1) The basis of the VSEPR model of molecular bonding is. A) regions of

More information

7.14 Linear triatomic: A-----B-----C. Bond angles = 180 degrees. Trigonal planar: Bond angles = 120 degrees. B < B A B = 120

7.14 Linear triatomic: A-----B-----C. Bond angles = 180 degrees. Trigonal planar: Bond angles = 120 degrees. B < B A B = 120 APTER SEVEN Molecular Geometry 7.13 Molecular geometry may be defined as the three-dimensional arrangement of atoms in a molecule. The study of molecular geometry is important in that a molecule s geometry

More information

List the 3 main types of subatomic particles and indicate the mass and electrical charge of each.

List the 3 main types of subatomic particles and indicate the mass and electrical charge of each. Basic Chemistry Why do we study chemistry in a biology course? All living organisms are composed of chemicals. To understand life, we must understand the structure, function, and properties of the chemicals

More information

Sample Exercise 8.1 Magnitudes of Lattice Energies

Sample Exercise 8.1 Magnitudes of Lattice Energies Sample Exercise 8.1 Magnitudes of Lattice Energies Without consulting Table 8.2, arrange the ionic compounds NaF, CsI, and CaO in order of increasing lattice energy. Analyze From the formulas for three

More information

Chapter 2: The Chemical Context of Life

Chapter 2: The Chemical Context of Life Chapter 2: The Chemical Context of Life Name Period This chapter covers the basics that you may have learned in your chemistry class. Whether your teacher goes over this chapter, or assigns it for you

More information

Chapter 2 Polar Covalent Bonds; Acids and Bases

Chapter 2 Polar Covalent Bonds; Acids and Bases John E. McMurry http://www.cengage.com/chemistry/mcmurry Chapter 2 Polar Covalent Bonds; Acids and Bases Javier E. Horta, M.D., Ph.D. University of Massachusetts Lowell Polar Covalent Bonds: Electronegativity

More information

Questions on Chapter 8 Basic Concepts of Chemical Bonding

Questions on Chapter 8 Basic Concepts of Chemical Bonding Questions on Chapter 8 Basic Concepts of Chemical Bonding Circle the Correct Answer: 1) Which ion below has a noble gas electron configuration? A) Li 2+ B) Be 2+ C) B2+ D) C2+ E) N 2-2) Of the ions below,

More information

Metals and Nonmetals

Metals and Nonmetals The Periodic Table and Atomic Properties The periodic table originally came from the observation that when the elements are arranged by atomic mass, properties recur periodically. (Mendeleev) Now we understand

More information

3) Of the following, radiation has the shortest wavelength. A) X-ray B) radio C) microwave D) ultraviolet E) infrared Answer: A

3) Of the following, radiation has the shortest wavelength. A) X-ray B) radio C) microwave D) ultraviolet E) infrared Answer: A 1) Which one of the following is correct? A) ν + λ = c B) ν λ = c C) ν = cλ D) λ = c ν E) νλ = c Answer: E 2) The wavelength of light emitted from a traffic light having a frequency of 5.75 1014 Hz is.

More information

7) How many electrons are in the second energy level for an atom of N? A) 5 B) 6 C) 4 D) 8

7) How many electrons are in the second energy level for an atom of N? A) 5 B) 6 C) 4 D) 8 HOMEWORK CHEM 107 Chapter 3 Compounds Putting Particles Together 3.1 Multiple-Choice 1) How many electrons are in the highest energy level of sulfur? A) 2 B) 4 C) 6 D) 8 2) An atom of phosphorous has how

More information

CHEM 1211K Test IV. MULTIPLE CHOICE (3 points each)

CHEM 1211K Test IV. MULTIPLE CHOICE (3 points each) CEM 1211K Test IV MULTIPLE COICE (3 points each) 1) ow many single covalent bonds must a silicon atom form to have a complete octet in its valence shell? A) 4 B) 3 C) 1 D) 2 E) 0 2) What is the maximum

More information

CHAPTER 10 THE SHAPES OF MOLECULES

CHAPTER 10 THE SHAPES OF MOLECULES ATER 10 TE AE MLEULE 10.1 To be the central atom in a compound, the atom must be able to simultaneously bond to at least two other atoms. e,, and cannot serve as central atoms in a Lewis structure. elium

More information

Atomic Theory and Bonding

Atomic Theory and Bonding Atomic Theory and Bonding Textbook pages 168 183 Section 4.1 Summary Before You Read What do you already know about Bohr diagrams? Record your answer in the lines below. What are atoms? An atom is the

More information

Chapter 9. Chemical reactivity of molecules depends on the nature of the bonds between the atoms as well on its 3D structure

Chapter 9. Chemical reactivity of molecules depends on the nature of the bonds between the atoms as well on its 3D structure Chapter 9 Molecular Geometry & Bonding Theories I) Molecular Geometry (Shapes) Chemical reactivity of molecules depends on the nature of the bonds between the atoms as well on its 3D structure Molecular

More information