Annual Renewable Water (m 3 /person/year) < ,000 1,000-1,700. Sources: CIESIN et al. 2000; Fekete et al. 2000

Size: px
Start display at page:

Download "Annual Renewable Water (m 3 /person/year) < 500 500-1,000 1,000-1,700. Sources: CIESIN et al. 2000; Fekete et al. 2000"

Transcription

1 EarthTrends: Featured Topic Title: Will There Be Enough Water? Author(s): Carmen Revenga Editor: Greg Mock Source: Pilot Analysis of Global Ecosystems: Freshwater Systems Date written: October 2000 Water policies in most nations are failing to protect life's most vital resource. This fact is reflected in growing water scarcity and alarming declines in the health of aquatic ecosystems worldwide. More precious than oil, yet routinely wasted, water is arguably the world s most pressing resource issue. Water Scarcity: The World's Most Pressing Resource Issue Figure 1: Annual Renwable Water Supply per Person by River Basin, 1995 Ensuring Water Supply Human development depends on adequate water a fact that has driven the location of communities, the extent of agriculture, and the shape of industry and transportation for centuries. Because of its central place in our activities, water is also the focus of much engineering activity and investment in the form of dams, canals, pipelines, and irrigation systems. Today, there are more than 45,000 large dams (dams more than 15 meters high) in the world most of them built in the last 35 years (WCD 2000:8, 11). This storage capacity represents a 700 percent increase in the standing stock of water in river systems since 1950 (Vörösmarty et al. 1997:210). The increase in storage capacity has permitted the Annual Renewable Water (m 3 /person/year) < ,000 1,000-1,700 1,700-4,000 4,000-10,000 > 10,000 Sources: CIESIN et al. 2000; Fekete et al expansion of agriculture through the use of irrigation, as well as the capability to distribute water more evenly throughout the year in many areas of the world where seasonal water shortages are a problem. But water demand is growing quickly, jeopardizing the availability of the supplies we would like to collect, store and use. Global water consumption rose sixfold between 1900 and 1995 more than double the rate of population growth and continues to grow rapidly as agricultural, industrial, and No data domestic demand increases (WMO 1997:9). Not surprisingly, the environmental impacts of our water consumption are growing rapidly as well. For example, the enormous increase in the number of dams has fragmented and seriously altered the flow of roughly 60 percent of the world s major river basins. These fragmented rivers carry nearly 90 percent of the water flowing through these major basins (Revenga et al. 2000:17). As population increases and freshwater systems are modified to a point where

2 2 Nearly Half the World Will Live With Water Scarcity by 2025 Figure 2: Global Renewable Water Supply per Person, 1995 and 2025 (projected) Water Supply (m3/person/ year) 1995 Population (millions) 1995 Percent of Total 2025 Population (millions) 2025 Percent of Total <500 1, , , ,000-1, , Subtotal 2, , >1,700 3, , Unallocated Total 5, , Source: WRI. The 2025 estimates are considered conservative because they are based on the United Nations' low-range projections for population growth, which has population peaking at 7.3 billion in 2025 (UNDP 1999:3). In addition, a slight mismatch between the water runoff and population data sets leaves 4 percent of the global population unaccounted in this analysis. many of their basic functions are affected, it becomes increasingly difficult to ensure that there is enough water for both people and nature. (See related feature: Freshwater Biodiversity in Crisis.) How Scarce Is Water? Humans now withdraw about 4,000 km 3 of water a year about 20 percent of the base flow (the average dry-weather flow) of the world s rivers (Shiklomanov 1997:14, 69). Understanding what this means in terms of the global water cycle requires some context: scientists estimate that the average amount of global runoff (the amount of water that is available for human use after evaporation or absorption into groundwater aquifers) is between 39,500 km 3 and 42,700 km 3 a year (Fekete et al. 1999:31; Shiklomanov 1997:13). However, not all of this water is available to humans. Much of the runoff occurs in flood events or is inaccessible to people because of its remote location. In addition, part of the runoff needs to remain in waterways so that aquatic ecosystems continue to function. In fact, only around 9,000 km 3 is readily accessible to humans every year as runoff. An additional 3,500 km 3 is stored in reservoirs (WMO 1997:7). In any case, such global averages fail to portray the details of the world s water situation. Water supplies are unevenly distributed around the globe, with some areas containing abundant water and others a much more limited supply. For example, arid and semiarid regions receive only 2 percent of the world s runoff, even though they occupy roughly 40 percent of the terrestrial area (WMO 1997:7). In river basins with high water demand relative to the available runoff, water scarcity is a growing problem. New estimates of water scarcity calculated by the World Resources Institute in collaboration with the University of New Hampshire show that some 41 percent of the world s population, or 2.3 billion people, live in river basins under water stress, meaning that per capita water supply is less than 1,700 m 3 /year (see Figures 1 and 2). An area in water stress is subject to frequent water shortages. In many of these areas, water supply is actually less than 1,000 m 3 per capita. In these highly stressed river basins, the consequences of water scarcity can be much more severe, leading to problems with local food production and economic development unless the region is wealthy enough to apply new technologies for water use, conservation, or reuse. Some 1.7 billion people (out of the 2.3 billion noted above) live in such high waterstress basins. Assuming that current water consumption patterns continue unabated, projections show that at least 3.5 billion people or 48 percent of the world s projected population--

3 3 100% 80% 60% 40% 20% 0% Agriculture Dominates Water Use, But Its Share Will Decline Figure 3: Water withdrawals by sector, various years ( ) Asia Europe Africa North America, Central America, and the Caribbean Source: WRI et al. 2000: (Table FW.1) will live in water-stressed river basins in 2025 (see Figure 2). Even regions where per capita water availability appears sufficient when averaged over the year may actually face water shortages in the dry season. The results of this analysis make it clear that many of the most populous river basins will gradually slip into water stress (with water per capita falling below 1,700 m 3 per year) over the next quarter century as water consumption rises. Wasting Water: Inefficiency, Overuse, and Pollution Global food production must increase in the years ahead to accommodate population growth. United Nations projections put global population at nearly 8 billion in 2025 up 1.7 billion from today (UNPD 2001:vi). This means the world s farmers will need more water for irrigation. South America Domestic Industrial Agricultural World Growth in food production in the last 50 years has been roughly matched by a proportional increase in water use, with grain yields rising 2.4- fold between 1950 and 1995 and irrigation water use rising 2.2-fold (Postel 1999:165). At present, irrigated agriculture accounts for 40 percent of global food production, even though it represents just 17 percent of global cropland (WMO 1997:9). As a consequence, agriculture is society s major user of water, withdrawing some 70 percent of all water (WMO 1997:8) (see Figure 3). Unfortunately, most irrigation systems are relatively inefficient and result in massive water waste. Global estimates of irrigation efficiency show that around 60 percent of irrigation water never reaches the crop and is lost to evaporation and runoff (Postel 1993:56; Rosegrant 1997:4; Seckler et al. 1998:25). Adding to the problem of inefficient irrigation techniques is the fact that farmers usually pay low prices for irrigation water, giving them little incentive to conserve. Government water subsidies that artificially lower water prices are the primary culprit. In the western United States, for example, water subsidies total some $2-2.5 billion per year. Throughout the world, government support typically allows water utilities to sell irrigation water for far less than the cost of supplying it. In arid Tunisia, farmers pay no more than one-seventh the cost of their water (de Moor and Calamai 1997:14-15). Such low prices and subsidies encourage inefficient use and discourage the adoption of water-saving technology like drip irrigation (Johnson et al. 2001:1072; Postel 1999: ) Water pollution adds enormously to existing problems of local and regional water scarcity by removing large volumes of water from the available supply. In many parts of the world, rivers and lakes have become so polluted that their water is unfit even for industrial uses (WMO 1997:11; UNEP/GEMS 1995:6). (See related feature: Dirty Water: Pollution Problems Persist.) Groundwater Is Scarce, Too Global concerns about water scarcity include not only

4 4 surface water sources but groundwater sources. More than 1 billion people in Asian cities and 150 million in Latin American cities rely on groundwater from wells or springs (Foster et al. 1998:xi). In addition, although there are no complete figures on groundwater use by the rural population, many countries are increasingly dependent on this resource for both domestic and agricultural uses (Foster et al. 2000:1). Currently humans withdraw approximately km 3 of groundwater per year about 20 percent of global water withdrawals (Shiklomanov 1997:53 54). Some of this water is fossil water (ancient water that isn t routinely replenished) that comes from deep sources isolated from the normal runoff cycle, but much groundwater comes from shallower aquifers that draw from the same global runoff that feeds freshwater ecosystems. Indeed, overdrafting of groundwater sources can rob streams and rivers of a significant fraction of their flow. In the same way, pollution of aquifers by nitrates, pesticides, and industrial chemicals often affects water quality in adjacent freshwater ecosystems. Although overdrafting and contamination of groundwater aquifers are known to be widespread and growing problems (UNEP 1996:4 5), comprehensive data on groundwater resources and pollution trends are not available at the global level. Wiser Management Means More Water Better management of water resources is the key to mitigating water scarcities in the future and avoiding further damage to aquatic ecosystems. In the short term, more efficient use of water could dramatically expand available resources. This is particularly true in the agricultural sector, where experience shows that drip irrigation systems routinely cut water use percent, while simultaneously increasing crop yields percent. Although the use of drip irrigation has grown more than 50-fold over the last 20 years, it is still used in only 1 percent of the world s irrigated areas (Postel 1999:174). More efficient water technology alone will not be sufficient to fully address the looming water crisis. It will also require difficult policy choices that reallocate water to the most economically and socially beneficial use. This may mean diverting water from agriculture to commercial or household uses. In China, for example, planners estimate that a given amount of water used in industry generates more than 70 times more economic value than the same water used in agriculture (Postel 1999:114). To a certain extent, the transfer of water from lowvalue uses to higher-value uses is already well under way, especially where individuals hold legal water rights that they can sell to others. Farmers outside the city of Tirupur in southern India, for example, have begun to abandon farming so that they can sell their groundwater at a premium to water-hungry industries and urban users (Postel 1999:114). Such water markets are becoming more common in arid regions of the western United States and Australia. An important key to using and allocating water more efficiently is phasing out subsidies and allowing water prices to reflect the true cost of supply. Price reforms in Chile reduced irrigation water use percent and saved $400 million in costs for developing new water supplies. In Bogor, Indonesia, price increases cut domestic consumption by 30 percent (Johnson et al. 2001:1072). However, effective water pricing, particularly of irrigation water, remains a highly sensitive issue in low-income countries, where agriculture still dominates the economy and most farmers have limited incomes.

5 5 REFERENCES de Moor, A. and P. Calamai Subsidizing Unsustainable Development: Undermining the Earth with Public Funds. San Jose, Costa Rica: The Earth Council. Fekete, B., C. J. Vörösmarty, and W. Grabs Global, Composite Runoff Fields Based on Observed River Discharge and Simulated Water Balance. World Meteorological Organization Global Runoff Data Center Report No. 22. Koblenz, Germany: WMO-GRDC. Foster, S., A. Lawrence, and B. Morris Groundwater in Urban Development: Assessing Management Needs and Formulating Policy Strategies. World Bank Technical Paper No Washington, DC: The World Bank. Foster, S., J. Chilton, M. Moench, F. Cardy, and M. Schiffler Groundwater in Rural Development: Facing the Challenges of Supply and Resource Sustainability. World Bank Technical Paper No Washington, DC: The World Bank. Johnson, N., C. Revenga, and J. Echeverria Managing Water for People and Nature, Science 292: Postel, S Water and Agriculture, pp in Water in Crisis: A Guide to the World s Fresh Water Resource, P. Gleick, ed. New York, New York and Oxford, U.K.: Oxford University Press. Postel, S Pillar of Sand: Can the Irrigation Miracle Last? Washington, DC: Worldwatch Institute. Revenga, C., J. Brunner, N. Henniger, K. Kassem, R. Payne Pilot Analysis of Global Ecosystems: Freshwater Systems. Washington, DC: World Resources Institute. Rosegrant, M. W Water Resources in the 21 st Century: Challenges and Implications for Action. Food, Agriculture, and the Environment Discussion Paper 20. Washington, DC: International Food Policy Research Institute. Seckler, D., U. Amarasinghe, D. Molden, R. de Silva, and R. Barker World Water Demand and Supply, 1990 to 2025: Scenarios and Issues. Research Report 19. Colombo, Sri Lanka: International Water Management Institute. Shiklomanov, I.A Comprehensive Assessment of the Freshwater Resources of the World: Assessment of Water Resources and Water Availability in the World. Stockholm, Sweden: World Meteorological Organization and Stockholm Environment Institute.

6 6 United Nations Environment Program Global Environment Monitoring System/Water (UNEP/GEMS) Water Quality of World River Basins. Nairobi, Kenya: United Nations Environment Programme. United Nations Environment Programme (UNEP) Groundwater: A Threatened Resource. UNEP Environment Library No. 15. Nairobi, Kenya: United Nations Environment Programme. United Nations Population Division (UNPD) World Population Prospects: The 2000 Revision: Highlights. New York, New York: United Nations. United Nations Population Division (UNPD) World Population Prospects: The 1998 Revision. Vol 1. New York, New York: United Nations. Vörösmarty, C. J., K. P. Sharma, B. M. Fekete, A. H. Copeland, J. Holden, J. Marble, and J. A. Lough The Storage and Aging of Continental Runoff in Large Reservoir Systems of the World, Ambio 26(4): World Commission on Dams (WCD) Dams and Development: A New Framework for Decision-Making. London: Earthscan. World Meteorological Organization (WMO) Comprehensive Assessment of the Freshwater Resources of the World. Stockholm, Sweden: WMO and Stockholm Environment Institute. World Resources Institute (WRI) in collaboration with the United Nations Development Programme, United Nations Environment Programme, and the World Bank World Resources : People and Ecosystems: The Fraying Web of Life. Washington, DC: WRI. World Resources Institute (WRI) in collaboration with the United Nations Development Programme, United Nations Environment Programme, and the World Bank World Resources : A Guide to the Global Environment: Environmental Change and Human Health. New York, New York: Oxford University Press.

Water for Food Production: Will There Be Enough in 2025? Sandra L. Postel

Water for Food Production: Will There Be Enough in 2025? Sandra L. Postel Water for Food Production: Will There Be Enough in 2025? Sandra L. Postel Sandra L. Postel (e-mail: spostel@mtholyoke.edu) is a Pew Fellow in Conservation and the Environment and directs the Global Water

More information

Sustainable Growth: Taking a Deep Dive into Water

Sustainable Growth: Taking a Deep Dive into Water Sustainable Growth: Taking a Deep Dive into Water Water could be a constraint on growth The world s freshwater resources are unevenly distributed around the planet: over 60% of the Earth s freshwater supply

More information

Taking into Account Environmental Water Requirements in Global-scale Water Resources Assessments. Research Report

Taking into Account Environmental Water Requirements in Global-scale Water Resources Assessments. Research Report Research Report 2 Taking into Account Environmental Water Requirements in Global-scale Water Resources Assessments Vladimir Smakhtin, Carmen Revenga and Petra Döll International Water Management I n s

More information

How to Feed the World in 2050

How to Feed the World in 2050 How to Feed the World in 2050 Executive Summary 1. Introduction 2. Outlook for food security towards 2050 (1) The changing socio-economic environment (2) The natural resource base to 2050 will there be

More information

Systemwid slp e CGIAR Liv e estockprogramm

Systemwid slp e CGIAR Liv e estockprogramm Drivers of change in crop livestock systems and their potential impacts on agro-ecosystems services and human wellbeing to 2030 A study commissioned by the CGIAR Systemwide Livestock Programme ILRI PROJECT

More information

MATTER: CONSERVING, RESTORING AND ENHANCING AFRICA S SOILS

MATTER: CONSERVING, RESTORING AND ENHANCING AFRICA S SOILS MONTPELLIER PANEL DECEMBER 2014 NO ORDINARY MATTER: CONSERVING, RESTORING AND ENHANCING AFRICA S SOILS Types of soil degradation Loss of nutrients Water erosion Wind erosion Contamination Salinisation

More information

Economic frameworks to inform decision-making Economic frameworks to inform decision-making

Economic frameworks to inform decision-making Economic frameworks to inform decision-making 1 Economic frameworks to inform decision-making Economic frameworks to inform decision-making 2 Copyright 2009 The Barilla Group, The Coca-Cola Company, The International Finance Corporation, McKinsey

More information

Expect the Unexpected:

Expect the Unexpected: Expect the Unexpected: Building business value in a changing world kpmg.com KPMG INTERNATIONAL In this report we offer a starting point for discussion. We present a system of ten sustainability megaforces

More information

World Trade Organization Economic Research and Statistics Division. The relation between international trade and freshwater scarcity

World Trade Organization Economic Research and Statistics Division. The relation between international trade and freshwater scarcity Staff Working Paper ERSD-2010-05 Date: January 2010 World Trade Organization Economic Research and Statistics Division This paper appears in the WTO working paper series as commissioned background analysis

More information

A safe and just space for humanity

A safe and just space for humanity Oxfam Discussion Papers A safe and just space for humanity CAN WE LIVE WITHIN THE DOUGHNUT? Kate Raworth Oxfam Humanity s challenge in the 21 st century is to eradicate poverty and achieve prosperity for

More information

How will global warming affect my world? A simplified guide to the IPCC s Climate Change 2001: Impacts, Adaptation and Vulnerability

How will global warming affect my world? A simplified guide to the IPCC s Climate Change 2001: Impacts, Adaptation and Vulnerability How will global warming affect my world? A simplified guide to the IPCC s Climate Change 2001: Impacts, Adaptation and Vulnerability Published by the United Nations Environment Programme in November 2003.

More information

About the Pacific Institute. About the Authors. Heather Cooley. Juliet Christian-Smith. Peter H. Gleick

About the Pacific Institute. About the Authors. Heather Cooley. Juliet Christian-Smith. Peter H. Gleick About the Pacific Institute The Pacific Institute is one of the world s leading independent nonprofits conducting research and advocacy to create a healthier planet and sustainable communities. Based in

More information

global food want not.

global food want not. global food waste not, want not. Improving the world through engineering It is estimated that 30 50% (or 1.2 2 billion tonnes) of all food produced on the planet is lost before reaching A HUMAN STOMACH.

More information

Cost Recovery and Water Pricing for Irrigation and Drainage Projects

Cost Recovery and Water Pricing for Irrigation and Drainage Projects Agriculture and Rural Development Discussion Paper 26 The World Bank Cost Recovery and Water Pricing for Irrigation and Drainage Projects K. William Easter Yang Liu 2005 The International Bank for Reconstruction

More information

Alternative Ways of Providing Water. Emerging Options and Their Policy Implications

Alternative Ways of Providing Water. Emerging Options and Their Policy Implications Alternative Ways of Providing Water Emerging Options and Their Policy Implications «ENVIRONMENT Advance copy for 5 th World Water Forum FOREWORD Reused water (either reclaimed water or grey water reuse)

More information

Sink or Swim? Water security for growth and development

Sink or Swim? Water security for growth and development Water Policy 9 (2007) 545 571 Sink or Swim? Water security for growth and development David Grey a and Claudia W. Sadoff b a Corresponding author. The World Bank, 70 Lodi Estate, New Delhi 110003, India.

More information

Scaling up Renewable Energy in Africa. 12th Ordinary Session of Heads of State and Governments of the AFRICAN UNION. Addis Ababa, Ethiopia

Scaling up Renewable Energy in Africa. 12th Ordinary Session of Heads of State and Governments of the AFRICAN UNION. Addis Ababa, Ethiopia Scaling up Renewable Energy in Africa 12th Ordinary Session of Heads of State and Governments of the AFRICAN UNION Addis Ababa, Ethiopia Scaling up Renewable Energy in Africa 12th Ordinary Session of

More information

The New Economy of Water

The New Economy of Water The New Economy of Water The Risks and Benefits of Globalization and Privatization of Fresh Water Peter H. Gleick, Gary Wolff, Elizabeth L. Chalecki, Rachel Reyes February 2002 The New Economy of Water

More information

STERN REVIEW: The Economics of Climate Change

STERN REVIEW: The Economics of Climate Change Executive Summary The scientific evidence is now overwhelming: climate change presents very serious global risks, and it demands an urgent global response. This independent Review was commissioned by the

More information

How to Feed the World s Growing Billions. Understanding Fao World Food Projections and their Implications. World population Agriculture Consumption

How to Feed the World s Growing Billions. Understanding Fao World Food Projections and their Implications. World population Agriculture Consumption STUDY COMMISSIONED BY THE: STUDY 2011 World population Agriculture Consumption How to Feed the World s Growing Billions Understanding Fao World Food Projections and their Implications About this study

More information

WHICH ECONOMIC MODEL FOR

WHICH ECONOMIC MODEL FOR WHICH ECONOMIC MODEL FOR A WATER-EFFICIENT EUROPE? REPORT OF A CEPS TASK FORCE WHICH ECONOMIC MODEL FOR A WATER-EFFICIENT EUROPE? CEPS TASK FORCE REPORT NOVEMBER 2012 CHAIRMEN SÉBASTIEN TREYER, DIRECTOR

More information

ENERGY FOR ALL WORLD OUTLOOK. Financing access for the poor. First presented at the Energy For All Conference in Oslo, Norway in October 2011

ENERGY FOR ALL WORLD OUTLOOK. Financing access for the poor. First presented at the Energy For All Conference in Oslo, Norway in October 2011 WORLD ENERGY OUTLOOK 2 0 1 1 ENERGY FOR ALL Financing access for the poor Special early excerpt of the World Energy Outlook 2011 First presented at the Energy For All Conference in Oslo, Norway in October

More information

The Cost of Climate Change

The Cost of Climate Change May 2008 The Cost of Climate Change What We ll Pay if Global Warming Continues Unchecked Authors Frank Ackerman and Elizabeth A. Stanton Global Development and Environment Institute and Stockholm Environment

More information

Who Will Feed the World? The production challenge

Who Will Feed the World? The production challenge Oxfam Research Reports Who Will Feed the World? The production challenge Lucia Wegner Senior development economist and independent consultant Gine Zwart Oxfam Novib April 2011 www.oxfam.org Contents Executive

More information

BETTER GROWTH BETTER CLIMATE

BETTER GROWTH BETTER CLIMATE BETTER GROWTH BETTER CLIMATE BETTER GROWTH, BETTER CLIMATE : The The New New Climate Climate Economy Economy Report Report THE SYNTHESIS SYNTHESIS REPORT SEPTEMBER REPORT 2014 THE GLOBAL COMMISSION ON

More information

Powering up Smallholder Farmers to make food fair A five point agenda A Fairtrade International Report May 2013

Powering up Smallholder Farmers to make food fair A five point agenda A Fairtrade International Report May 2013 Powering up Smallholder Farmers to make food fair A five point agenda A Fairtrade International Report May 2013 Acknowledgments: This report was researched by Mark Curtis and edited by the Fairtrade Foundation,

More information

Can We Feed the World

Can We Feed the World Jonathan A. Foley is director of the Institute on the Environment at the University of Minnesota, where he is also McKnight Presidential Chair of Global Ecology. sustainability Can We Feed the World Sustain

More information