Progressions: Arithmetic and Geometry progressions 3º E.S.O.

Size: px
Start display at page:

Download "Progressions: Arithmetic and Geometry progressions 3º E.S.O."

Transcription

1 Progressions: Arithmetic and Geometry progressions 3º E.S.O. Octavio Pacheco Ortuño I.E.S. El Palmar

2 INDEX Introduction.. 3 Objectives 3 Topics..3 Timing...3 Activities Lesson...4 Lesson Lesson Lesson Lesson 5&6..6 Resources Assessment

3 Introduction In this unit students are encouraged to develop their ability to recognise and use numerical structures and patterns in different situations. They should appreciate the value of numerical patterns in making generalisations to explain, simplify or extend their mathematical understanding. They should recognise and work with arithmetic progressions and geometric progressions. As final task students should make a project about how to model the spread of an epidemic by using progressions. Course: 3º ESO bilingual Objectives Six lessons. Recognize numerical patterns in progressions. 2. Apply and understand the nth term of a progression. 3. Identify arithmetic and geometric progressions. 4. Find the nth term of an arithmetic progression; calculate new terms and the sum to n terms of an arithmetic progression. 5. Find the nth term nth term of a geometric progression and calculate new terms. 6. Represent situations from daily life by using progressions. 7. Generate useful information by using everyday language, mathematical language or a combination of both from modelling with progressions. Topics. Numerical patterns: progressions 2. The nth term of a progression. 3. Arithmetic progression: difference. 4. Geometric progression: ratio. 5. Sum to n terms of an arithmetic progression. 6. Applications of numerical patterns and progression in daily life. Timing??? We need six lessons to develop this unit. And an additional lesson for an exam to completed the assessment. We recommended make the exam with another unit, as fractions or proportionality. The table on the right shows the objectives and topics developed in each lesson. Lesson Objetives Topics ª,2,3,2,3 2ª 3,4 2,3,5 3ª 4,5 4,5 4ª 6,7 6 5ª All All 6ª All All 3

4 Activities Lesson We introduce the concept of numerical progressions and how we can find some patterns. Then we show how to determine a general term, which it could be a formula, so it is called the nth term. We start to introduce the concept of arithmetic progressions and the difference. We propose the following exercises:. Write four more terms for the following progressions: a), 3, 5, 7, 9,.. b) 3, 7,, 5,. c) 2, 4, 8, 6,. d) 3, 5, 9, 7,. e), 4, 9, 6,. f), 2, 4, 7,,. 2. Write the value of a 3 and a 5 for each of the progressions from the previous exercise. 3. Write a,a2 and a 4 of the following progressions: a) a n = 3n b) a n = 5n 2 c) a = n 2 n + 3 d) a = ( 3) n n 4. Find the nth term for each progression from exercise : 5. Write the first four terms in each of the following arithmetic progressions. a) a = 5 ; d=8 b) a = 9 ; d=-5 c) a = 2. 8 ; d=.5 d) Find the nth term of the progressions from the previous exercise. Lesson 2 We continue working with arithmetic progressions and introduce the sum of several terms and how to calculate it. We propose the following exercises:. In each of the following arithmetic progressions, find (a) the common difference (b) the 0th term (c) the nth term (i), 3, 5, 7, (ii) 0, 9, 8, 7, (iii), 2.5, 4, 5.5,. (iv) 20, 8, 6, 4, (v) -25, -20, -5, -0, (vi)-0,25, -0,25, , -0.5, 2. The fifth term of an arithmetic progression is 0 while the 5th term is 40. Write down the first five terms of the arithmetic progression. 3. The fifth and tenth terms of an arithmetic progression are 8 and -7 respectively. Find the 20th and 50th terms of the arithmetic progression. 4. Find the sum of the first eight terms in the following arithmetic progressions: a) 5, 9, 3, 7,. b) 32, 29, 26, 23, c) -25, -20, -5, -0, 5. Find the sum of all the positive terms of the arithmetic progression 25, 23, 2, 9,... Find also the values of n for which the sum to n terms is 60. 4

5 Lesson 3 Now we introduce the second kind of progressions that we are to study; geometric progression and the common ratio, and how to determine the nth term. We propose the following exercises:. Write the first four terms in each of the following geometric progressions. a) a = 7 ; r=2 b) a = 5 ; r=-4 c) a = 60 ; d=0.5 d) a = 3 08 ; d=3 2. Find the nth term of the progressions from the previous exercise. 3. In each of the following geometric progressions, find (a) the common ratio (b) the 0th term (c) the nth term (i) 3, 6, 2, 24, 48, (ii) -0, -40, -60, -640 (iii) -5, 20, -80, 320, -280, (iv) 52, 256, 28, 64, 4. The second term of a geometric progression is 5 and the fifth term is 625. Find the seventh term. 5. The second term of a geometric progression is 64 and the fifth term is 27. Find the first 6 terms of the geometric progressions. Lesson 4 We show situations from daily life where we can recognise numerical patterns and use progression to represent those situations.. A man who weighs 25 kg is told he must reduce his weight to 80 kg. He goes on a diet and finds he is losing.5 kg in weight every week. Find his weight after weeks, and find how long it will take him to get his weight down to 80 kg. 2. A piece of rope with a length of k cm is cut into 40 parts such that the length of each part forms an arithmetic progression. Given that the length of the longest part is 324 cm and the difference between two consecutive parts is 8 cm. Find: a) The length of the shortest part. b) The value of k. c) The part that has a length of 72 cm. 3. Tom tells two of his friend a secret. The next hour, each of his friends tells the secret to two other friends. On the next hour, their friends each tell the secret to two other friends. How many people are told the secret on eight hours? 4. If the population of Great Britain is 55 million and is decreasing at 2.4% per annum, what will be the population in 5 years time? g of a radioactive substance disintegrates at a rate of 3% per annum. How much of the substance is left after years? 5

6 Lesson 5 and 6 To illustrate progressions and developed the use of everyday language to show mathematic result we have use the website: We have recollected some material and videos from this website to make the following exercises. Also we should watch the following resources from the prior website: Before Activity Modelling with Mathematics: Introductory video clip (3 min 2 secs) Before Activity 2 Counter Plague: demonstration Video clip (3 min 47 secs) After Activity 2 Understanding Counter PlaguePresentation: screenshots from e-counter Plague to help students interpret the model, and to understand what we might expect to happen, given particular dice settings. The following next two pages( page 7 and 8) is handout for students. 6

7 Modelling with mathematics Mathematics is often called "the language of the universe". With mathematics, we can describe and make predictions about the behaviour of things around us. We are going to explore how to model the spread of a epidemic. Activity :Standing Disease Step : choose one person to be the first case of Standing Disease - the main symptomis being unable to sit or lie down, you just have to keep standing up. Step 2: it s quite infectious - so that person chooses two more people to be infected. Step 3: each infected person infects two more people, and so on, until the whole class is infected. Questions to discuss. Write the answers in your notebook. How many steps did it take the disease to infect the whole class? 2. How many people were infected at each stage? How could you describe this number sequence? 3. What difference would it make if 3 people were infected at each stage instead of 2? 4. How could you describe that number sequence? 5. How many steps would it take to infect the whole school? 6. What about Spain? The population is about 45 million 7. How about the UK? The population is about 62 million. 8. How about the whole world? The population is about 7 billion. 9. What about if n people were infected at each stage? How good is this model? Write the answers in your notebook 0. What aspects of the model tell us something useful about how epidemics progress?. What does the model predict which doesn t make sense? 2. Can you think of ways to improve it? Activity 2 Counter Plague Step 0: put one counter on the table. This is the first infection. Step : throw the die. Use one of the tables below to see how many people are infected, and place the appropriate number of counters to the right of the first counter. The example above uses the LH table. A 5 at Step 0 means that two more people are infected, shown by the two counters at Step. Step 2: repeat for each newly infected person. In the example, a 5 for the top counter means two more infections, while the 2 for the bottom counter means no further infections. Step 3: repeat until either the epidemic dies out or you run out of counters (meaning the whole population has been infected). In the example, the epidemic died out after the 2 at Step 3. 7

8 Table A Table B Counter Plague as a model for an epidemic. Write the answers in your notebook. Run eight epidemics, using the table A for the outcomes of each throw of the die, and record the progress of the epidemic on a bars graph in your notebook. 2. How do the graphs compare? 3. Now run eight epidemics using the table B of outcomes, and record the progress of the epidemic on a graph. 4. How do the graphs compare? 5. How do these compare with the first set of graphs? How good is the Counter Plague model? Write the answers in your notebook 6. What aspects of the model help us to understand how epidemics progress? 7. Are there important factors which it does not include? 8. Can you think of ways to improve it? Vocabulary: Disease-enfermedad Spread- extender Die-dado Die out- desaparecer Get sick- enfermar Stage-etapa Step-paso Outcomes-resultados Number sequence-serie numérica 8

9 Resources Tex book: Mathematics3. Basic concepts. Editorial Anaya. J. Colera y otros. Websites Download videos, presentation and activities. Find more exercises and advanced topics. Assessment. Identify and discover patterns and relationships between the terms of a numerical progression 2. Using the nth term of a progression to obtain any term of the progression. 3. Find the nth term of an arithmetic progression and the difference. 4. Calculate the sum of n terms of an arithmetic progression. 5. Find the nth term of a geometric progression and the ratio. 6. Analyse information and data from daily life situations using progressions. 7. Generate results and conclusions from daily life situations using progressions. The next table shows the relationship between Objectives and Assessments Objectives Assessments y y The achievement of exit assessments to 5 will be provided by an exam. The rest of assessments will be provided by tasks in lessons 5 and 6. 9

IB Math 11 Assignment: Chapters 1 & 2 (A) NAME: (Functions, Sequences and Series)

IB Math 11 Assignment: Chapters 1 & 2 (A) NAME: (Functions, Sequences and Series) IB Math 11 Assignment: Chapters 1 & 2 (A) NAME: (Functions, Sequences and Series) 1. Let f(x) = 7 2x and g(x) = x + 3. Find (g f)(x). Write down g 1 (x). (c) Find (f g 1 )(5). (Total 5 marks) 2. Consider

More information

IB Maths SL Sequence and Series Practice Problems Mr. W Name

IB Maths SL Sequence and Series Practice Problems Mr. W Name IB Maths SL Sequence and Series Practice Problems Mr. W Name Remember to show all necessary reasoning! Separate paper is probably best. 3b 3d is optional! 1. In an arithmetic sequence, u 1 = and u 3 =

More information

Teaching & Learning Plans. Arithmetic Sequences. Leaving Certificate Syllabus

Teaching & Learning Plans. Arithmetic Sequences. Leaving Certificate Syllabus Teaching & Learning Plans Arithmetic Sequences Leaving Certificate Syllabus The Teaching & Learning Plans are structured as follows: Aims outline what the lesson, or series of lessons, hopes to achieve.

More information

12.3 Geometric Sequences. Copyright Cengage Learning. All rights reserved.

12.3 Geometric Sequences. Copyright Cengage Learning. All rights reserved. 12.3 Geometric Sequences Copyright Cengage Learning. All rights reserved. 1 Objectives Geometric Sequences Partial Sums of Geometric Sequences What Is an Infinite Series? Infinite Geometric Series 2 Geometric

More information

8.3. GEOMETRIC SEQUENCES AND SERIES

8.3. GEOMETRIC SEQUENCES AND SERIES 8.3. GEOMETRIC SEQUENCES AND SERIES What You Should Learn Recognize, write, and find the nth terms of geometric sequences. Find the sum of a finite geometric sequence. Find the sum of an infinite geometric

More information

Arithmetic Sequence. Formula for the nth Term of an Arithmetic Sequence

Arithmetic Sequence. Formula for the nth Term of an Arithmetic Sequence 638 (1-1) Chapter 1 Sequences and Series In this section 1.3 ARITHMETIC SEQUENCES AND SERIES We defined sequences and series in Sections 1.1 and 1.. In this section you will study a special type of sequence

More information

Teaching & Learning Plans. Geometric Sequences. Leaving Certificate Syllabus

Teaching & Learning Plans. Geometric Sequences. Leaving Certificate Syllabus Teaching & Learning Plans Geometric Sequences Leaving Certificate Syllabus The Teaching & Learning Plans are structured as follows: Aims outline what the lesson, or series of lessons, hopes to achieve.

More information

Overview. Essential Questions. Precalculus, Quarter 4, Unit 4.5 Build Arithmetic and Geometric Sequences and Series

Overview. Essential Questions. Precalculus, Quarter 4, Unit 4.5 Build Arithmetic and Geometric Sequences and Series Sequences and Series Overview Number of instruction days: 4 6 (1 day = 53 minutes) Content to Be Learned Write arithmetic and geometric sequences both recursively and with an explicit formula, use them

More information

Five daily lessons. Page 23. Page 25. Page 29. Pages 31

Five daily lessons. Page 23. Page 25. Page 29. Pages 31 Unit 4 Fractions and decimals Five daily lessons Year 5 Spring term Unit Objectives Year 5 Order a set of fractions, such as 2, 2¾, 1¾, 1½, and position them on a number line. Relate fractions to division

More information

7.S.8 Interpret data to provide the basis for predictions and to establish

7.S.8 Interpret data to provide the basis for predictions and to establish 7 th Grade Probability Unit 7.S.8 Interpret data to provide the basis for predictions and to establish experimental probabilities. 7.S.10 Predict the outcome of experiment 7.S.11 Design and conduct an

More information

1 2 3 4 5 6 90 180 360 600 900 W kg M stop start P M 1. 2. M 3. P 4. M M 1. 2. P 3. P 4. M M 1. 2. P 3. P 4. M 250 250 250 1. P 2. 3. P pm h M1 M2 min sec kg M 1. 2. 3. M M 1. 2. 3. M M M 1. 2. M 90

More information

Year 6 Maths Objectives

Year 6 Maths Objectives Year 6 Maths Objectives Place Value COUNTING COMPARING NUMBERS IDENTIFYING, REPRESENTING & ESTIMATING NUMBERS READING & WRITING NUMBERS UNDERSTANDING PLACE VALUE ROUNDING PROBLEM SOLVING use negative numbers

More information

2.1. Inductive Reasoning EXAMPLE A

2.1. Inductive Reasoning EXAMPLE A CONDENSED LESSON 2.1 Inductive Reasoning In this lesson you will Learn how inductive reasoning is used in science and mathematics Use inductive reasoning to make conjectures about sequences of numbers

More information

Math 115 Spring 2014 Written Homework 3 Due Wednesday, February 19

Math 115 Spring 2014 Written Homework 3 Due Wednesday, February 19 Math 11 Spring 01 Written Homework 3 Due Wednesday, February 19 Instructions: Write complete solutions on separate paper (not spiral bound). If multiple pieces of paper are used, they must be stapled with

More information

CHAPTER 1. Arithmetic and Geometric Sequences

CHAPTER 1. Arithmetic and Geometric Sequences CHAPTER 1 Arithmetic and Geometric Sequences LEARNING OBJECTIVES By the end of this chapter, you should be able to explain the terms sequence, arithmetic and geometric sequence; identify arithmetic and

More information

Assignment 5 - Due Friday March 6

Assignment 5 - Due Friday March 6 Assignment 5 - Due Friday March 6 (1) Discovering Fibonacci Relationships By experimenting with numerous examples in search of a pattern, determine a simple formula for (F n+1 ) 2 + (F n ) 2 that is, a

More information

Notes: Geometric Sequences

Notes: Geometric Sequences Notes: Geometric Sequences I. What is a Geometric Sequence? The table shows the heights of a bungee jumper s bounces. The height of the bounces shown in the table above form a geometric sequence. In a

More information

4/1/2017. PS. Sequences and Series FROM 9.2 AND 9.3 IN THE BOOK AS WELL AS FROM OTHER SOURCES. TODAY IS NATIONAL MANATEE APPRECIATION DAY

4/1/2017. PS. Sequences and Series FROM 9.2 AND 9.3 IN THE BOOK AS WELL AS FROM OTHER SOURCES. TODAY IS NATIONAL MANATEE APPRECIATION DAY PS. Sequences and Series FROM 9.2 AND 9.3 IN THE BOOK AS WELL AS FROM OTHER SOURCES. TODAY IS NATIONAL MANATEE APPRECIATION DAY 1 Oh the things you should learn How to recognize and write arithmetic sequences

More information

This is a game for 2 players. The children will need a game board, a dice and a counter or marker each.

This is a game for 2 players. The children will need a game board, a dice and a counter or marker each. This is a game for 2 players. The children will need a game board, a dice and a counter or marker each. The game is very much like snakes and ladders, with the objective being to travel along the board

More information

Essential Question Essential Question Essential Question Essential Question Essential Question Essential Question Essential Question

Essential Question Essential Question Essential Question Essential Question Essential Question Essential Question Essential Question What is the difference between an arithmetic and a geometric sequence? Essential Question Essential Question Essential Question Essential Question Essential Question Essential Question Essential Question

More information

Sequences and Series Lesson Plan 1. CLIL Lesson Plan 1. To develop in students, the Mathematical Analysis to understand sequences.

Sequences and Series Lesson Plan 1. CLIL Lesson Plan 1. To develop in students, the Mathematical Analysis to understand sequences. Sequences and Series Lesson Plan 1 Aim: CLIL Lesson Plan 1 To develop in students, the Mathematical Analysis to understand sequences. Objectives: Upon completion of this lesson, students will: have been

More information

Fractions. Cavendish Community Primary School

Fractions. Cavendish Community Primary School Fractions Children in the Foundation Stage should be introduced to the concept of halves and quarters through play and practical activities in preparation for calculation at Key Stage One. Y Understand

More information

VIRAL MARKETING. Teacher s Guide Getting Started. Benjamin Dickman Brookline, MA

VIRAL MARKETING. Teacher s Guide Getting Started. Benjamin Dickman Brookline, MA Teacher s Guide Getting Started Benjamin Dickman Brookline, MA Purpose In this two-day lesson, students will model viral marketing. Viral marketing refers to a marketing strategy in which people pass on

More information

0018 DATA ANALYSIS, PROBABILITY and STATISTICS

0018 DATA ANALYSIS, PROBABILITY and STATISTICS 008 DATA ANALYSIS, PROBABILITY and STATISTICS A permutation tells us the number of ways we can combine a set where {a, b, c} is different from {c, b, a} and without repetition. r is the size of of the

More information

Arithmetic Progression

Arithmetic Progression Worksheet 3.6 Arithmetic and Geometric Progressions Section 1 Arithmetic Progression An arithmetic progression is a list of numbers where the difference between successive numbers is constant. The terms

More information

AFM Ch.12 - Practice Test

AFM Ch.12 - Practice Test AFM Ch.2 - Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question.. Form a sequence that has two arithmetic means between 3 and 89. a. 3, 33, 43, 89

More information

Decimals and Percentages

Decimals and Percentages Decimals and Percentages Specimen Worksheets for Selected Aspects Paul Harling b recognise the number relationship between coordinates in the first quadrant of related points Key Stage 2 (AT2) on a line

More information

M11PC - UNIT REVIEW: Series & Sequences

M11PC - UNIT REVIEW: Series & Sequences Name: Class: Date: ID: A M11PC - UNIT REVIEW: Series & Sequences Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The first three terms of the sequence

More information

RIT scores between 191 and 200

RIT scores between 191 and 200 Measures of Academic Progress for Mathematics RIT scores between 191 and 200 Number Sense and Operations Whole Numbers Solve simple addition word problems Find and extend patterns Demonstrate the associative,

More information

1.2. Successive Differences

1.2. Successive Differences 1. An Application of Inductive Reasoning: Number Patterns In the previous section we introduced inductive reasoning, and we showed how it can be applied in predicting what comes next in a list of numbers

More information

Guide to Leaving Certificate Mathematics Ordinary Level

Guide to Leaving Certificate Mathematics Ordinary Level Guide to Leaving Certificate Mathematics Ordinary Level Dr. Aoife Jones Paper 1 For the Leaving Cert 013, Paper 1 is divided into three sections. Section A is entitled Concepts and Skills and contains

More information

#1-12: Write the first 4 terms of the sequence. (Assume n begins with 1.)

#1-12: Write the first 4 terms of the sequence. (Assume n begins with 1.) Section 9.1: Sequences #1-12: Write the first 4 terms of the sequence. (Assume n begins with 1.) 1) a n = 3n a 1 = 3*1 = 3 a 2 = 3*2 = 6 a 3 = 3*3 = 9 a 4 = 3*4 = 12 3) a n = 3n 5 Answer: 3,6,9,12 a 1

More information

Overview. Essential Questions. Grade 4 Mathematics, Quarter 3, Unit 3.3 Multiplying Fractions by a Whole Number

Overview. Essential Questions. Grade 4 Mathematics, Quarter 3, Unit 3.3 Multiplying Fractions by a Whole Number Multiplying Fractions by a Whole Number Overview Number of instruction days: 8 10 (1 day = 90 minutes) Content to Be Learned Understand that a fraction can be written as a multiple of unit fractions with

More information

Algebra 2 Final Exam Review Ch 7-14

Algebra 2 Final Exam Review Ch 7-14 Algebra 2 Final Exam Review Ch 7-14 Short Answer 1. Simplify the radical expression. Use absolute value symbols if needed. 2. Simplify. Assume that all variables are positive. 3. Multiply and simplify.

More information

Since the ratios are constant, the sequence is geometric. The common ratio is.

Since the ratios are constant, the sequence is geometric. The common ratio is. Determine whether each sequence is arithmetic, geometric, or neither. Explain. 1. 200, 40, 8, Since the ratios are constant, the sequence is geometric. The common ratio is. 2. 2, 4, 16, The ratios are

More information

Unit 1: Family Letter

Unit 1: Family Letter Name Date Time HOME LINK Unit 1: Family Letter Introduction to Third Grade Everyday Mathematics Welcome to Third Grade Everyday Mathematics. It is part of an elementary school mathematics curriculum developed

More information

Math Common Core Standards Fourth Grade

Math Common Core Standards Fourth Grade Operations and Algebraic Thinking (OA) Use the four operations with whole numbers to solve problems. OA.4.1 Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 7 as a statement

More information

Properties of sequences Since a sequence is a special kind of function it has analogous properties to functions:

Properties of sequences Since a sequence is a special kind of function it has analogous properties to functions: Sequences and Series A sequence is a special kind of function whose domain is N - the set of natural numbers. The range of a sequence is the collection of terms that make up the sequence. Just as the word

More information

Supporting your child with maths

Supporting your child with maths Granby Primary School Year 5 & 6 Supporting your child with maths A handbook for year 5 & 6 parents H M Hopps 2016 G r a n b y P r i m a r y S c h o o l 1 P a g e Many parents want to help their children

More information

Concepts Sectors, arcs, circumference, areas of circles and properties of cones.

Concepts Sectors, arcs, circumference, areas of circles and properties of cones. Making Witches Hats from Cones ID: XXXX Time required 45 minutes Activity Overview In this activity, students make cones from circles, exploring the relationship between the size of the sector cut from

More information

Example 1: If the sum of seven and a number is multiplied by four, the result is 76. Find the number.

Example 1: If the sum of seven and a number is multiplied by four, the result is 76. Find the number. EXERCISE SET 2.3 DUE DATE: STUDENT INSTRUCTOR: 2.3 MORE APPLICATIONS OF LINEAR EQUATIONS Here are a couple of reminders you may need for this section: perimeter is the distance around the outside of the

More information

LINEAR INEQUALITIES. Mathematics is the art of saying many things in many different ways. MAXWELL

LINEAR INEQUALITIES. Mathematics is the art of saying many things in many different ways. MAXWELL Chapter 6 LINEAR INEQUALITIES 6.1 Introduction Mathematics is the art of saying many things in many different ways. MAXWELL In earlier classes, we have studied equations in one variable and two variables

More information

SEQUENCES AND SERIES. For example: 2, 5, 8, 11,... is an arithmetic sequence with d = 3.

SEQUENCES AND SERIES. For example: 2, 5, 8, 11,... is an arithmetic sequence with d = 3. SEQUENCES AND SERIES A sequence is a set of numbers in a defined order (a pattern). There are two kinds of sequences: arithmetic and geometric. An arithmetic sequence uses a number called d (difference)

More information

Year 1 Maths Expectations

Year 1 Maths Expectations Times Tables I can count in 2 s, 5 s and 10 s from zero. Year 1 Maths Expectations Addition I know my number facts to 20. I can add in tens and ones using a structured number line. Subtraction I know all

More information

Overview. Essential Questions. Grade 7 Mathematics, Quarter 4, Unit 4.2 Probability of Compound Events. Number of instruction days: 8 10

Overview. Essential Questions. Grade 7 Mathematics, Quarter 4, Unit 4.2 Probability of Compound Events. Number of instruction days: 8 10 Probability of Compound Events Number of instruction days: 8 10 Overview Content to Be Learned Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation. Understand

More information

Specimen paper MATHEMATICS HIGHER TIER. Time allowed: 2 hours. GCSE BITESIZE examinations. General Certificate of Secondary Education

Specimen paper MATHEMATICS HIGHER TIER. Time allowed: 2 hours. GCSE BITESIZE examinations. General Certificate of Secondary Education GCSE BITESIZE examinations General Certificate of Secondary Education Specimen paper MATHEMATICS HIGHER TIER 2005 Paper 1 Non-calculator Time allowed: 2 hours You must not use a calculator. Answer all

More information

COUNTING RECTANGLES Folding and Counting

COUNTING RECTANGLES Folding and Counting PATTERNS in Positions COUNTING RECTANGLES Folding and Counting Introduction 1 to Activity Description Many people view mathematics as the science of patterns. This activity uses a folded paper strip to

More information

Maths Progressions Number and algebra

Maths Progressions Number and algebra This document was created by Clevedon School staff using the NZC, Maths Standards and Numeracy Framework, with support from Cognition Education consultants. It is indicative of the maths knowledge and

More information

THE WHE TO PLAY. Teacher s Guide Getting Started. Shereen Khan & Fayad Ali Trinidad and Tobago

THE WHE TO PLAY. Teacher s Guide Getting Started. Shereen Khan & Fayad Ali Trinidad and Tobago Teacher s Guide Getting Started Shereen Khan & Fayad Ali Trinidad and Tobago Purpose In this two-day lesson, students develop different strategies to play a game in order to win. In particular, they will

More information

Fielder s Snakes and Ladders

Fielder s Snakes and Ladders Fielder s Snakes and Ladders AC EA We are practicing number and algebra. We are exploring the properties of numbers. Exercise 1 EAdders Snakes and Ladders You will need a 0-9 die and some markers. The

More information

Division of Special Education LAUSD, June Grade 4 Math 156

Division of Special Education LAUSD, June Grade 4 Math 156 Use the four operations with whole numbers to solve problems. Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 7 as a statement that 35 is 5 times as many as 7 and 7 times as

More information

Contents. Block A Understanding numbers 7. Block C Geometry 53. Block B Numerical operations 30. Page 4 Introduction Page 5 Oral and mental starters

Contents. Block A Understanding numbers 7. Block C Geometry 53. Block B Numerical operations 30. Page 4 Introduction Page 5 Oral and mental starters Contents Page 4 Introduction Page 5 Oral and mental starters Block A Understanding numbers 7 Unit 1 Integers and decimals 8 Integers Rounding and approximation Large numbers Decimal numbers Adding and

More information

ALGEBRA. sequence, term, nth term, consecutive, rule, relationship, generate, predict, continue increase, decrease finite, infinite

ALGEBRA. sequence, term, nth term, consecutive, rule, relationship, generate, predict, continue increase, decrease finite, infinite ALGEBRA Pupils should be taught to: Generate and describe sequences As outcomes, Year 7 pupils should, for example: Use, read and write, spelling correctly: sequence, term, nth term, consecutive, rule,

More information

8-3 Perimeter and Circumference

8-3 Perimeter and Circumference Learn to find the perimeter of a polygon and the circumference of a circle. 8-3 Perimeter Insert Lesson and Title Circumference Here perimeter circumference Vocabulary The distance around a geometric figure

More information

Math-U-See Correlation with the Common Core State Standards for Mathematical Content for Fourth Grade

Math-U-See Correlation with the Common Core State Standards for Mathematical Content for Fourth Grade Math-U-See Correlation with the Common Core State Standards for Mathematical Content for Fourth Grade The fourth-grade standards highlight all four operations, explore fractions in greater detail, and

More information

RATIO AND PERCENT Grade Level: Fifth Grade Written by: Susan Pope, Bean Elementary, Lubbock, TX Length of Unit: Two/Three Weeks

RATIO AND PERCENT Grade Level: Fifth Grade Written by: Susan Pope, Bean Elementary, Lubbock, TX Length of Unit: Two/Three Weeks RATIO AND PERCENT Grade Level: Fifth Grade Written by: Susan Pope, Bean Elementary, Lubbock, TX Length of Unit: Two/Three Weeks I. ABSTRACT A. This unit introduces the relationships in ratios and percentages

More information

Some sequences have a fixed length and have a last term, while others go on forever.

Some sequences have a fixed length and have a last term, while others go on forever. Sequences and series Sequences A sequence is a list of numbers (actually, they don t have to be numbers). Here is a sequence: 1, 4, 9, 16 The order makes a difference, so 16, 9, 4, 1 is a different sequence.

More information

To discuss this topic fully, let us define some terms used in this and the following sets of supplemental notes.

To discuss this topic fully, let us define some terms used in this and the following sets of supplemental notes. INFINITE SERIES SERIES AND PARTIAL SUMS What if we wanted to sum up the terms of this sequence, how many terms would I have to use? 1, 2, 3,... 10,...? Well, we could start creating sums of a finite number

More information

Lesson 3 Compare and order 5-digit numbers; Use < and > signs to compare 5-digit numbers (S: Bonds to 100)

Lesson 3 Compare and order 5-digit numbers; Use < and > signs to compare 5-digit numbers (S: Bonds to 100) Abacus Year 5 Teaching Overview Autumn 1 Week Strands Weekly summary 1 Number and placevalue (NPV); and order 5-digit Read, write, compare Written addition numbers, understanding and subtraction the place-value

More information

Welcome to Basic Math Skills!

Welcome to Basic Math Skills! Basic Math Skills Welcome to Basic Math Skills! Most students find the math sections to be the most difficult. Basic Math Skills was designed to give you a refresher on the basics of math. There are lots

More information

Ingleby Manor Scheme of Work : Year 7. Objectives Support L3/4 Core L4/5/6 Extension L6/7

Ingleby Manor Scheme of Work : Year 7. Objectives Support L3/4 Core L4/5/6 Extension L6/7 Autumn 1 Mathematics Objectives Support L3/4 Core L4/5/6 Extension L6/7 Week 1: Algebra 1 (6 hours) Sequences and functions - Recognize and extend number sequences - Identify the term to term rule - Know

More information

Number & Place Value. Addition & Subtraction. Digit Value: determine the value of each digit. determine the value of each digit

Number & Place Value. Addition & Subtraction. Digit Value: determine the value of each digit. determine the value of each digit Number & Place Value Addition & Subtraction UKS2 The principal focus of mathematics teaching in upper key stage 2 is to ensure that pupils extend their understanding of the number system and place value

More information

Calculus for Middle School Teachers. Problems and Notes for MTHT 466

Calculus for Middle School Teachers. Problems and Notes for MTHT 466 Calculus for Middle School Teachers Problems and Notes for MTHT 466 Bonnie Saunders Fall 2010 1 I Infinity Week 1 How big is Infinity? Problem of the Week: The Chess Board Problem There once was a humble

More information

10-3 Geometric Sequences and Series

10-3 Geometric Sequences and Series 1 2 Determine the common ratio, and find the next three terms of each geometric sequence = 2 = 2 The common ratio is 2 Multiply the third term by 2 to find the fourth term, and so on 1( 2) = 2 2( 2) =

More information

Common Core Standards for Mathematics Grade 4 Operations & Algebraic Thinking Date Taught

Common Core Standards for Mathematics Grade 4 Operations & Algebraic Thinking Date Taught Operations & Algebraic Thinking Use the four operations with whole numbers to solve problems. 4.OA.1. Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 7 as a statement that 35

More information

OGET TEACHER TEST PREP SEMINAR NORTHERN OKLAHOMA COLLEGE MATH COMPETENCIES

OGET TEACHER TEST PREP SEMINAR NORTHERN OKLAHOMA COLLEGE MATH COMPETENCIES DATA INTERPRETATION AND ANALYSIS COMPETENCY 0009 Interpret information from line graphs, bar graphs, and pie charts. Interpret data from tables. Recognize appropriate representations of various data in

More information

Fourth Grade Common Core State Standard (CCSS) Math Scope and Sequence

Fourth Grade Common Core State Standard (CCSS) Math Scope and Sequence I= Introduced R=Reinforced/Reviewed Fourth Grade Math Standards 1 2 3 4 Operations and Algebraic Thinking Use the four operations with whole numbers to solve problems. 4.0A.1 - Interpret a multiplication

More information

Where Do We Meet? Students will represent and analyze algebraically a wide variety of problem solving situations.

Where Do We Meet? Students will represent and analyze algebraically a wide variety of problem solving situations. Beth Yancey MAED 591 Where Do We Meet? Introduction: This lesson covers objectives in the algebra and geometry strands of the New York State standards for Algebra I. The students will use the graphs of

More information

Academic Support Services Supplemental Learning Materials - Math

Academic Support Services Supplemental Learning Materials - Math Academic Support Services Supplemental Learning Materials - Math Algebra and trigonometry Basic math Calculator help Charts and graphs Coordinate planes Decimals Exponents General math sites Graphing Integers

More information

FSCJ PERT. Florida State College at Jacksonville. assessment. and Certification Centers

FSCJ PERT. Florida State College at Jacksonville. assessment. and Certification Centers FSCJ Florida State College at Jacksonville Assessment and Certification Centers PERT Postsecondary Education Readiness Test Study Guide for Mathematics Note: Pages through are a basic review. Pages forward

More information

6.042/18.062J Mathematics for Computer Science. Expected Value I

6.042/18.062J Mathematics for Computer Science. Expected Value I 6.42/8.62J Mathematics for Computer Science Srini Devadas and Eric Lehman May 3, 25 Lecture otes Expected Value I The expectation or expected value of a random variable is a single number that tells you

More information

10-1 Sequences as Functions. Determine whether each sequence is arithmetic no. 1. 8, 2, 12, 22

10-1 Sequences as Functions. Determine whether each sequence is arithmetic no. 1. 8, 2, 12, 22 10-1 Sequences as Functions Determine whether each sequence is arithmetic no. 1. 8, 2, 12, 22 3. 1, 2, 4, 8, 16 Subtract each term from the term directly after it. Subtract each term from the term directly

More information

Fourth Grade. Operations & Algebraic Thinking. Use the four operations with whole numbers to solve problems. (4.OA.A)

Fourth Grade. Operations & Algebraic Thinking. Use the four operations with whole numbers to solve problems. (4.OA.A) Operations & Algebraic Thinking Use the four operations with whole numbers to solve problems. (4.OA.A) 4.OA.A.1: Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 7 as a statement

More information

Arc Length and Areas of Sectors

Arc Length and Areas of Sectors Student Outcomes When students are provided with the angle measure of the arc and the length of the radius of the circle, they understand how to determine the length of an arc and the area of a sector.

More information

ALGEBRA 1/ALGEBRA 1 HONORS

ALGEBRA 1/ALGEBRA 1 HONORS ALGEBRA 1/ALGEBRA 1 HONORS CREDIT HOURS: 1.0 COURSE LENGTH: 2 Semesters COURSE DESCRIPTION The purpose of this course is to allow the student to gain mastery in working with and evaluating mathematical

More information

Algorithm set of steps used to solve a mathematical computation. Area The number of square units that covers a shape or figure

Algorithm set of steps used to solve a mathematical computation. Area The number of square units that covers a shape or figure Fifth Grade CCSS Math Vocabulary Word List *Terms with an asterisk are meant for teacher knowledge only students need to learn the concept but not necessarily the term. Addend Any number being added Algorithm

More information

Healthcare Math: Using the Metric System

Healthcare Math: Using the Metric System Healthcare Math: Using the Metric System Industry: Healthcare Content Area: Mathematics Core Topics: Using the metric system, converting measurements within and between the metric and US customary systems,

More information

Assessment For The California Mathematics Standards Grade 6

Assessment For The California Mathematics Standards Grade 6 Introduction: Summary of Goals GRADE SIX By the end of grade six, students have mastered the four arithmetic operations with whole numbers, positive fractions, positive decimals, and positive and negative

More information

Mathematics programmes of study: key stage 3. National curriculum in England

Mathematics programmes of study: key stage 3. National curriculum in England Mathematics programmes of study: key stage 3 National curriculum in England September 2013 Purpose of study Mathematics is a creative and highly inter-connected discipline that has been developed over

More information

Unit 1 Number Sense. In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions.

Unit 1 Number Sense. In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions. Unit 1 Number Sense In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions. BLM Three Types of Percent Problems (p L-34) is a summary BLM for the material

More information

The Fibonacci Sequence Lesson Plan

The Fibonacci Sequence Lesson Plan The Fibonacci Sequence Grade Level: 9-12 Curriculum Focus: Algebra, Geometry Lesson Duration: Two class periods Student Objectives Materials Understand the Fibonacci sequence (numerically, algebraically,

More information

Exam #5 Sequences and Series

Exam #5 Sequences and Series College of the Redwoods Mathematics Department Math 30 College Algebra Exam #5 Sequences and Series David Arnold Don Hickethier Copyright c 000 Don-Hickethier@Eureka.redwoods.cc.ca.us Last Revision Date:

More information

Finding Rates and the Geometric Mean

Finding Rates and the Geometric Mean Finding Rates and the Geometric Mean So far, most of the situations we ve covered have assumed a known interest rate. If you save a certain amount of money and it earns a fixed interest rate for a period

More information

Mathematics. Mathematical Practices

Mathematics. Mathematical Practices Mathematical Practices 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively. 3. Construct viable arguments and critique the reasoning of others. 4. Model with

More information

Math Games For Skills and Concepts

Math Games For Skills and Concepts Math Games p.1 Math Games For Skills and Concepts Original material 2001-2006, John Golden, GVSU permission granted for educational use Other material copyright: Investigations in Number, Data and Space,

More information

Sucesiones repaso Klasse 12 [86 marks]

Sucesiones repaso Klasse 12 [86 marks] Sucesiones repaso Klasse [8 marks] a. Consider an infinite geometric sequence with u = 40 and r =. (i) Find. u 4 (ii) Find the sum of the infinite sequence. (i) correct approach () e.g. u 4 = (40) u 4

More information

Campus Academic Resource Program Introduction to Radians

Campus Academic Resource Program Introduction to Radians Handout Objectives: This handout will: Campus Academic Resource Program Introduce the unit circle. Define and describe the unit of radians. Show how to convert between radians to degrees. The Unit Circle:

More information

Objective. Materials. Discover the Pythagorean Theorem. Determine if a triangle is acute, right, or obtuse.

Objective. Materials. Discover the Pythagorean Theorem. Determine if a triangle is acute, right, or obtuse. . Objective To find the lengths of sides of right triangles Activity 8 Materials TI-73 Student Activity page (p. 90) Right Triangles are Cool Because of Pythag s Rule In this activity you will Discover

More information

DIOCESE OF BATON ROUGE MATH CURRICULUM GUIDE KINDERGARTEN-GRADE 8. Adapted from the Common Core State Standards.

DIOCESE OF BATON ROUGE MATH CURRICULUM GUIDE KINDERGARTEN-GRADE 8. Adapted from the Common Core State Standards. DIOCESE OF BATON ROUGE MATH CURRICULUM GUIDE KINDERGARTEN-GRADE 8 Adapted from the Common Core State Standards. Please note: The implementation of this curriculum guide in the Diocese of Baton Rouge will

More information

Contents. Number. Algebra. Exam board specification map Introduction Topic checker Topic checker answers. iv vi x xv

Contents. Number. Algebra. Exam board specification map Introduction Topic checker Topic checker answers. iv vi x xv Contents Exam board specification map Introduction Topic checker Topic checker answers iv vi x xv Number The decimal number system Fraction calculations Fractions, decimals and percentages Powers and roots

More information

DesCartes (Combined) Subject: Mathematics 2-5 Goal: Data Analysis, Statistics, and Probability

DesCartes (Combined) Subject: Mathematics 2-5 Goal: Data Analysis, Statistics, and Probability DesCartes (Combined) Subject: Mathematics 2-5 Goal: Data Analysis, Statistics, and Probability RIT Score Range: Below 171 Below 171 Data Analysis and Statistics Solves simple problems based on data from

More information

Bridging Documents for Mathematics

Bridging Documents for Mathematics Bridging Documents for Mathematics 5 th /6 th Class, Primary Junior Cycle, Post-Primary Primary Post-Primary Card # Strand(s): Number, Measure Number (Strand 3) 2-5 Strand: Shape and Space Geometry and

More information

Algebra I Credit Recovery

Algebra I Credit Recovery Algebra I Credit Recovery COURSE DESCRIPTION: The purpose of this course is to allow the student to gain mastery in working with and evaluating mathematical expressions, equations, graphs, and other topics,

More information

YEAR 8 SCHEME OF WORK - SECURE

YEAR 8 SCHEME OF WORK - SECURE YEAR 8 SCHEME OF WORK - SECURE Autumn Term 1 Number Spring Term 1 Real-life graphs Summer Term 1 Calculating with fractions Area and volume Decimals and ratio Straight-line graphs Half Term: Assessment

More information

Math Content

Math Content 2012-2013 Math Content PATHWAY TO ALGEBRA I Unit Lesson Section Number and Operations in Base Ten Place Value with Whole Numbers Place Value and Rounding Addition and Subtraction Concepts Regrouping Concepts

More information

Session 7 Fractions and Decimals

Session 7 Fractions and Decimals Key Terms in This Session Session 7 Fractions and Decimals Previously Introduced prime number rational numbers New in This Session period repeating decimal terminating decimal Introduction In this session,

More information

California Common Core State Standards Comparison- FOURTH GRADE

California Common Core State Standards Comparison- FOURTH GRADE 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively. 3. Construct viable arguments and critique the reasoning of others 4. Model with mathematics. Standards

More information

8.7 Mathematical Induction

8.7 Mathematical Induction 8.7. MATHEMATICAL INDUCTION 8-135 8.7 Mathematical Induction Objective Prove a statement by mathematical induction Many mathematical facts are established by first observing a pattern, then making a conjecture

More information

GCSE MATHEMATICS. 43602H Unit 2: Number and Algebra (Higher) Report on the Examination. Specification 4360 November 2014. Version: 1.

GCSE MATHEMATICS. 43602H Unit 2: Number and Algebra (Higher) Report on the Examination. Specification 4360 November 2014. Version: 1. GCSE MATHEMATICS 43602H Unit 2: Number and Algebra (Higher) Report on the Examination Specification 4360 November 2014 Version: 1.0 Further copies of this Report are available from aqa.org.uk Copyright

More information

Thinkwell s Homeschool Algebra 2 Course Lesson Plan: 34 weeks

Thinkwell s Homeschool Algebra 2 Course Lesson Plan: 34 weeks Thinkwell s Homeschool Algebra 2 Course Lesson Plan: 34 weeks Welcome to Thinkwell s Homeschool Algebra 2! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson

More information