Progressions: Arithmetic and Geometry progressions 3º E.S.O.


 Patience Taylor
 1 years ago
 Views:
Transcription
1 Progressions: Arithmetic and Geometry progressions 3º E.S.O. Octavio Pacheco Ortuño I.E.S. El Palmar
2 INDEX Introduction.. 3 Objectives 3 Topics..3 Timing...3 Activities Lesson...4 Lesson Lesson Lesson Lesson 5&6..6 Resources Assessment
3 Introduction In this unit students are encouraged to develop their ability to recognise and use numerical structures and patterns in different situations. They should appreciate the value of numerical patterns in making generalisations to explain, simplify or extend their mathematical understanding. They should recognise and work with arithmetic progressions and geometric progressions. As final task students should make a project about how to model the spread of an epidemic by using progressions. Course: 3º ESO bilingual Objectives Six lessons. Recognize numerical patterns in progressions. 2. Apply and understand the nth term of a progression. 3. Identify arithmetic and geometric progressions. 4. Find the nth term of an arithmetic progression; calculate new terms and the sum to n terms of an arithmetic progression. 5. Find the nth term nth term of a geometric progression and calculate new terms. 6. Represent situations from daily life by using progressions. 7. Generate useful information by using everyday language, mathematical language or a combination of both from modelling with progressions. Topics. Numerical patterns: progressions 2. The nth term of a progression. 3. Arithmetic progression: difference. 4. Geometric progression: ratio. 5. Sum to n terms of an arithmetic progression. 6. Applications of numerical patterns and progression in daily life. Timing??? We need six lessons to develop this unit. And an additional lesson for an exam to completed the assessment. We recommended make the exam with another unit, as fractions or proportionality. The table on the right shows the objectives and topics developed in each lesson. Lesson Objetives Topics ª,2,3,2,3 2ª 3,4 2,3,5 3ª 4,5 4,5 4ª 6,7 6 5ª All All 6ª All All 3
4 Activities Lesson We introduce the concept of numerical progressions and how we can find some patterns. Then we show how to determine a general term, which it could be a formula, so it is called the nth term. We start to introduce the concept of arithmetic progressions and the difference. We propose the following exercises:. Write four more terms for the following progressions: a), 3, 5, 7, 9,.. b) 3, 7,, 5,. c) 2, 4, 8, 6,. d) 3, 5, 9, 7,. e), 4, 9, 6,. f), 2, 4, 7,,. 2. Write the value of a 3 and a 5 for each of the progressions from the previous exercise. 3. Write a,a2 and a 4 of the following progressions: a) a n = 3n b) a n = 5n 2 c) a = n 2 n + 3 d) a = ( 3) n n 4. Find the nth term for each progression from exercise : 5. Write the first four terms in each of the following arithmetic progressions. a) a = 5 ; d=8 b) a = 9 ; d=5 c) a = 2. 8 ; d=.5 d) Find the nth term of the progressions from the previous exercise. Lesson 2 We continue working with arithmetic progressions and introduce the sum of several terms and how to calculate it. We propose the following exercises:. In each of the following arithmetic progressions, find (a) the common difference (b) the 0th term (c) the nth term (i), 3, 5, 7, (ii) 0, 9, 8, 7, (iii), 2.5, 4, 5.5,. (iv) 20, 8, 6, 4, (v) 25, 20, 5, 0, (vi)0,25, 0,25, , 0.5, 2. The fifth term of an arithmetic progression is 0 while the 5th term is 40. Write down the first five terms of the arithmetic progression. 3. The fifth and tenth terms of an arithmetic progression are 8 and 7 respectively. Find the 20th and 50th terms of the arithmetic progression. 4. Find the sum of the first eight terms in the following arithmetic progressions: a) 5, 9, 3, 7,. b) 32, 29, 26, 23, c) 25, 20, 5, 0, 5. Find the sum of all the positive terms of the arithmetic progression 25, 23, 2, 9,... Find also the values of n for which the sum to n terms is 60. 4
5 Lesson 3 Now we introduce the second kind of progressions that we are to study; geometric progression and the common ratio, and how to determine the nth term. We propose the following exercises:. Write the first four terms in each of the following geometric progressions. a) a = 7 ; r=2 b) a = 5 ; r=4 c) a = 60 ; d=0.5 d) a = 3 08 ; d=3 2. Find the nth term of the progressions from the previous exercise. 3. In each of the following geometric progressions, find (a) the common ratio (b) the 0th term (c) the nth term (i) 3, 6, 2, 24, 48, (ii) 0, 40, 60, 640 (iii) 5, 20, 80, 320, 280, (iv) 52, 256, 28, 64, 4. The second term of a geometric progression is 5 and the fifth term is 625. Find the seventh term. 5. The second term of a geometric progression is 64 and the fifth term is 27. Find the first 6 terms of the geometric progressions. Lesson 4 We show situations from daily life where we can recognise numerical patterns and use progression to represent those situations.. A man who weighs 25 kg is told he must reduce his weight to 80 kg. He goes on a diet and finds he is losing.5 kg in weight every week. Find his weight after weeks, and find how long it will take him to get his weight down to 80 kg. 2. A piece of rope with a length of k cm is cut into 40 parts such that the length of each part forms an arithmetic progression. Given that the length of the longest part is 324 cm and the difference between two consecutive parts is 8 cm. Find: a) The length of the shortest part. b) The value of k. c) The part that has a length of 72 cm. 3. Tom tells two of his friend a secret. The next hour, each of his friends tells the secret to two other friends. On the next hour, their friends each tell the secret to two other friends. How many people are told the secret on eight hours? 4. If the population of Great Britain is 55 million and is decreasing at 2.4% per annum, what will be the population in 5 years time? g of a radioactive substance disintegrates at a rate of 3% per annum. How much of the substance is left after years? 5
6 Lesson 5 and 6 To illustrate progressions and developed the use of everyday language to show mathematic result we have use the website: We have recollected some material and videos from this website to make the following exercises. Also we should watch the following resources from the prior website: Before Activity Modelling with Mathematics: Introductory video clip (3 min 2 secs) Before Activity 2 Counter Plague: demonstration Video clip (3 min 47 secs) After Activity 2 Understanding Counter PlaguePresentation: screenshots from ecounter Plague to help students interpret the model, and to understand what we might expect to happen, given particular dice settings. The following next two pages( page 7 and 8) is handout for students. 6
7 Modelling with mathematics Mathematics is often called "the language of the universe". With mathematics, we can describe and make predictions about the behaviour of things around us. We are going to explore how to model the spread of a epidemic. Activity :Standing Disease Step : choose one person to be the first case of Standing Disease  the main symptomis being unable to sit or lie down, you just have to keep standing up. Step 2: it s quite infectious  so that person chooses two more people to be infected. Step 3: each infected person infects two more people, and so on, until the whole class is infected. Questions to discuss. Write the answers in your notebook. How many steps did it take the disease to infect the whole class? 2. How many people were infected at each stage? How could you describe this number sequence? 3. What difference would it make if 3 people were infected at each stage instead of 2? 4. How could you describe that number sequence? 5. How many steps would it take to infect the whole school? 6. What about Spain? The population is about 45 million 7. How about the UK? The population is about 62 million. 8. How about the whole world? The population is about 7 billion. 9. What about if n people were infected at each stage? How good is this model? Write the answers in your notebook 0. What aspects of the model tell us something useful about how epidemics progress?. What does the model predict which doesn t make sense? 2. Can you think of ways to improve it? Activity 2 Counter Plague Step 0: put one counter on the table. This is the first infection. Step : throw the die. Use one of the tables below to see how many people are infected, and place the appropriate number of counters to the right of the first counter. The example above uses the LH table. A 5 at Step 0 means that two more people are infected, shown by the two counters at Step. Step 2: repeat for each newly infected person. In the example, a 5 for the top counter means two more infections, while the 2 for the bottom counter means no further infections. Step 3: repeat until either the epidemic dies out or you run out of counters (meaning the whole population has been infected). In the example, the epidemic died out after the 2 at Step 3. 7
8 Table A Table B Counter Plague as a model for an epidemic. Write the answers in your notebook. Run eight epidemics, using the table A for the outcomes of each throw of the die, and record the progress of the epidemic on a bars graph in your notebook. 2. How do the graphs compare? 3. Now run eight epidemics using the table B of outcomes, and record the progress of the epidemic on a graph. 4. How do the graphs compare? 5. How do these compare with the first set of graphs? How good is the Counter Plague model? Write the answers in your notebook 6. What aspects of the model help us to understand how epidemics progress? 7. Are there important factors which it does not include? 8. Can you think of ways to improve it? Vocabulary: Diseaseenfermedad Spread extender Diedado Die out desaparecer Get sick enfermar Stageetapa Steppaso Outcomesresultados Number sequenceserie numérica 8
9 Resources Tex book: Mathematics3. Basic concepts. Editorial Anaya. J. Colera y otros. Websites Download videos, presentation and activities. Find more exercises and advanced topics. Assessment. Identify and discover patterns and relationships between the terms of a numerical progression 2. Using the nth term of a progression to obtain any term of the progression. 3. Find the nth term of an arithmetic progression and the difference. 4. Calculate the sum of n terms of an arithmetic progression. 5. Find the nth term of a geometric progression and the ratio. 6. Analyse information and data from daily life situations using progressions. 7. Generate results and conclusions from daily life situations using progressions. The next table shows the relationship between Objectives and Assessments Objectives Assessments y y The achievement of exit assessments to 5 will be provided by an exam. The rest of assessments will be provided by tasks in lessons 5 and 6. 9
IB Maths SL Sequence and Series Practice Problems Mr. W Name
IB Maths SL Sequence and Series Practice Problems Mr. W Name Remember to show all necessary reasoning! Separate paper is probably best. 3b 3d is optional! 1. In an arithmetic sequence, u 1 = and u 3 =
More informationTeaching & Learning Plans. Arithmetic Sequences. Leaving Certificate Syllabus
Teaching & Learning Plans Arithmetic Sequences Leaving Certificate Syllabus The Teaching & Learning Plans are structured as follows: Aims outline what the lesson, or series of lessons, hopes to achieve.
More informationArithmetic Sequence. Formula for the nth Term of an Arithmetic Sequence
638 (11) Chapter 1 Sequences and Series In this section 1.3 ARITHMETIC SEQUENCES AND SERIES We defined sequences and series in Sections 1.1 and 1.. In this section you will study a special type of sequence
More informationOverview. Essential Questions. Precalculus, Quarter 4, Unit 4.5 Build Arithmetic and Geometric Sequences and Series
Sequences and Series Overview Number of instruction days: 4 6 (1 day = 53 minutes) Content to Be Learned Write arithmetic and geometric sequences both recursively and with an explicit formula, use them
More informationFive daily lessons. Page 23. Page 25. Page 29. Pages 31
Unit 4 Fractions and decimals Five daily lessons Year 5 Spring term Unit Objectives Year 5 Order a set of fractions, such as 2, 2¾, 1¾, 1½, and position them on a number line. Relate fractions to division
More information1 2 3 4 5 6 90 180 360 600 900 W kg M stop start P M 1. 2. M 3. P 4. M M 1. 2. P 3. P 4. M M 1. 2. P 3. P 4. M 250 250 250 1. P 2. 3. P pm h M1 M2 min sec kg M 1. 2. 3. M M 1. 2. 3. M M M 1. 2. M 90
More information2.1. Inductive Reasoning EXAMPLE A
CONDENSED LESSON 2.1 Inductive Reasoning In this lesson you will Learn how inductive reasoning is used in science and mathematics Use inductive reasoning to make conjectures about sequences of numbers
More information7.S.8 Interpret data to provide the basis for predictions and to establish
7 th Grade Probability Unit 7.S.8 Interpret data to provide the basis for predictions and to establish experimental probabilities. 7.S.10 Predict the outcome of experiment 7.S.11 Design and conduct an
More informationEssential Question Essential Question Essential Question Essential Question Essential Question Essential Question Essential Question
What is the difference between an arithmetic and a geometric sequence? Essential Question Essential Question Essential Question Essential Question Essential Question Essential Question Essential Question
More information4/1/2017. PS. Sequences and Series FROM 9.2 AND 9.3 IN THE BOOK AS WELL AS FROM OTHER SOURCES. TODAY IS NATIONAL MANATEE APPRECIATION DAY
PS. Sequences and Series FROM 9.2 AND 9.3 IN THE BOOK AS WELL AS FROM OTHER SOURCES. TODAY IS NATIONAL MANATEE APPRECIATION DAY 1 Oh the things you should learn How to recognize and write arithmetic sequences
More informationAssignment 5  Due Friday March 6
Assignment 5  Due Friday March 6 (1) Discovering Fibonacci Relationships By experimenting with numerous examples in search of a pattern, determine a simple formula for (F n+1 ) 2 + (F n ) 2 that is, a
More informationVIRAL MARKETING. Teacher s Guide Getting Started. Benjamin Dickman Brookline, MA
Teacher s Guide Getting Started Benjamin Dickman Brookline, MA Purpose In this twoday lesson, students will model viral marketing. Viral marketing refers to a marketing strategy in which people pass on
More informationArithmetic Progression
Worksheet 3.6 Arithmetic and Geometric Progressions Section 1 Arithmetic Progression An arithmetic progression is a list of numbers where the difference between successive numbers is constant. The terms
More information0018 DATA ANALYSIS, PROBABILITY and STATISTICS
008 DATA ANALYSIS, PROBABILITY and STATISTICS A permutation tells us the number of ways we can combine a set where {a, b, c} is different from {c, b, a} and without repetition. r is the size of of the
More informationDecimals and Percentages
Decimals and Percentages Specimen Worksheets for Selected Aspects Paul Harling b recognise the number relationship between coordinates in the first quadrant of related points Key Stage 2 (AT2) on a line
More informationAFM Ch.12  Practice Test
AFM Ch.2  Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question.. Form a sequence that has two arithmetic means between 3 and 89. a. 3, 33, 43, 89
More informationFractions. Cavendish Community Primary School
Fractions Children in the Foundation Stage should be introduced to the concept of halves and quarters through play and practical activities in preparation for calculation at Key Stage One. Y Understand
More informationGuide to Leaving Certificate Mathematics Ordinary Level
Guide to Leaving Certificate Mathematics Ordinary Level Dr. Aoife Jones Paper 1 For the Leaving Cert 013, Paper 1 is divided into three sections. Section A is entitled Concepts and Skills and contains
More information#112: Write the first 4 terms of the sequence. (Assume n begins with 1.)
Section 9.1: Sequences #112: Write the first 4 terms of the sequence. (Assume n begins with 1.) 1) a n = 3n a 1 = 3*1 = 3 a 2 = 3*2 = 6 a 3 = 3*3 = 9 a 4 = 3*4 = 12 3) a n = 3n 5 Answer: 3,6,9,12 a 1
More information1.2. Successive Differences
1. An Application of Inductive Reasoning: Number Patterns In the previous section we introduced inductive reasoning, and we showed how it can be applied in predicting what comes next in a list of numbers
More informationSince the ratios are constant, the sequence is geometric. The common ratio is.
Determine whether each sequence is arithmetic, geometric, or neither. Explain. 1. 200, 40, 8, Since the ratios are constant, the sequence is geometric. The common ratio is. 2. 2, 4, 16, The ratios are
More informationUnit 1: Family Letter
Name Date Time HOME LINK Unit 1: Family Letter Introduction to Third Grade Everyday Mathematics Welcome to Third Grade Everyday Mathematics. It is part of an elementary school mathematics curriculum developed
More informationMath Common Core Standards Fourth Grade
Operations and Algebraic Thinking (OA) Use the four operations with whole numbers to solve problems. OA.4.1 Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 7 as a statement
More informationProperties of sequences Since a sequence is a special kind of function it has analogous properties to functions:
Sequences and Series A sequence is a special kind of function whose domain is N  the set of natural numbers. The range of a sequence is the collection of terms that make up the sequence. Just as the word
More informationLINEAR INEQUALITIES. Mathematics is the art of saying many things in many different ways. MAXWELL
Chapter 6 LINEAR INEQUALITIES 6.1 Introduction Mathematics is the art of saying many things in many different ways. MAXWELL In earlier classes, we have studied equations in one variable and two variables
More informationConcepts Sectors, arcs, circumference, areas of circles and properties of cones.
Making Witches Hats from Cones ID: XXXX Time required 45 minutes Activity Overview In this activity, students make cones from circles, exploring the relationship between the size of the sector cut from
More informationSpecimen paper MATHEMATICS HIGHER TIER. Time allowed: 2 hours. GCSE BITESIZE examinations. General Certificate of Secondary Education
GCSE BITESIZE examinations General Certificate of Secondary Education Specimen paper MATHEMATICS HIGHER TIER 2005 Paper 1 Noncalculator Time allowed: 2 hours You must not use a calculator. Answer all
More informationTHE WHE TO PLAY. Teacher s Guide Getting Started. Shereen Khan & Fayad Ali Trinidad and Tobago
Teacher s Guide Getting Started Shereen Khan & Fayad Ali Trinidad and Tobago Purpose In this twoday lesson, students develop different strategies to play a game in order to win. In particular, they will
More informationMaths Progressions Number and algebra
This document was created by Clevedon School staff using the NZC, Maths Standards and Numeracy Framework, with support from Cognition Education consultants. It is indicative of the maths knowledge and
More informationTo discuss this topic fully, let us define some terms used in this and the following sets of supplemental notes.
INFINITE SERIES SERIES AND PARTIAL SUMS What if we wanted to sum up the terms of this sequence, how many terms would I have to use? 1, 2, 3,... 10,...? Well, we could start creating sums of a finite number
More informationSome sequences have a fixed length and have a last term, while others go on forever.
Sequences and series Sequences A sequence is a list of numbers (actually, they don t have to be numbers). Here is a sequence: 1, 4, 9, 16 The order makes a difference, so 16, 9, 4, 1 is a different sequence.
More informationALGEBRA. sequence, term, nth term, consecutive, rule, relationship, generate, predict, continue increase, decrease finite, infinite
ALGEBRA Pupils should be taught to: Generate and describe sequences As outcomes, Year 7 pupils should, for example: Use, read and write, spelling correctly: sequence, term, nth term, consecutive, rule,
More informationMathUSee Correlation with the Common Core State Standards for Mathematical Content for Fourth Grade
MathUSee Correlation with the Common Core State Standards for Mathematical Content for Fourth Grade The fourthgrade standards highlight all four operations, explore fractions in greater detail, and
More informationFSCJ PERT. Florida State College at Jacksonville. assessment. and Certification Centers
FSCJ Florida State College at Jacksonville Assessment and Certification Centers PERT Postsecondary Education Readiness Test Study Guide for Mathematics Note: Pages through are a basic review. Pages forward
More informationOGET TEACHER TEST PREP SEMINAR NORTHERN OKLAHOMA COLLEGE MATH COMPETENCIES
DATA INTERPRETATION AND ANALYSIS COMPETENCY 0009 Interpret information from line graphs, bar graphs, and pie charts. Interpret data from tables. Recognize appropriate representations of various data in
More information6.042/18.062J Mathematics for Computer Science. Expected Value I
6.42/8.62J Mathematics for Computer Science Srini Devadas and Eric Lehman May 3, 25 Lecture otes Expected Value I The expectation or expected value of a random variable is a single number that tells you
More informationAcademic Support Services Supplemental Learning Materials  Math
Academic Support Services Supplemental Learning Materials  Math Algebra and trigonometry Basic math Calculator help Charts and graphs Coordinate planes Decimals Exponents General math sites Graphing Integers
More informationCommon Core Standards for Mathematics Grade 4 Operations & Algebraic Thinking Date Taught
Operations & Algebraic Thinking Use the four operations with whole numbers to solve problems. 4.OA.1. Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 7 as a statement that 35
More informationWelcome to Basic Math Skills!
Basic Math Skills Welcome to Basic Math Skills! Most students find the math sections to be the most difficult. Basic Math Skills was designed to give you a refresher on the basics of math. There are lots
More informationHealthcare Math: Using the Metric System
Healthcare Math: Using the Metric System Industry: Healthcare Content Area: Mathematics Core Topics: Using the metric system, converting measurements within and between the metric and US customary systems,
More informationWhere Do We Meet? Students will represent and analyze algebraically a wide variety of problem solving situations.
Beth Yancey MAED 591 Where Do We Meet? Introduction: This lesson covers objectives in the algebra and geometry strands of the New York State standards for Algebra I. The students will use the graphs of
More informationArc Length and Areas of Sectors
Student Outcomes When students are provided with the angle measure of the arc and the length of the radius of the circle, they understand how to determine the length of an arc and the area of a sector.
More informationFinding Rates and the Geometric Mean
Finding Rates and the Geometric Mean So far, most of the situations we ve covered have assumed a known interest rate. If you save a certain amount of money and it earns a fixed interest rate for a period
More informationMathematics programmes of study: key stage 3. National curriculum in England
Mathematics programmes of study: key stage 3 National curriculum in England September 2013 Purpose of study Mathematics is a creative and highly interconnected discipline that has been developed over
More informationAssessment For The California Mathematics Standards Grade 6
Introduction: Summary of Goals GRADE SIX By the end of grade six, students have mastered the four arithmetic operations with whole numbers, positive fractions, positive decimals, and positive and negative
More informationDesCartes (Combined) Subject: Mathematics 25 Goal: Data Analysis, Statistics, and Probability
DesCartes (Combined) Subject: Mathematics 25 Goal: Data Analysis, Statistics, and Probability RIT Score Range: Below 171 Below 171 Data Analysis and Statistics Solves simple problems based on data from
More informationUnit 1 Number Sense. In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions.
Unit 1 Number Sense In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions. BLM Three Types of Percent Problems (p L34) is a summary BLM for the material
More information2. (a) Express the following numbers as products of their prime factors.
1. Jack and Jill share 18 in the ratio 2:3 Work out how much each person gets. Jack.. Jill... (Total 2 marks) 2. (a) Express the following numbers as products of their prime factors. (i) 56 (ii) 84.. (4)
More informationThe Fibonacci Sequence Lesson Plan
The Fibonacci Sequence Grade Level: 912 Curriculum Focus: Algebra, Geometry Lesson Duration: Two class periods Student Objectives Materials Understand the Fibonacci sequence (numerically, algebraically,
More informationBridging Documents for Mathematics
Bridging Documents for Mathematics 5 th /6 th Class, Primary Junior Cycle, PostPrimary Primary PostPrimary Card # Strand(s): Number, Measure Number (Strand 3) 25 Strand: Shape and Space Geometry and
More informationAlgebra I Credit Recovery
Algebra I Credit Recovery COURSE DESCRIPTION: The purpose of this course is to allow the student to gain mastery in working with and evaluating mathematical expressions, equations, graphs, and other topics,
More informationObjective. Materials. Discover the Pythagorean Theorem. Determine if a triangle is acute, right, or obtuse.
. Objective To find the lengths of sides of right triangles Activity 8 Materials TI73 Student Activity page (p. 90) Right Triangles are Cool Because of Pythag s Rule In this activity you will Discover
More informationMath Games For Skills and Concepts
Math Games p.1 Math Games For Skills and Concepts Original material 20012006, John Golden, GVSU permission granted for educational use Other material copyright: Investigations in Number, Data and Space,
More informationCalifornia Common Core State Standards Comparison FOURTH GRADE
1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively. 3. Construct viable arguments and critique the reasoning of others 4. Model with mathematics. Standards
More informationGCSE MATHEMATICS. 43602H Unit 2: Number and Algebra (Higher) Report on the Examination. Specification 4360 November 2014. Version: 1.
GCSE MATHEMATICS 43602H Unit 2: Number and Algebra (Higher) Report on the Examination Specification 4360 November 2014 Version: 1.0 Further copies of this Report are available from aqa.org.uk Copyright
More informationThinkwell s Homeschool Algebra 2 Course Lesson Plan: 34 weeks
Thinkwell s Homeschool Algebra 2 Course Lesson Plan: 34 weeks Welcome to Thinkwell s Homeschool Algebra 2! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson
More informationCampus Academic Resource Program Introduction to Radians
Handout Objectives: This handout will: Campus Academic Resource Program Introduce the unit circle. Define and describe the unit of radians. Show how to convert between radians to degrees. The Unit Circle:
More informationA Correlation of. to the. Common Core State Standards for Mathematics Grade 4
A Correlation of to the Introduction envisionmath2.0 is a comprehensive K6 mathematics curriculum that provides the focus, coherence, and rigor required by the CCSSM. envisionmath2.0 offers a balanced
More informationMATHEMATICS  SCHEMES OF WORK
MATHEMATICS  SCHEMES OF WORK For Children Aged 7 to 12 Mathematics Lessons Structure Time Approx. 90 minutes 1. Remind class of last topic area explored and relate to current topic. 2. Discuss and explore
More informationIngleby Manor Scheme of Work : Year 7. Objectives Support L3/4 Core L4/5/6 Extension L6/7
Autumn 1 Mathematics Objectives Support L3/4 Core L4/5/6 Extension L6/7 Week 1: Algebra 1 (6 hours) Sequences and functions  Recognize and extend number sequences  Identify the term to term rule  Know
More informationFOREWORD. Executive Secretary
FOREWORD The Botswana Examinations Council is pleased to authorise the publication of the revised assessment procedures for the Junior Certificate Examination programme. According to the Revised National
More informationSession 7 Fractions and Decimals
Key Terms in This Session Session 7 Fractions and Decimals Previously Introduced prime number rational numbers New in This Session period repeating decimal terminating decimal Introduction In this session,
More information1, 1 2, 1 3, 1 4,... 2 nd term. 1 st term
1 Sequences 11 Overview A (numerical) sequence is a list of real numbers in which each entry is a function of its position in the list The entries in the list are called terms For example, 1, 1, 1 3, 1
More informationMATHEMATICAL LITERACY LESSON PLANS
MATHEMATICAL LITERACY LESSON PLANS GRADE 11. LESSON PLAN 1. Lesson Plan: Personal finance Number f Activities : 3 Duration : +/ 13H30 Week : 13 Date: Context : Personal finance management, Business context.
More informationMath at Work: Careers Teacher s Guide
Teacher s Guide Grade Level: 9 12 Curriculum Focus: Math Lesson Duration: 2 3 class periods Program Description Math at Work: Careers From architecture and artistry to skateboarding and soccer, take students
More informationUsing Algebra Tiles for Adding/Subtracting Integers and to Solve 2step Equations Grade 7 By Rich Butera
Using Algebra Tiles for Adding/Subtracting Integers and to Solve 2step Equations Grade 7 By Rich Butera 1 Overall Unit Objective I am currently student teaching Seventh grade at Springville Griffith Middle
More informationInstructions for SA Completion
Instructions for SA Completion 1 Take notes on these Pythagorean Theorem Course Materials then do and check the associated practice questions for an explanation on how to do the Pythagorean Theorem Substantive
More informationAnasazi Activity Overview
Anasazi Activity Overview Using Artifact Picture Cards Activity 1. Semantic Feature Mapping. In this introductory activity using the artifact cards, students will read descriptions of the artifacts and
More informationPlace Value Chart. Number Sense 345,562 > 342,500 24,545 < 38, ,312=212,312
INDIANA ACADEMIC STANDARDS Number Sense 4.NS.1 Read and write whole numbers up to 1,000,000. Use words, models, standard form, and expanded form to represent and show equivalent forms of whole numbers
More informationSurface Area. Assessment Management
Surface Area Objective To introduce finding the surface area of prisms, cylinders, and pyramids. www.everydaymathonline.com epresentations etoolkit Algorithms Practice EM Facts Workshop Game Family Letters
More informationUsing Proportions to Solve Percent Problems I
RP71 Using Proportions to Solve Percent Problems I Pages 46 48 Standards: 7.RP.A. Goals: Students will write equivalent statements for proportions by keeping track of the part and the whole, and by solving
More informationNOTETAKING. Rutgers School of Nursing
NOTETAKING Rutgers School of Nursing WHEN TO TAKE NOTES BEFORE DURING AFTER I. Before Class: Preparation (mental and physical) Read Textbook BEFORE Class Start Taking Notes BEFORE Class The SQ3R Method
More informationSEQUENCES ARITHMETIC SEQUENCES. Examples
SEQUENCES ARITHMETIC SEQUENCES An ordered list of numbers such as: 4, 9, 6, 25, 36 is a sequence. Each number in the sequence is a term. Usually variables with subscripts are used to label terms. For example,
More informationRUTHERFORD HIGH SCHOOL Rutherford, New Jersey COURSE OUTLINE STATISTICS AND PROBABILITY
RUTHERFORD HIGH SCHOOL Rutherford, New Jersey COURSE OUTLINE STATISTICS AND PROBABILITY I. INTRODUCTION According to the Common Core Standards (2010), Decisions or predictions are often based on data numbers
More informationOral and Mental calculation
Oral and Mental calculation Read and write any integer and know what each digit represents. Read and write decimal notation for tenths and hundredths and know what each digit represents. Order and compare
More informationAssessment in Abacus. Continual professional development. Next. Teach. Learn and master. Plan. Assess mastery
Assessment in Abacus In Abacus, assessment is integrated into teaching and learning so that it can be constantly used to diagnose future learning needs. Rather than hive it off as a strand to be done in
More informationConsumer Math 15 INDEPENDENT LEAR NING S INC E 1975. Consumer Math
Consumer Math 15 INDEPENDENT LEAR NING S INC E 1975 Consumer Math Consumer Math ENROLLED STUDENTS ONLY This course is designed for the student who is challenged by abstract forms of higher This math. course
More informationBPS Math Year at a Glance (Adapted from A Story Of Units Curriculum Maps in Mathematics K5) 1
Grade 4 Key Areas of Focus for Grades 35: Multiplication and division of whole numbers and fractionsconcepts, skills and problem solving Expected Fluency: Add and subtract within 1,000,000 Module M1:
More informationAppendix F: Mathematical Induction
Appendix F: Mathematical Induction Introduction In this appendix, you will study a form of mathematical proof called mathematical induction. To see the logical need for mathematical induction, take another
More informationCommutative Property Grade One
Ohio Standards Connection Patterns, Functions and Algebra Benchmark E Solve open sentences and explain strategies. Indicator 4 Solve open sentences by representing an expression in more than one way using
More informationProblem of the Month: Once Upon a Time
Problem of the Month: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:
More informationUtah Core Curriculum for Mathematics
Core Curriculum for Mathematics correlated to correlated to 2005 Chapter 1 (pp. 2 57) Variables, Expressions, and Integers Lesson 1.1 (pp. 5 9) Expressions and Variables 2.2.1 Evaluate algebraic expressions
More informationYear 1 maths expectations (New Curriculum)
Year 1 maths expectations Counts to and across 100, forwards and backwards, beginning with 0 or one, or from any given number Counts, reads and writes numbers to 100 in numerals; counts in multiples of
More informationMINISTRY OF EDUCATION, SPORT AND CULTURE PRIMARY SCHOOL MATHEMATICS SYLLABUS GRADES 4 5 FIRST EXAMINATION 2008
MINISTRY OF EDUCATION, SPORT AND CULTURE PRIMARY SCHOOL MATHEMATICS SYLLABUS GRADES 4 5 FIRST EXAMINATION 2008 Curriculum Development Unit P. O. Box MP 133 Mount Pleasant HARARE All Rights Reserved 2006
More informationGeometry Mathematics Curriculum Guide Unit 6 Trig & Spec. Right Triangles 2016 2017
Unit 6: Trigonometry and Special Right Time Frame: 14 Days Primary Focus This topic extends the idea of triangle similarity to indirect measurements. Students develop properties of special right triangles,
More informationNumber and Numeracy SE/TE: 43, 49, 140145, 367369, 457, 459, 479
Ohio Proficiency Test for Mathematics, New Graduation Test, (Grade 10) Mathematics Competencies Competency in mathematics includes understanding of mathematical concepts, facility with mathematical skills,
More information6 th Grade Proportions and Ratios 60 minute connection 2 sites per connection. Classroom Preparation. Program Description. Learning Objectives*
6 th Grade Proportions and Ratios 60 minute connection 2 sites per connection Program Description Math Mania Proportions and Ratios reviews the mathematical concepts of multiplication, division, ratios,
More informationDecide how many topics you wish to revise at a time (let s say 10).
1 Minute Maths for the Higher Exam (grades B, C and D topics*) Too fast for a firsttime use but... brilliant for topics you have already understood and want to quickly revise. for the Foundation Exam
More informationTrading Systems Series
Trading Systems Series HOW DO I TRADE STOCKS.COM Copyright 2011 10 Trading Systems Series 10 TIMES YOUR MONEY IN 30 TRADES THE 4% SWING SYSTEM 30 4% This report will outline a simple 5 min a week strategy
More informationMath 0306 Final Exam Review
Math 006 Final Exam Review Problem Section Answers Whole Numbers 1. According to the 1990 census, the population of Nebraska is 1,8,8, the population of Nevada is 1,01,8, the population of New Hampshire
More informationIf A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C?
Problem 3 If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C? Suggested Questions to ask students about Problem 3 The key to this question
More informationMultiplication and Division with Rational Numbers
Multiplication and Division with Rational Numbers Kitty Hawk, North Carolina, is famous for being the place where the first airplane flight took place. The brothers who flew these first flights grew up
More informationMental Questions. Day 1. 1. What number is five cubed? 2. A circle has radius r. What is the formula for the area of the circle?
Mental Questions 1. What number is five cubed? KS3 MATHEMATICS 10 4 10 Level 8 Questions Day 1 2. A circle has radius r. What is the formula for the area of the circle? 3. Jenny and Mark share some money
More informationPossible Stage Two Mathematics Test Topics
Possible Stage Two Mathematics Test Topics The Stage Two Mathematics Test questions are designed to be answerable by a good problemsolver with a strong mathematics background. It is based mainly on material
More informationMajor Work of the Grade
Counting and Cardinality Know number names and the count sequence. Count to tell the number of objects. Compare numbers. Kindergarten Describe and compare measurable attributes. Classify objects and count
More informationFourth Grade Fractions
Fourth Grade Fractions http://upload.wikimedia.org/wikibooks/en/9/92/fractions_of_a_square.jpg North Carolina Department of Public Instruction www.ncdpi.wikispaces.net Overview The implementation of the
More informationFractions, Ratios, and Proportions Work Sheets. Contents
Fractions, Ratios, and Proportions Work Sheets The work sheets are grouped according to math skill. Each skill is then arranged in a sequence of work sheets that build from simple to complex. Choose the
More informationOverview. Opening 10 minutes. Closing 10 minutes. Work Time 25 minutes EXECUTIVE SUMMARY WORKSHOP MODEL
Overview EXECUTIVE SUMMARY onramp to Algebra is designed to ensure that atrisk students are successful in Algebra, a problem prominent in most of our country s larger school districts. onramp to Algebra
More informationStat 20: Intro to Probability and Statistics
Stat 20: Intro to Probability and Statistics Lecture 16: More Box Models Tessa L. ChildersDay UC Berkeley 22 July 2014 By the end of this lecture... You will be able to: Determine what we expect the sum
More informationCharlesworth School Year Group Maths Targets
Charlesworth School Year Group Maths Targets Year One Maths Target Sheet Key Statement KS1 Maths Targets (Expected) These skills must be secure to move beyond expected. I can compare, describe and solve
More information