The Development of Year 3 Students PlaceValue Understanding: Representations and Concepts


 Clyde Jones
 1 years ago
 Views:
Transcription
1 The Development of Year 3 Students PlaceValue Understanding: Representations and Concepts Peter Stanley Price Dip.Teach., B.Ed., M.Ed., A.C.P. Centre for Mathematics and Science Education School of Mathematics, Science and Technology Education Faculty of Education Queensland University of Technology A Thesis submitted in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy March, 2001
2
3 Keywords Place value, baseten blocks, Year 3, mathematical understanding, placevalue software, representations of number, conceptions of number, electronic baseten blocks, conceptual structures for multidigit numbers, feedback, misconceptions of number, independentplace construct, facevalue construct, mathematics teaching with technology, number models, PayneRathmell model for teaching number topics. i
4
5 Abstract Understanding baseten numbers is one of the most important mathematics topics taught in the primary school, and yet also one of the most difficult to teach and to learn. Research shows that many children have inaccurate or faulty number conceptions, and use rotelearned procedures with little regard for quantities represented by mathematical symbols. Baseten blocks are widely used to teach placevalue concepts, but children often do not perceive the links between numbers, symbols, and models. Software has also been suggested as a means of improving children s development of these links but there is little research on its efficacy. Sixteen Queensland Year 3 students worked cooperatively with the researcher for 10 daily sessions, in 4 groups of 4 students of either high or low mathematical achievement level, on tasks introducing the hundreds place. Two groups used physical baseten blocks and two used placevalue software incorporating electronic baseten blocks. Individual interviews assessed participants placevalue understanding before and after teaching sessions. Data sources were videotapes of interviews and teaching sessions, field notes, workbooks, and software audit trails, analysed using a grounded theory method. There was little difference evident in learning by students using either physical or electronic blocks. Many errors related to the facevalue construct, counting and handling errors, and a lack of knowledge of baseten rules were evident. Several students trusted the counting of blocks to reveal number relationships. The study failed to confirm several reported schemes describing children s conceptual structures for multidigit numbers. Many participants demonstrated a preference for grouping or counting approaches, but not stable mental models characterising their thinking about numbers generally. The independentplace construct is proposed to explain evidence in both the study and the literature that shows students making singledimensional associations between a place, a set of number words, and a digit, rather than taking account of groups of 10. Feedback received in the two conditions differed greatly. Electronic feedback was more positive and accurate than feedback from blocks, and reduced the need for humanbased feedback. Primary teachers are urged to monitor students use of baseten blocks closely, and to challenge faulty number conceptions by asking appropriate questions. iii
6
7 Table of Contents Keywords...i Abstract... iii Table of Contents...v List of Tables...ix List of Figures...x Supplementary Material...x Statement of Original Authorship...xi Acknowledgments... xiii Chapter 1: The Problem Recommendations for Changes in Mathematics Education The Learning of PlaceValue Concepts Conceptual Structures and Difficulties With PlaceValue Concepts Use of Number Representations The Research Question Overview of Research Methodology Significance of the study Outline of the Thesis...7 Chapter 2: Review of Literature Chapter Overview Issues in Mathematics Education Students Active Involvement in Mathematics Learning Number Sense Use of Technological Devices Placevalue Understanding Place Value Placevalue Understanding The Contribution of Cognitive Science to Mathematics Education Understanding Mathematics Mental Models Analogical Reasoning Teaching Placevalue Understanding Teaching Approaches Building PlaceValue Connections Use of Concrete Materials Computers and Mathematics Education Claimed Benefits of Computers Cognitive Aspects of Computer Use Chapter Summary; Statement of the Problem...59 Chapter 3: Methods Chapter Overview Aims of the Study Variables...62 v
8 3.3.1 Mathematical Achievement Level Number Representation Format Data collection and analysis Design Issues Assumptions Theoretical and Methodological Stance Pilot Study Purposes of the Pilot Study Selection of Pilot Study Participants Pilot Study Procedures Pilot Study Data Collection and Analysis Changes Made to Study Design After Pilot Study Main Study Selection of Participants Teaching Program Instruments  First and Second Interviews Administration Procedures Data Collection and Analysis Validity and Reliability Limitations Chapter Summary...94 Chapter 4: Results Chapter Overview Restatement of the Research Question Transcript Conventions Used in this Thesis PlaceValue Task Performance Revealed in Interview Results Methods used to Analyse Interview Data Overview of Interview Results Students Conceptions of Numbers Grouping Approaches Counting Approaches FaceValue Interpretation of Symbols Summary of Approaches to Interview Questions Changeability of Participants Number Conceptions Digit Correspondence Tasks: Four Categories of Response Category I: FaceValue Interpretation of Digits Category II: No Referents For Individual Digits Category III: Correct Total Represented by Each Digit, but Tens not Explained Category IV: Correct Number of Referents, Tens Place Mentioned Summary of Responses to Digit Correspondence Tasks Errors, Misconceptions, and Limited Conceptions Counting Errors Blocks Handling Errors Errors in Naming and Writing Symbols for Numbers Errors in Applying Values to Blocks Use of Materials to Represent Numbers vi
9 4.7.1 Counting of Representational Materials Use of TrialandError Methods Handling Larger Numbers Interpreting NonCanonical Block Arrangements Facevalue Interpretations of Symbols Predictions About Trading Feedback Using Blocks To Discover Number Relationships Chapter Summary Chapter 5: Discussion Chapter Overview Participants Ideas About Multidigit Numbers Participants Preferences for Grouping or Counting Approaches Comparison of Grouping and Counting Approaches Difficulties With Existing Conceptual Structure Schemes Facevalue Interpretations of Symbols IndependentPlace Construct Description & Definition of the IndependentPlace Construct Comparison of the IndependentPlace Construct and the FaceValue Construct Evidence for the IndependentPlace Construct in This Study Evidence of the IndependentPlace Construct in the Literature Written Computation and the IndependentPlace Construct PlaceValue Tasks and the IndependentPlace Construct Participants Construction of Meaning Organic Understanding Participants Invented Answers Teaching, Learning, and Constructing Meaning Effects of Physical or Electronic BaseTen Blocks on PlaceValue Understanding Differences in Learning of Participants Using Physical or Electronic Blocks Sensory Impact of Physical or Electronic Blocks How Numbers Are Represented by Physical or Electronic Blocks Development of Links Among Blocks, Symbols, and Numbers Support for the Development of Number Concepts PlaceValue Understanding Demonstrated by High and LowAchievement Level Participants Similarities in PlaceValue Understanding of High and LowAchievement Level Participants Differences in PlaceValue Understanding of High and LowAchievement Level Participants Chapter 6: Conclusions Chapter Overview Conclusions About Answers to Research Questions Conceptual Structures for Multidigit Numbers Evident in Participants Responses Misconceptions, Errors, or Limited Conceptions Evident In Participants Responses vii
10 6.2.3 Effects of the Two Materials on Students Learning of PlaceValue Concepts Differences Between PlaceValue Understanding of High and Low AchievementLevel Participants Implications for Teaching Implications of Using Physical BaseTen Blocks to Teach PlaceValue Concepts Implications of Using Electronic BaseTen Blocks to Teach PlaceValue Concepts Implications of the IndependentPlace Construct for Teaching Mathematics Implications of Construction of Meaning for Teaching Mathematics Recommendations for Further Research Appendix A Design of Software used in the Study Appendix B  Overview of Teaching Session Content for Interviews and Teaching Phase of Pilot Study Appendix C Summary of Pilot Study Teaching Program Appendix D  Excerpt of Teaching Script of Pilot Study: Session Appendix E Audit Trail Example Appendix F Results of The Year Two Diagnostic Net, Used to Select Participants for the Main Study Appendix G List of Participants Appendix H  Main Study Teaching Program Appendix I  Main Study Interview 1 Instrument Appendix J  Main Study Interview 2 Instrument Appendix K Letter Requesting Consent by Parents or Guardians of Prospective Participants Appendix L Coding Teaching Session Transcripts for Feedback Appendix M Descriptions of Numeration Skills Targeted by Interview Questions and Criteria for Their Assessment Appendix N Transcript of Interview 1 Question 6 (a) with Terry Appendix O Transcript of Interview 2 Question 6 (a) with Hayden Appendix P Transcript of Low/Blocks Group Answering Task 28 (a) Appendix Q Transcripts of Task 4 (a) from 4 groups Appendix R Transcript Excerpts Showing Participants Predicting Equivalence of Traded Blocks Appendix S Transcript of Task 4 (d) from Low/Blocks Group Appendix T Comparison Between Ross s (1989) Model and a Proposed Model for Categories of Responses to Digit Correspondence Tasks Appendix U Sample Coding of Transcript for Feedback References Supplementary Material HiFlyer Maths Installation Files [CDROM] viii
11 List of Tables TABLE 4.5. TABLE 2.1. Aspects of Placevalue Understanding Described in the Literature TABLE 2.2. Task Performance Illustrating Limited Conceptions in Placevalue Understanding TABLE 3.1. Phases of the Research Design TABLE 3.2. Participant Groups for the Main Study TABLE 4.1. Transcript Notations TABLE 4.2. Summary of Participants Numeration Skills Identified in two Interviews TABLE 4.3. Summary of Numeration Skills Demonstrated by Each Participant and by Each Group TABLE 4.4. Summary of Placevalue Understanding Criteria Achieved by Highachievementlevel and LowAchievementLevel Participants Summary of Placevalue Understanding Criteria Achieved by Participants in Computer and Blocks Groups TABLE 4.6. Use of Grouping Approaches for Selected Interview Questions TABLE 4.7. Use of Grouping Approaches by Each Group TABLE 4.8. Use of a Counting Approach for Selected Interview Questions TABLE 4.9. Use of Counting Approaches by Each Group TABLE Incidence of Facevalue Interpretations for Written Symbols after Selected Interview Questions TABLE Use of FaceValue Interpretations of Symbols by Each Group TABLE Incidence of Approaches Adopted for Selected Interview Questions TABLE Response Categories for Interview Digit Correspondence Questions TABLE Summary of Digit Correspondence Response Categories TABLE Participants Written Responses to Task 27 (b) TABLE Incidents of Feedback of Each Source per Group TABLE Percentage of Feedback Compared With Answer Status TABLE Quality of Feedback Provided for Correct or Incorrect Answers TABLE Percent of Feedback for Correct Answers from Each Source TABLE Percent of Feedback for Incorrect Answers from Each Source TABLE Feedback Providing Answers from Each Source for Each Group TABLE 5.1. Comparison of Results of Digit Correspondence Tasks Between This Study and Ross (1989) TABLE H.1. Overview of Teaching Program Tasks TABLE L.1. Source of Feedback TABLE L.2. Effects of Feedback TABLE L.3. Responses to Feedback ix
12 List of Figures Figure 2.1. The face value of each individual numerical symbol, together with its position relative to the ones place, determines the value it represents Figure 2.2. Relationships inherent in baseten blocks Figure 2.3. Relationships among numbers, written symbols, and concrete materials Figure 2.4. Conceptual gap between written symbols and concrete materials Figure 2.5. The use of transitional forms to bridge the gap between written symbols and concrete materials Figure 3.1. Dimensions of research design Figure 3.2. Original graphic images used on regrouping buttons in software used Figure 3.3. during pilot study Replacement graphic images used on regrouping buttons in software used during main study Figure 3.4. Sample Representing numbers task Figure 3.5. Sample Regrouping task Figure 3.6. Sample Use of numeral expander task Figure 3.7. Sample Comparison task Figure 3.8. Sample Counting task Figure 3.9. Sample Addition task, including regrouping Figure Diagram showing objects used in interviews for Digit Correspondence Task with misleading perceptual cues Figure 4.1. Interview scores compared to use of grouping approaches Figure 4.2. Interview scores compared to use of counting approaches Figure 4.3. Interview scores compared to use of facevalue interpretations of symbols Figure 4.4. Proportions of feedback from each source for each group Figure 5.1. Column counters in software representation of Figure A.1. Screen view of onscreen tutorial question with block representations Figure A.2. Partial screen image from Rutgers Math Construction Tools, showing block and symbol representations of a number Figure A.3. Screen view of Blocks Microworld showing block representation of a number, nominating a cube as one Figure A.4. Main screen of HiFlyer Maths Figure A.5. Show as tens feature activated Figure A.6. Number name window and numeral expander displayed Figure A.7. A block is sawn into 10 pieces Figure A.8. Add blocks requester Figure L.1. Data entry screen for feedback database Supplementary Material HiFlyer Maths Installation Files [CDROM] x
13 Statement of Original Authorship The work contained in this thesis has not been previously submitted for a degree or diploma at any other higher education institution. To the best of my knowledge and belief, the thesis contains no material previously published or written by another person except where due reference is made. Signed: Date: xi
14
15 Acknowledgments The completion of a thesis is a drawnout, sometimes painful task that cannot be done without much assistance, both professional and personal, from many others. I gratefully acknowledge my indebtedness to the following people for their support over the past six years: To my principal supervisor, Professor Lyn English, I offer my heartfelt appreciation for her patience, wisdom and unfailing support since I started this journey. Your example to me, Lyn, as an academic and colleague has always been of the highest standard, and I greatly appreciate your patience in leading me to the completion of the thesis. Thank you for believing in me and for giving me the space to finish. To my associate supervisor, Dr Bill Atweh, I thank you also for your patience, support, and wisdom. Your ability to see past the data to what they reveal has been invaluable in helping me frame the last few chapters and in structuring what was quite a mess and turn it into a coherent account. To my dear wife and partner, Trish, I can only say that a lesser person would have given up long ago. I deeply appreciate your love and support over what has ended up as a longer time than we could have imagined when I started. This has truly been a partnership, in which you have sacrificed your desires and your time to give me space to study, since Thank you from the bottom of my heart. To my lovely, wonderful children, Mary, Andrew and Hannah, I express my deep love and devotion. You too have had to give up time with me, and to put up with your Dad s frequent absences over a substantial part of your lives. I am immensely proud of each of you, and I look forward to seeing you grow and develop into the adults God intends. To my parents, Rev and Mrs Stanley and Eva Price, I express my love and heartfelt thanks for everything you put into raising me. Though we are separated by great distance, I am aware of your constant support and prayers that you have provided all my life. Thanks, Dad and Mum. To my colleagues and friends at Christian Heritage College, I express my heartfelt thanks and love for accepting me and supporting me in this endeavour. In particular, Dr Robert Herschell has been a constant friend, mentor and source of support over many years. Thanks, Rob, for believing in me, for giving me the chance to follow God s call to teach others. xiii
16 To many colleagues, mentors and friends at the School of Mathematics, Science and Technology Education, QUT, thank you. I have had a very rewarding time at QUT over many years, and appreciate your input into my life and career, including the writing of this thesis. In particular, a sincere thank you to Professor Tom Cooper, A/Prof Cam McRobbie and Drs Cal Irons, Ian Ginns, Rod Nason and Jackie Stokes for your wise advice and counsel. And to my fellow PhDers over the past several years Drs Neil Taylor, Carmel Diezmann, Kathy Charles, Mary Hanrahan, David Anderson, Stephen Norton, Anne Williams and Gillian Kidman thank you all for your friendship and support. Finally, but by no means least, I express my love and appreciation to the Lord Jesus Christ, without whom I could do nothing. My abilities and talents are from Him alone; my prayer is that I walk worthy of the calling He has placed on my life, as a faithful witness to His love and power. xiv
17 Chapter 1: The Problem The development of a competent understanding of placevalue concepts by primary students is a prerequisite for the learning of much later content of the school mathematics curriculum. Children need to learn from the early primary school grades 1 how numbers are written in the baseten numeration system, and to construct accurate mental models for numbers, in order to develop a proficiency with mathematics that will equip them to solve problems in later life. However, several authors have noted that placevalue concepts are difficult both for teachers to teach and for students to learn (G. A. Jones & Thornton, 1993a; S. H. Ross, 1990). The study described in this thesis investigated the teaching and learning of placevalue concepts using number representations in two formats: conventional baseten blocks and a computer software application. 1.1 Recommendations for Changes in Mathematics Education Several documents published over the past 20 years have recommended important changes in the way mathematics is taught in schools. These documents include Mathematics counts (Cockcroft, 1982), Everybody Counts (National Research Council [NRC], 1989), Curriculum and Evaluation Standards for School Mathematics (National Council of Teachers of Mathematics [NCTM], 1989), A National Statement on Mathematics for Australian Schools (Australian Education Council, 1990), and Principles and Standards for School Mathematics (NCTM, 2000). Three prominent topics in these documents are relevant to this study: (a) the development of mathematical understanding, (b) the development of number sense, and (c) the use of technology in mathematics classes. The first recommendation for mathematics education identified as relevant to this study, that more emphasis be given to students development of mathematical 1 N.B. Queensland primary schools include Years 17; the term primary as used in this thesis refers to this range of school class levels, which may be considered to be roughly equivalent to primary and elementary schools in the U.S. 1
18 understanding, underlies the advice contained in the policy documents listed in the previous paragraph. The view of the NCTM (2000) is clear: Learning mathematics with understanding is essential (p. 20). The documents embody a view of learning as a sensemaking activity (Mayer, 1996; McIntosh, Reys & Reys, 1992), in which learners develop their own personal understandings of concepts to which they are exposed. Thus the act of teaching is seen not as transmitting readyformed knowledge from teacher to learner, but rather as encouraging the learner to construct concepts so that they make sense to him or her (Cobb, Yackel & Wood, 1992; NRC, 1989). The view of learning as a sensemaking activity has special relevance for the teaching of mathematics, because of its focus on abstract entities that need to be conceptualised by each learner (Davis, 1992). If learners do not form appropriate, accurate mental models of numbers, they will be hindered in attempting to solve mathematical problems in meaningful ways. The literature is replete with observations of students who, though they can do some computation, do so without understanding the meanings behind the symbols and procedures used (e.g., Kamii & Lewis, 1991). Meaningful understanding of numbers is linked to the second recommendation relevant to this study, that the development of number sense be made a priority for mathematics teaching (McIntosh et al., 1992; NCTM, 2000; Sowder & Schappelle, 1994). Number sense is regarded by many as an important goal of mathematics education, enabling students to answer flexibly nonroutine questions that require a mathematical solution. Traditionally, mathematics was taught so that students could answer routine arithmetic questions accurately, for future employment in retail or manufacturing jobs (NRC, 1989). Today there is a greater need for adults who can think mathematically and who can devise methods of solving numerical questions in novel ways (NCTM, 1989). The third recommendation for change in the way that mathematics is taught is for the use of technological devices calculators and computers to be a matter of course at all school grade levels (Australian Education Council, 1990; NCTM, 2000; NRC, 1989). The question of how computer technology (referred to in this thesis as technology ) can best be incorporated in mathematics education is the subject of some debate. Research such as that described here is needed to help answer questions about the effects of technology on students learning. In particular, the computational power and the representational capabilities of computers have the potential to assist 2
19 students to develop more meaningful concepts for numbers (Clements & McMillen, 1996; NCTM, 2000; Price, 1996, 1997). This potential needs further investigation. 1.2 The Learning of PlaceValue Concepts The development of understanding of the baseten numeration system is foundational to all further use of numerical symbols, both in school and outside the classroom. Thus, understanding how children develop placevalue concepts, and the difficulties they face in doing so, is of great importance to mathematics educators Conceptual Structures and Difficulties With PlaceValue Concepts Children s difficulties in making sense of the meanings represented by multidigit symbols have been reported widely in the literature (e.g., G. A. Jones & Thornton, 1993a; Resnick, 1983; S. H. Ross, 1990). In particular, several authors reported students having difficulty linking the abstract realm of numbers and their symbolic and physical referents (e.g., Baroody, 1989; Baturo, 1998; Fuson, 1992; Hart, 1989; Hiebert & Carpenter, 1992). In describing and analysing these difficulties, several researchers have postulated children s conceptual structures for numbers (e.g., Fuson, 1990a, 1990b, 1992; Fuson et al., 1997; Resnick, 1983). A number of conceptual structures, and several limited conceptions for numbers, have been reported as being common among primaryage students. Such conceptual structures feature prominently in much writing about children s learning of placevalue concepts, and are considered by many, including this author, to be of critical importance in understanding how children develop placevalue concepts. This thesis includes an analysis of evidence for conceptual structures for multidigit numbers in the present study, and a comparison between that evidence and reported findings of other researchers. Finally there is a discussion of possible links between conceptual structures and participants use of two types of representational material: physical and electronic baseten blocks Use of Number Representations Physical baseten blocks. Physical baseten blocks, generally known in Queensland schools as multibase arithmetic blocks [MABs], are regarded by many teachers as particularly useful for helping students to build meaningful conceptual structures for multidigit 3
20 numbers (English & Halford, 1995). Developed by Dienes (1960) 40 years ago, they have become the concrete materials of choice for teaching the baseten numeration system in many countries, including the USA, the UK, and Australia. Physical baseten blocks can be thought of as physical analogues of numbers, and mirror the internal structures and relative magnitudes represented by the digits that make up a written symbol (English & Halford, 1995). Students must reason analogically to use the blocks effectively; that is, they must map the relations inherent in the blocks onto the relations in the target realm (Gentner, 1983), the domain of numbers. In order for physical baseten blocks to be effective in representing numbers, it is important that students attention be drawn to the analogical relationships that exist between the blocks and the numbers they represent (Fuson, 1992). Electronic baseten blocks. In light of the difficulties students have making links between numbers and their referents, a number of suggestions have been made of teaching methods that may help students to perceive connections among various forms of number representation. One such suggestion is the use of computergenerated representations for numbers (Clements & McMillen, 1996, Hunting & Lamon, 1995; NCTM, 2000). Several software programs have been designed to model baseten blocks electronically on screen (e.g., Champagne & RogalskaSaz, 1984; Rutgers Math Construction Tools, 1992; P. W. Thompson, 1992). All use the capabilities of the computer to enhance the number representations available to the user beyond those provided by conventional physical blocks. For example, many of these programs include number representations such as written symbols and representations of regrouping actions on blocks, and link these representations tightly together so that a change in one representation is mirrored by an equivalent change in the other representations (see Appendix A). At the time the study was conducted, apart from Rutgers Math Construction Tools the author only had access to descriptions of these programs, and not to the programs themselves. Furthermore, none of the programs included all the features that were felt to be desirable for teaching placevalue concepts; specifically, the author wanted the software to model multidigit numbers with pictures of baseten blocks on a placevalue chart, to model regrouping actions on the blocks, to show various symbolic representations for the numbers represented by the blocks, and to play audio recordings of the number names. Because of the lack 4
21 of these features in available software, the author developed a new software program for teaching placevalue concepts, named HiFlyer Maths (described in Appendix A; installation files available on CDROM in Error! Reference source not found.). Central to this study is the effect of baseten blocks, both physical and electronic, on Year 3 students placevalue conceptions of multidigit numbers. The HiFlyer Maths software was used in the exploratory teaching study to assess these effects. 1.3 The Research Question Based on the issues outlined in the previous section, the question investigated in this study is How do baseten blocks, both physical and electronic, influence Year 3 students conceptual structures for multidigit numbers? Within the context of Year 3 students use of physical and electronic baseten blocks, the following specific issues were of concern: 1. What conceptual structures for multidigit numbers do Year 3 students display in response to placevalue questions after instruction with baseten blocks? 2. What misconceptions, errors, or limited conceptions of numbers do Year 3 students display in response to placevalue questions after instruction with baseten blocks? 3. Which of these conceptual structures for multidigit numbers can be identified as relating to differences in instruction with physical and electronic baseten blocks? 4. Which of these conceptual structures for multidigit numbers can be identified as relating to differences in students achievement in numeration? 1.4 Overview of Research Methodology The research questions were investigated using qualitative case studies involving Vygotskian teaching experiments and Piagetian clinical interviews (Hunting, 1983; Hunting & Doig, 1992). The study involved 16 Year 3 students selected from a single primary school, half of each gender, and half of either high or low mathematical achievement level (Table 3.2). The students were assigned to 4 5
Number Sense and Numeration, Grades 4 to 6
Number Sense and Numeration, Grades 4 to 6 Volume 2 Addition and Subtraction A Guide to Effective Instruction in Mathematics, Kindergarten to Grade 6 2006 Every effort has been made in this publication
More informationThe Effect of Class Size on the Teaching of Pupils Aged 7 11 Years
School Effectiveness and School Improvement Vol. 18, No. 2, June 2007, pp. 147 172 The Effect of Class Size on the Teaching of Pupils Aged 7 11 Years Peter Blatchford*, Anthony Russell, Paul Bassett, Penelope
More informationRethinking Classroom Assessment with Purpose in Mind
Rethinking Classroom Assessment with Purpose in Mind Assessment for Learning Assessment as Learning Assessment of Learning Rethinking Classroom Assessment with Purpose in Mind Assessment for Learning
More informationLooking at Classroom Practice
Support Materials Contents This resource guide has been developed to support the work of school leaders, teachers and educators who work in and with schools across Australia. guide is designed to enable
More informationThe International Adult Literacy Survey (IALS): Understanding What Was Measured
RESEARCH REPORT December 2001 RR0125 The International Adult Literacy Survey (IALS): Understanding What Was Measured Irwin Kirsch Statistics & Research Division Princeton, NJ 08541 The International
More information2. Tuning methodology 5. 3. Competences in the teaching and learning process 17. 4. ECTS, student workload and learning outcomes 47
Introduction to Tuning2.indd a 7/3/07 18:08:28 Content 1. Introduction 1 2. Tuning methodology 5 3. Competences in the teaching and learning process 17 4. ECTS, student workload and learning outcomes
More informationResearch into the impact of Project Maths on student achievement, learning and motivation
Final report Research into the impact of Project Maths on student achievement, learning and motivation Jennifer Jeffes Emily Jones Máirín Wilson Emily Lamont Suzanne Straw Rebecca Wheater Anneka Dawson
More informationDevelopmentally Appropriate Practice in Early Childhood Programs Serving Children from Birth through Age 8
Position Statement Developmentally Appropriate Practice in Early Childhood Programs Serving Children from Birth through Age 8 Adopted 2009 A position statement of the National Asssociation for the Education
More informationTHE LEARNING FRAMEWORK IN NUMBER AND ITS IMPACT ON TEACHER KNOWLEDGE AND PEDAGOGY
THE LEARNING FRAMEWORK IN NUMBER AND ITS IMPACT ON TEACHER KNOWLEDGE AND PEDAGOGY A report prepared on behalf of the NSW Department of Education & Training for the Count Me In Too program 2008 by Associate
More informationA Guide to Effective Instruction in Mathematics Kindergarten to Grade 6
A Guide to Effective Instruction in Mathematics Kindergarten to Grade 6 A Resource in Five Volumes from the Ministry of Education Volume Two Problem Solving and Communication Every effort has been made
More informationWhat makes great teaching?
What makes great teaching? Review of the underpinning research Robert Coe, Cesare Aloisi, Steve Higgins and Lee Elliot Major October 2014 Executive Summary A framework for professional learning This review
More informationDETERMINING STUDENT WORKLOAD A PRACTICAL GUIDE FOR TEACHERS AND CURRICULUM DESIGNERS ME TIME TO THINK
A PRACTICAL GUIDE FOR TEACHERS AND CURRICULUM DESIGNERS GIVE ME TIME TO THINK DETERMINING STUDENT WORKLOAD IN HIGHER EDUCATION UNIVERSITY OF OULU TEACHING DEVELOPMENT UNIT ASKO KARJALAINEN KATARIINA ALHA
More informationThe need for a bridge between basic learning
Behaviorism, Cognitivism, Constructivism: Comparing Critical Features From an Instructional Design Perspective Peggy A. Ertmer and Timothy J. Newby The need for a bridge between basic learning research
More informationCommon Core State Standards for. Mathematics
Common Core State Standards for Mathematics Table of Contents Introduction 3 Standards for Mathematical Practice 6 Standards for Mathematical Content Kindergarten 9 Grade 1 13 Grade 2 17 Grade 3 21 Grade
More informationThe Effects of a 15minute Direct Instruction Intervention in the Regular Mathematics Class on Students Mathematical Selfefficacy and Achievement
The Effects of a 15minute Direct Instruction Intervention in the Regular Mathematics Class on Students Mathematical Selfefficacy and Achievement Rhonda Maree Farkota DipT (Melbourne State College) BEd
More informationA SelfDirected Guide to Designing Courses for Significant Learning
A SelfDirected Guide to Designing Courses for Significant Learning L. Dee Fink, PhD Director, Instructional Development Program University of Oklahoma Author of: Creating Significant Learning Experiences:
More informationFlexible Scheduling: Implementing an Innovation
Volume 9, 2006 Approved April 2006 ISSN: 15234320 www.ala.org/aasl/slr Flexible Scheduling: Implementing an Innovation Joy McGregor, Senior Lecturer and Course Coordinator of Master of Education (Teacher
More informationToward a More Comprehensive Conception of College Readiness
Toward a More Comprehensive Conception of College Readiness 2007 David T. Conley Prepared for the Bill & Melinda Gates Foundation, March 2007 Table of Contents Introduction. 5 An Operational Definition
More informationDecember 2009 Evaluation of Provision and Support for Disabled Students in Higher Education
December 2009 Evaluation of Provision and Support for Disabled Students in Higher Education Report to HEFCE and HEFCW by the Centre for Disability Studies and School of Sociology and Social Policy at the
More informationAbout learning. Report of the Learning Working Group
About learning Report of the Learning Working Group Open access. Some rights reserved. As the publisher of this work, Demos has an open access policy which enables anyone to access our content electronically
More informationINTRODUCTION FRAME WORK AND PURPOSE OF THE STUDY
STUDENTS PERCEPTIONS ABOUT THE SYMBOLS, LETTERS AND SIGNS IN ALGEBRA AND HOW DO THESE AFFECT THEIR LEARNING OF ALGEBRA: A CASE STUDY IN A GOVERNMENT GIRLS SECONDARY SCHOOL KARACHI Abstract Algebra uses
More informationGRADE LEVEL OF ACHIEVEMENT REPORTING: Teacher and Administrator Handbook
GRADE LEVEL OF ACHIEVEMENT REPORTING: Teacher and Administrator Handbook The assessments that drive academic learning and selfconcept are those used by teachers in classrooms. Richard J. Stiggins Revised
More informationClimate Surveys: Useful Tools to Help Colleges and Universities in Their Efforts to Reduce and Prevent Sexual Assault
Climate Surveys: Useful Tools to Help Colleges and Universities in Their Efforts to Reduce and Prevent Sexual Assault Why are we releasing information about climate surveys? Sexual assault is a significant
More informationUsing the CEFR: Principles of Good Practice. October 2011
Using the CEFR: Principles of Good Practice October 2011 What [the CEFR] can do is to stand as a central point of reference, itself always open to amendment and further development, in an interactive international
More informationHealth and wellbeing across learning 7 Literacy across learning 19 Numeracy across learning 38
Table of Contents To make it easier to use this file, there are links in the table below. Hover your mouse over the text and then select control and click to follow the link. Introduction 3 Responsibility
More informationWriting and using good learning outcomes Written by David Baume
Writing and using good learning outcomes Written by David Baume 2 www.leedsmet.ac.uk Preface Our Assessment, Learning and Teaching strategy reinforces the University s commitment to put students at the
More informationIntroduction to the Languages Subject Area
Chapter 5 Introduction to the Subject Area are an essential means through which we communicate and learn. They provide individuals with the resources to develop into citizens who can be actively involved
More informationIntroduction to the Research Process
The NIHR Research Design Service for Yorkshire & the Humber Introduction to the Research Process Authors Antony Arthur Beverley Hancock This Resource Pack is one of a series produced by The NIHR RDS for
More informationWould YOU want to talk to a scientist at a party? : Students attitudes to school science and science
Would YOU want to talk to a scientist at a party? : Students attitudes to school science and science Judith Bennett Sylvia Hogarth Department of Educational Studies Research Paper 2005/08 7 Would YOU want
More informationHow to Make the Most of Work Integrated Learning: A Guide for Students, Lecturers & Supervisors. Andy Martin & Helen Hughes
How to Make the Most of Work Integrated Learning: A Guide for Students, Lecturers & Supervisors Andy Martin & Helen Hughes How to Make the Most of Work Integrated Learning A Guide for Students, Lecturers
More information