Progressions: Arithmetic and Geometry progressions 3º E.S.O.

 To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
Save this PDF as:

Size: px
Start display at page:

Transcription

1 Progressions: Arithmetic and Geometry progressions 3º E.S.O. Octavio Pacheco Ortuño I.E.S. El Palmar

2 INDEX Introduction.. 3 Objectives 3 Topics..3 Timing...3 Activities Lesson...4 Lesson Lesson Lesson Lesson 5&6..6 Resources Assessment

3 Introduction In this unit students are encouraged to develop their ability to recognise and use numerical structures and patterns in different situations. They should appreciate the value of numerical patterns in making generalisations to explain, simplify or extend their mathematical understanding. They should recognise and work with arithmetic progressions and geometric progressions. As final task students should make a project about how to model the spread of an epidemic by using progressions. Course: 3º ESO bilingual Objectives Six lessons. Recognize numerical patterns in progressions. 2. Apply and understand the nth term of a progression. 3. Identify arithmetic and geometric progressions. 4. Find the nth term of an arithmetic progression; calculate new terms and the sum to n terms of an arithmetic progression. 5. Find the nth term nth term of a geometric progression and calculate new terms. 6. Represent situations from daily life by using progressions. 7. Generate useful information by using everyday language, mathematical language or a combination of both from modelling with progressions. Topics. Numerical patterns: progressions 2. The nth term of a progression. 3. Arithmetic progression: difference. 4. Geometric progression: ratio. 5. Sum to n terms of an arithmetic progression. 6. Applications of numerical patterns and progression in daily life. Timing??? We need six lessons to develop this unit. And an additional lesson for an exam to completed the assessment. We recommended make the exam with another unit, as fractions or proportionality. The table on the right shows the objectives and topics developed in each lesson. Lesson Objetives Topics ª,2,3,2,3 2ª 3,4 2,3,5 3ª 4,5 4,5 4ª 6,7 6 5ª All All 6ª All All 3

4 Activities Lesson We introduce the concept of numerical progressions and how we can find some patterns. Then we show how to determine a general term, which it could be a formula, so it is called the nth term. We start to introduce the concept of arithmetic progressions and the difference. We propose the following exercises:. Write four more terms for the following progressions: a), 3, 5, 7, 9,.. b) 3, 7,, 5,. c) 2, 4, 8, 6,. d) 3, 5, 9, 7,. e), 4, 9, 6,. f), 2, 4, 7,,. 2. Write the value of a 3 and a 5 for each of the progressions from the previous exercise. 3. Write a,a2 and a 4 of the following progressions: a) a n = 3n b) a n = 5n 2 c) a = n 2 n + 3 d) a = ( 3) n n 4. Find the nth term for each progression from exercise : 5. Write the first four terms in each of the following arithmetic progressions. a) a = 5 ; d=8 b) a = 9 ; d=-5 c) a = 2. 8 ; d=.5 d) Find the nth term of the progressions from the previous exercise. Lesson 2 We continue working with arithmetic progressions and introduce the sum of several terms and how to calculate it. We propose the following exercises:. In each of the following arithmetic progressions, find (a) the common difference (b) the 0th term (c) the nth term (i), 3, 5, 7, (ii) 0, 9, 8, 7, (iii), 2.5, 4, 5.5,. (iv) 20, 8, 6, 4, (v) -25, -20, -5, -0, (vi)-0,25, -0,25, , -0.5, 2. The fifth term of an arithmetic progression is 0 while the 5th term is 40. Write down the first five terms of the arithmetic progression. 3. The fifth and tenth terms of an arithmetic progression are 8 and -7 respectively. Find the 20th and 50th terms of the arithmetic progression. 4. Find the sum of the first eight terms in the following arithmetic progressions: a) 5, 9, 3, 7,. b) 32, 29, 26, 23, c) -25, -20, -5, -0, 5. Find the sum of all the positive terms of the arithmetic progression 25, 23, 2, 9,... Find also the values of n for which the sum to n terms is 60. 4

5 Lesson 3 Now we introduce the second kind of progressions that we are to study; geometric progression and the common ratio, and how to determine the nth term. We propose the following exercises:. Write the first four terms in each of the following geometric progressions. a) a = 7 ; r=2 b) a = 5 ; r=-4 c) a = 60 ; d=0.5 d) a = 3 08 ; d=3 2. Find the nth term of the progressions from the previous exercise. 3. In each of the following geometric progressions, find (a) the common ratio (b) the 0th term (c) the nth term (i) 3, 6, 2, 24, 48, (ii) -0, -40, -60, -640 (iii) -5, 20, -80, 320, -280, (iv) 52, 256, 28, 64, 4. The second term of a geometric progression is 5 and the fifth term is 625. Find the seventh term. 5. The second term of a geometric progression is 64 and the fifth term is 27. Find the first 6 terms of the geometric progressions. Lesson 4 We show situations from daily life where we can recognise numerical patterns and use progression to represent those situations.. A man who weighs 25 kg is told he must reduce his weight to 80 kg. He goes on a diet and finds he is losing.5 kg in weight every week. Find his weight after weeks, and find how long it will take him to get his weight down to 80 kg. 2. A piece of rope with a length of k cm is cut into 40 parts such that the length of each part forms an arithmetic progression. Given that the length of the longest part is 324 cm and the difference between two consecutive parts is 8 cm. Find: a) The length of the shortest part. b) The value of k. c) The part that has a length of 72 cm. 3. Tom tells two of his friend a secret. The next hour, each of his friends tells the secret to two other friends. On the next hour, their friends each tell the secret to two other friends. How many people are told the secret on eight hours? 4. If the population of Great Britain is 55 million and is decreasing at 2.4% per annum, what will be the population in 5 years time? g of a radioactive substance disintegrates at a rate of 3% per annum. How much of the substance is left after years? 5

6 Lesson 5 and 6 To illustrate progressions and developed the use of everyday language to show mathematic result we have use the website: We have recollected some material and videos from this website to make the following exercises. Also we should watch the following resources from the prior website: Before Activity Modelling with Mathematics: Introductory video clip (3 min 2 secs) Before Activity 2 Counter Plague: demonstration Video clip (3 min 47 secs) After Activity 2 Understanding Counter PlaguePresentation: screenshots from e-counter Plague to help students interpret the model, and to understand what we might expect to happen, given particular dice settings. The following next two pages( page 7 and 8) is handout for students. 6

8 Table A Table B Counter Plague as a model for an epidemic. Write the answers in your notebook. Run eight epidemics, using the table A for the outcomes of each throw of the die, and record the progress of the epidemic on a bars graph in your notebook. 2. How do the graphs compare? 3. Now run eight epidemics using the table B of outcomes, and record the progress of the epidemic on a graph. 4. How do the graphs compare? 5. How do these compare with the first set of graphs? How good is the Counter Plague model? Write the answers in your notebook 6. What aspects of the model help us to understand how epidemics progress? 7. Are there important factors which it does not include? 8. Can you think of ways to improve it? Vocabulary: Disease-enfermedad Spread- extender Die-dado Die out- desaparecer Get sick- enfermar Stage-etapa Step-paso Outcomes-resultados Number sequence-serie numérica 8

9 Resources Tex book: Mathematics3. Basic concepts. Editorial Anaya. J. Colera y otros. Websites Download videos, presentation and activities. Find more exercises and advanced topics. Assessment. Identify and discover patterns and relationships between the terms of a numerical progression 2. Using the nth term of a progression to obtain any term of the progression. 3. Find the nth term of an arithmetic progression and the difference. 4. Calculate the sum of n terms of an arithmetic progression. 5. Find the nth term of a geometric progression and the ratio. 6. Analyse information and data from daily life situations using progressions. 7. Generate results and conclusions from daily life situations using progressions. The next table shows the relationship between Objectives and Assessments Objectives Assessments y y The achievement of exit assessments to 5 will be provided by an exam. The rest of assessments will be provided by tasks in lessons 5 and 6. 9

IB Math 11 Assignment: Chapters 1 & 2 (A) NAME: (Functions, Sequences and Series)

IB Math 11 Assignment: Chapters 1 & 2 (A) NAME: (Functions, Sequences and Series) 1. Let f(x) = 7 2x and g(x) = x + 3. Find (g f)(x). Write down g 1 (x). (c) Find (f g 1 )(5). (Total 5 marks) 2. Consider

IB Maths SL Sequence and Series Practice Problems Mr. W Name

IB Maths SL Sequence and Series Practice Problems Mr. W Name Remember to show all necessary reasoning! Separate paper is probably best. 3b 3d is optional! 1. In an arithmetic sequence, u 1 = and u 3 =

Teaching & Learning Plans. Arithmetic Sequences. Leaving Certificate Syllabus

Teaching & Learning Plans Arithmetic Sequences Leaving Certificate Syllabus The Teaching & Learning Plans are structured as follows: Aims outline what the lesson, or series of lessons, hopes to achieve.

12.3 Geometric Sequences Copyright Cengage Learning. All rights reserved. 1 Objectives Geometric Sequences Partial Sums of Geometric Sequences What Is an Infinite Series? Infinite Geometric Series 2 Geometric

8.3. GEOMETRIC SEQUENCES AND SERIES

8.3. GEOMETRIC SEQUENCES AND SERIES What You Should Learn Recognize, write, and find the nth terms of geometric sequences. Find the sum of a finite geometric sequence. Find the sum of an infinite geometric

Arithmetic Sequence. Formula for the nth Term of an Arithmetic Sequence

638 (1-1) Chapter 1 Sequences and Series In this section 1.3 ARITHMETIC SEQUENCES AND SERIES We defined sequences and series in Sections 1.1 and 1.. In this section you will study a special type of sequence

Teaching & Learning Plans. Geometric Sequences. Leaving Certificate Syllabus

Teaching & Learning Plans Geometric Sequences Leaving Certificate Syllabus The Teaching & Learning Plans are structured as follows: Aims outline what the lesson, or series of lessons, hopes to achieve.

Overview. Essential Questions. Precalculus, Quarter 4, Unit 4.5 Build Arithmetic and Geometric Sequences and Series

Sequences and Series Overview Number of instruction days: 4 6 (1 day = 53 minutes) Content to Be Learned Write arithmetic and geometric sequences both recursively and with an explicit formula, use them

Five daily lessons. Page 23. Page 25. Page 29. Pages 31

Unit 4 Fractions and decimals Five daily lessons Year 5 Spring term Unit Objectives Year 5 Order a set of fractions, such as 2, 2¾, 1¾, 1½, and position them on a number line. Relate fractions to division

7.S.8 Interpret data to provide the basis for predictions and to establish

7 th Grade Probability Unit 7.S.8 Interpret data to provide the basis for predictions and to establish experimental probabilities. 7.S.10 Predict the outcome of experiment 7.S.11 Design and conduct an

1 2 3 4 5 6 90 180 360 600 900 W kg M stop start P M 1. 2. M 3. P 4. M M 1. 2. P 3. P 4. M M 1. 2. P 3. P 4. M 250 250 250 1. P 2. 3. P pm h M1 M2 min sec kg M 1. 2. 3. M M 1. 2. 3. M M M 1. 2. M 90

Year 6 Maths Objectives

Year 6 Maths Objectives Place Value COUNTING COMPARING NUMBERS IDENTIFYING, REPRESENTING & ESTIMATING NUMBERS READING & WRITING NUMBERS UNDERSTANDING PLACE VALUE ROUNDING PROBLEM SOLVING use negative numbers

2.1. Inductive Reasoning EXAMPLE A

CONDENSED LESSON 2.1 Inductive Reasoning In this lesson you will Learn how inductive reasoning is used in science and mathematics Use inductive reasoning to make conjectures about sequences of numbers

Math 115 Spring 2014 Written Homework 3 Due Wednesday, February 19

Math 11 Spring 01 Written Homework 3 Due Wednesday, February 19 Instructions: Write complete solutions on separate paper (not spiral bound). If multiple pieces of paper are used, they must be stapled with

CHAPTER 1. Arithmetic and Geometric Sequences

CHAPTER 1 Arithmetic and Geometric Sequences LEARNING OBJECTIVES By the end of this chapter, you should be able to explain the terms sequence, arithmetic and geometric sequence; identify arithmetic and

Assignment 5 - Due Friday March 6

Assignment 5 - Due Friday March 6 (1) Discovering Fibonacci Relationships By experimenting with numerous examples in search of a pattern, determine a simple formula for (F n+1 ) 2 + (F n ) 2 that is, a

Notes: Geometric Sequences

Notes: Geometric Sequences I. What is a Geometric Sequence? The table shows the heights of a bungee jumper s bounces. The height of the bounces shown in the table above form a geometric sequence. In a

4/1/2017. PS. Sequences and Series FROM 9.2 AND 9.3 IN THE BOOK AS WELL AS FROM OTHER SOURCES. TODAY IS NATIONAL MANATEE APPRECIATION DAY

PS. Sequences and Series FROM 9.2 AND 9.3 IN THE BOOK AS WELL AS FROM OTHER SOURCES. TODAY IS NATIONAL MANATEE APPRECIATION DAY 1 Oh the things you should learn How to recognize and write arithmetic sequences

This is a game for 2 players. The children will need a game board, a dice and a counter or marker each.

This is a game for 2 players. The children will need a game board, a dice and a counter or marker each. The game is very much like snakes and ladders, with the objective being to travel along the board

Essential Question Essential Question Essential Question Essential Question Essential Question Essential Question Essential Question

What is the difference between an arithmetic and a geometric sequence? Essential Question Essential Question Essential Question Essential Question Essential Question Essential Question Essential Question

Sequences and Series Lesson Plan 1. CLIL Lesson Plan 1. To develop in students, the Mathematical Analysis to understand sequences.

Sequences and Series Lesson Plan 1 Aim: CLIL Lesson Plan 1 To develop in students, the Mathematical Analysis to understand sequences. Objectives: Upon completion of this lesson, students will: have been

Fractions. Cavendish Community Primary School

Fractions Children in the Foundation Stage should be introduced to the concept of halves and quarters through play and practical activities in preparation for calculation at Key Stage One. Y Understand

VIRAL MARKETING. Teacher s Guide Getting Started. Benjamin Dickman Brookline, MA

Teacher s Guide Getting Started Benjamin Dickman Brookline, MA Purpose In this two-day lesson, students will model viral marketing. Viral marketing refers to a marketing strategy in which people pass on

0018 DATA ANALYSIS, PROBABILITY and STATISTICS

008 DATA ANALYSIS, PROBABILITY and STATISTICS A permutation tells us the number of ways we can combine a set where {a, b, c} is different from {c, b, a} and without repetition. r is the size of of the

Arithmetic Progression

Worksheet 3.6 Arithmetic and Geometric Progressions Section 1 Arithmetic Progression An arithmetic progression is a list of numbers where the difference between successive numbers is constant. The terms

AFM Ch.12 - Practice Test

AFM Ch.2 - Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question.. Form a sequence that has two arithmetic means between 3 and 89. a. 3, 33, 43, 89

Decimals and Percentages

Decimals and Percentages Specimen Worksheets for Selected Aspects Paul Harling b recognise the number relationship between coordinates in the first quadrant of related points Key Stage 2 (AT2) on a line

M11PC - UNIT REVIEW: Series & Sequences

Name: Class: Date: ID: A M11PC - UNIT REVIEW: Series & Sequences Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The first three terms of the sequence

RIT scores between 191 and 200

Measures of Academic Progress for Mathematics RIT scores between 191 and 200 Number Sense and Operations Whole Numbers Solve simple addition word problems Find and extend patterns Demonstrate the associative,

1.2. Successive Differences

1. An Application of Inductive Reasoning: Number Patterns In the previous section we introduced inductive reasoning, and we showed how it can be applied in predicting what comes next in a list of numbers

Guide to Leaving Certificate Mathematics Ordinary Level

Guide to Leaving Certificate Mathematics Ordinary Level Dr. Aoife Jones Paper 1 For the Leaving Cert 013, Paper 1 is divided into three sections. Section A is entitled Concepts and Skills and contains

#1-12: Write the first 4 terms of the sequence. (Assume n begins with 1.)

Section 9.1: Sequences #1-12: Write the first 4 terms of the sequence. (Assume n begins with 1.) 1) a n = 3n a 1 = 3*1 = 3 a 2 = 3*2 = 6 a 3 = 3*3 = 9 a 4 = 3*4 = 12 3) a n = 3n 5 Answer: 3,6,9,12 a 1

Overview. Essential Questions. Grade 4 Mathematics, Quarter 3, Unit 3.3 Multiplying Fractions by a Whole Number

Multiplying Fractions by a Whole Number Overview Number of instruction days: 8 10 (1 day = 90 minutes) Content to Be Learned Understand that a fraction can be written as a multiple of unit fractions with

Algebra 2 Final Exam Review Ch 7-14

Algebra 2 Final Exam Review Ch 7-14 Short Answer 1. Simplify the radical expression. Use absolute value symbols if needed. 2. Simplify. Assume that all variables are positive. 3. Multiply and simplify.

Since the ratios are constant, the sequence is geometric. The common ratio is.

Determine whether each sequence is arithmetic, geometric, or neither. Explain. 1. 200, 40, 8, Since the ratios are constant, the sequence is geometric. The common ratio is. 2. 2, 4, 16, The ratios are

Unit 1: Family Letter

Name Date Time HOME LINK Unit 1: Family Letter Introduction to Third Grade Everyday Mathematics Welcome to Third Grade Everyday Mathematics. It is part of an elementary school mathematics curriculum developed

Math Common Core Standards Fourth Grade

Operations and Algebraic Thinking (OA) Use the four operations with whole numbers to solve problems. OA.4.1 Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 7 as a statement

Properties of sequences Since a sequence is a special kind of function it has analogous properties to functions:

Sequences and Series A sequence is a special kind of function whose domain is N - the set of natural numbers. The range of a sequence is the collection of terms that make up the sequence. Just as the word

Granby Primary School Year 5 & 6 Supporting your child with maths A handbook for year 5 & 6 parents H M Hopps 2016 G r a n b y P r i m a r y S c h o o l 1 P a g e Many parents want to help their children

Concepts Sectors, arcs, circumference, areas of circles and properties of cones.

Making Witches Hats from Cones ID: XXXX Time required 45 minutes Activity Overview In this activity, students make cones from circles, exploring the relationship between the size of the sector cut from

Example 1: If the sum of seven and a number is multiplied by four, the result is 76. Find the number.

EXERCISE SET 2.3 DUE DATE: STUDENT INSTRUCTOR: 2.3 MORE APPLICATIONS OF LINEAR EQUATIONS Here are a couple of reminders you may need for this section: perimeter is the distance around the outside of the

LINEAR INEQUALITIES. Mathematics is the art of saying many things in many different ways. MAXWELL

Chapter 6 LINEAR INEQUALITIES 6.1 Introduction Mathematics is the art of saying many things in many different ways. MAXWELL In earlier classes, we have studied equations in one variable and two variables

SEQUENCES AND SERIES. For example: 2, 5, 8, 11,... is an arithmetic sequence with d = 3.

SEQUENCES AND SERIES A sequence is a set of numbers in a defined order (a pattern). There are two kinds of sequences: arithmetic and geometric. An arithmetic sequence uses a number called d (difference)

Year 1 Maths Expectations

Times Tables I can count in 2 s, 5 s and 10 s from zero. Year 1 Maths Expectations Addition I know my number facts to 20. I can add in tens and ones using a structured number line. Subtraction I know all

Overview. Essential Questions. Grade 7 Mathematics, Quarter 4, Unit 4.2 Probability of Compound Events. Number of instruction days: 8 10

Probability of Compound Events Number of instruction days: 8 10 Overview Content to Be Learned Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation. Understand

Specimen paper MATHEMATICS HIGHER TIER. Time allowed: 2 hours. GCSE BITESIZE examinations. General Certificate of Secondary Education

GCSE BITESIZE examinations General Certificate of Secondary Education Specimen paper MATHEMATICS HIGHER TIER 2005 Paper 1 Non-calculator Time allowed: 2 hours You must not use a calculator. Answer all

COUNTING RECTANGLES Folding and Counting

PATTERNS in Positions COUNTING RECTANGLES Folding and Counting Introduction 1 to Activity Description Many people view mathematics as the science of patterns. This activity uses a folded paper strip to

Maths Progressions Number and algebra

This document was created by Clevedon School staff using the NZC, Maths Standards and Numeracy Framework, with support from Cognition Education consultants. It is indicative of the maths knowledge and

THE WHE TO PLAY. Teacher s Guide Getting Started. Shereen Khan & Fayad Ali Trinidad and Tobago

Teacher s Guide Getting Started Shereen Khan & Fayad Ali Trinidad and Tobago Purpose In this two-day lesson, students develop different strategies to play a game in order to win. In particular, they will

Fielder s Snakes and Ladders AC EA We are practicing number and algebra. We are exploring the properties of numbers. Exercise 1 EAdders Snakes and Ladders You will need a 0-9 die and some markers. The

Division of Special Education LAUSD, June Grade 4 Math 156

Use the four operations with whole numbers to solve problems. Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 7 as a statement that 35 is 5 times as many as 7 and 7 times as

Contents. Block A Understanding numbers 7. Block C Geometry 53. Block B Numerical operations 30. Page 4 Introduction Page 5 Oral and mental starters

Contents Page 4 Introduction Page 5 Oral and mental starters Block A Understanding numbers 7 Unit 1 Integers and decimals 8 Integers Rounding and approximation Large numbers Decimal numbers Adding and

ALGEBRA. sequence, term, nth term, consecutive, rule, relationship, generate, predict, continue increase, decrease finite, infinite

ALGEBRA Pupils should be taught to: Generate and describe sequences As outcomes, Year 7 pupils should, for example: Use, read and write, spelling correctly: sequence, term, nth term, consecutive, rule,

8-3 Perimeter and Circumference

Learn to find the perimeter of a polygon and the circumference of a circle. 8-3 Perimeter Insert Lesson and Title Circumference Here perimeter circumference Vocabulary The distance around a geometric figure

Math-U-See Correlation with the Common Core State Standards for Mathematical Content for Fourth Grade

Math-U-See Correlation with the Common Core State Standards for Mathematical Content for Fourth Grade The fourth-grade standards highlight all four operations, explore fractions in greater detail, and

RATIO AND PERCENT Grade Level: Fifth Grade Written by: Susan Pope, Bean Elementary, Lubbock, TX Length of Unit: Two/Three Weeks

RATIO AND PERCENT Grade Level: Fifth Grade Written by: Susan Pope, Bean Elementary, Lubbock, TX Length of Unit: Two/Three Weeks I. ABSTRACT A. This unit introduces the relationships in ratios and percentages

Some sequences have a fixed length and have a last term, while others go on forever.

Sequences and series Sequences A sequence is a list of numbers (actually, they don t have to be numbers). Here is a sequence: 1, 4, 9, 16 The order makes a difference, so 16, 9, 4, 1 is a different sequence.

To discuss this topic fully, let us define some terms used in this and the following sets of supplemental notes.

INFINITE SERIES SERIES AND PARTIAL SUMS What if we wanted to sum up the terms of this sequence, how many terms would I have to use? 1, 2, 3,... 10,...? Well, we could start creating sums of a finite number

Lesson 3 Compare and order 5-digit numbers; Use < and > signs to compare 5-digit numbers (S: Bonds to 100)

Abacus Year 5 Teaching Overview Autumn 1 Week Strands Weekly summary 1 Number and placevalue (NPV); and order 5-digit Read, write, compare Written addition numbers, understanding and subtraction the place-value

Welcome to Basic Math Skills!

Basic Math Skills Welcome to Basic Math Skills! Most students find the math sections to be the most difficult. Basic Math Skills was designed to give you a refresher on the basics of math. There are lots

Ingleby Manor Scheme of Work : Year 7. Objectives Support L3/4 Core L4/5/6 Extension L6/7

Autumn 1 Mathematics Objectives Support L3/4 Core L4/5/6 Extension L6/7 Week 1: Algebra 1 (6 hours) Sequences and functions - Recognize and extend number sequences - Identify the term to term rule - Know

Number & Place Value. Addition & Subtraction. Digit Value: determine the value of each digit. determine the value of each digit

Number & Place Value Addition & Subtraction UKS2 The principal focus of mathematics teaching in upper key stage 2 is to ensure that pupils extend their understanding of the number system and place value

Calculus for Middle School Teachers. Problems and Notes for MTHT 466

Calculus for Middle School Teachers Problems and Notes for MTHT 466 Bonnie Saunders Fall 2010 1 I Infinity Week 1 How big is Infinity? Problem of the Week: The Chess Board Problem There once was a humble

10-3 Geometric Sequences and Series

1 2 Determine the common ratio, and find the next three terms of each geometric sequence = 2 = 2 The common ratio is 2 Multiply the third term by 2 to find the fourth term, and so on 1( 2) = 2 2( 2) =

Common Core Standards for Mathematics Grade 4 Operations & Algebraic Thinking Date Taught

Operations & Algebraic Thinking Use the four operations with whole numbers to solve problems. 4.OA.1. Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 7 as a statement that 35

OGET TEACHER TEST PREP SEMINAR NORTHERN OKLAHOMA COLLEGE MATH COMPETENCIES

DATA INTERPRETATION AND ANALYSIS COMPETENCY 0009 Interpret information from line graphs, bar graphs, and pie charts. Interpret data from tables. Recognize appropriate representations of various data in

Fourth Grade Common Core State Standard (CCSS) Math Scope and Sequence

I= Introduced R=Reinforced/Reviewed Fourth Grade Math Standards 1 2 3 4 Operations and Algebraic Thinking Use the four operations with whole numbers to solve problems. 4.0A.1 - Interpret a multiplication

Where Do We Meet? Students will represent and analyze algebraically a wide variety of problem solving situations.

Beth Yancey MAED 591 Where Do We Meet? Introduction: This lesson covers objectives in the algebra and geometry strands of the New York State standards for Algebra I. The students will use the graphs of

Academic Support Services Supplemental Learning Materials - Math

Academic Support Services Supplemental Learning Materials - Math Algebra and trigonometry Basic math Calculator help Charts and graphs Coordinate planes Decimals Exponents General math sites Graphing Integers

FSCJ PERT. Florida State College at Jacksonville. assessment. and Certification Centers

FSCJ Florida State College at Jacksonville Assessment and Certification Centers PERT Postsecondary Education Readiness Test Study Guide for Mathematics Note: Pages through are a basic review. Pages forward

6.042/18.062J Mathematics for Computer Science. Expected Value I

6.42/8.62J Mathematics for Computer Science Srini Devadas and Eric Lehman May 3, 25 Lecture otes Expected Value I The expectation or expected value of a random variable is a single number that tells you

10-1 Sequences as Functions. Determine whether each sequence is arithmetic no. 1. 8, 2, 12, 22

10-1 Sequences as Functions Determine whether each sequence is arithmetic no. 1. 8, 2, 12, 22 3. 1, 2, 4, 8, 16 Subtract each term from the term directly after it. Subtract each term from the term directly

Fourth Grade. Operations & Algebraic Thinking. Use the four operations with whole numbers to solve problems. (4.OA.A)

Operations & Algebraic Thinking Use the four operations with whole numbers to solve problems. (4.OA.A) 4.OA.A.1: Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 7 as a statement

Arc Length and Areas of Sectors

Student Outcomes When students are provided with the angle measure of the arc and the length of the radius of the circle, they understand how to determine the length of an arc and the area of a sector.

ALGEBRA 1/ALGEBRA 1 HONORS

ALGEBRA 1/ALGEBRA 1 HONORS CREDIT HOURS: 1.0 COURSE LENGTH: 2 Semesters COURSE DESCRIPTION The purpose of this course is to allow the student to gain mastery in working with and evaluating mathematical

Algorithm set of steps used to solve a mathematical computation. Area The number of square units that covers a shape or figure

Fifth Grade CCSS Math Vocabulary Word List *Terms with an asterisk are meant for teacher knowledge only students need to learn the concept but not necessarily the term. Addend Any number being added Algorithm

Healthcare Math: Using the Metric System

Healthcare Math: Using the Metric System Industry: Healthcare Content Area: Mathematics Core Topics: Using the metric system, converting measurements within and between the metric and US customary systems,

Assessment For The California Mathematics Standards Grade 6

Introduction: Summary of Goals GRADE SIX By the end of grade six, students have mastered the four arithmetic operations with whole numbers, positive fractions, positive decimals, and positive and negative

Mathematics programmes of study: key stage 3. National curriculum in England

Mathematics programmes of study: key stage 3 National curriculum in England September 2013 Purpose of study Mathematics is a creative and highly inter-connected discipline that has been developed over

Unit 1 Number Sense. In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions.

Unit 1 Number Sense In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions. BLM Three Types of Percent Problems (p L-34) is a summary BLM for the material

The Fibonacci Sequence Lesson Plan

The Fibonacci Sequence Grade Level: 9-12 Curriculum Focus: Algebra, Geometry Lesson Duration: Two class periods Student Objectives Materials Understand the Fibonacci sequence (numerically, algebraically,

Exam #5 Sequences and Series

College of the Redwoods Mathematics Department Math 30 College Algebra Exam #5 Sequences and Series David Arnold Don Hickethier Copyright c 000 Don-Hickethier@Eureka.redwoods.cc.ca.us Last Revision Date:

Finding Rates and the Geometric Mean

Finding Rates and the Geometric Mean So far, most of the situations we ve covered have assumed a known interest rate. If you save a certain amount of money and it earns a fixed interest rate for a period

Mathematics. Mathematical Practices

Mathematical Practices 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively. 3. Construct viable arguments and critique the reasoning of others. 4. Model with

Math Games For Skills and Concepts

Math Games p.1 Math Games For Skills and Concepts Original material 2001-2006, John Golden, GVSU permission granted for educational use Other material copyright: Investigations in Number, Data and Space,

Sucesiones repaso Klasse 12 [86 marks]

Sucesiones repaso Klasse [8 marks] a. Consider an infinite geometric sequence with u = 40 and r =. (i) Find. u 4 (ii) Find the sum of the infinite sequence. (i) correct approach () e.g. u 4 = (40) u 4

Handout Objectives: This handout will: Campus Academic Resource Program Introduce the unit circle. Define and describe the unit of radians. Show how to convert between radians to degrees. The Unit Circle:

Objective. Materials. Discover the Pythagorean Theorem. Determine if a triangle is acute, right, or obtuse.

. Objective To find the lengths of sides of right triangles Activity 8 Materials TI-73 Student Activity page (p. 90) Right Triangles are Cool Because of Pythag s Rule In this activity you will Discover

DIOCESE OF BATON ROUGE MATH CURRICULUM GUIDE KINDERGARTEN-GRADE 8. Adapted from the Common Core State Standards.

DIOCESE OF BATON ROUGE MATH CURRICULUM GUIDE KINDERGARTEN-GRADE 8 Adapted from the Common Core State Standards. Please note: The implementation of this curriculum guide in the Diocese of Baton Rouge will

Contents. Number. Algebra. Exam board specification map Introduction Topic checker Topic checker answers. iv vi x xv

Contents Exam board specification map Introduction Topic checker Topic checker answers iv vi x xv Number The decimal number system Fraction calculations Fractions, decimals and percentages Powers and roots

DesCartes (Combined) Subject: Mathematics 2-5 Goal: Data Analysis, Statistics, and Probability

DesCartes (Combined) Subject: Mathematics 2-5 Goal: Data Analysis, Statistics, and Probability RIT Score Range: Below 171 Below 171 Data Analysis and Statistics Solves simple problems based on data from

Bridging Documents for Mathematics

Bridging Documents for Mathematics 5 th /6 th Class, Primary Junior Cycle, Post-Primary Primary Post-Primary Card # Strand(s): Number, Measure Number (Strand 3) 2-5 Strand: Shape and Space Geometry and

Algebra I Credit Recovery

Algebra I Credit Recovery COURSE DESCRIPTION: The purpose of this course is to allow the student to gain mastery in working with and evaluating mathematical expressions, equations, graphs, and other topics,

YEAR 8 SCHEME OF WORK - SECURE

YEAR 8 SCHEME OF WORK - SECURE Autumn Term 1 Number Spring Term 1 Real-life graphs Summer Term 1 Calculating with fractions Area and volume Decimals and ratio Straight-line graphs Half Term: Assessment

Math Content

2012-2013 Math Content PATHWAY TO ALGEBRA I Unit Lesson Section Number and Operations in Base Ten Place Value with Whole Numbers Place Value and Rounding Addition and Subtraction Concepts Regrouping Concepts

Session 7 Fractions and Decimals

Key Terms in This Session Session 7 Fractions and Decimals Previously Introduced prime number rational numbers New in This Session period repeating decimal terminating decimal Introduction In this session,

California Common Core State Standards Comparison- FOURTH GRADE

1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively. 3. Construct viable arguments and critique the reasoning of others 4. Model with mathematics. Standards

8.7 Mathematical Induction

8.7. MATHEMATICAL INDUCTION 8-135 8.7 Mathematical Induction Objective Prove a statement by mathematical induction Many mathematical facts are established by first observing a pattern, then making a conjecture