Population Genetics 1: Introduction and Hardy-Weinberg equilibrium

Size: px
Start display at page:

Download "Population Genetics 1: Introduction and Hardy-Weinberg equilibrium"

Transcription

1 Population Genetics 1: Introduction and Hardy-Weinberg equilibrium Population genetics: discipline devoted to the study of the genetic basis of microevolution Population genetics: the practice of using the information obtained from a sample of a natural population to make inferences about the evolutionary processes affecting that population (i) to measure the extent of genetic variation in natural populations (ii) to explain natural genetic variation in terms of its origin, maintenance and evolutionary significance 1

2 Population genetics is based on statistical models: Parametric inference: use of models to test hypotheses about the evolutionary processes that generated the sample of the data and to estimate values of model parameters. Some important questions: What is the relationship between genetic variation and a disease phenotype What can the gene sequences tell us about the evolutionary history of a species; e.g., humans What has been the role of natural selection during the evolution of a species. Population genetics is based on statistical models: A model is an intentional simplification of a complex situation designed to eliminate extraneous detail in order to focus attention on the essentials of the situation (Daniel L. Hartl).

3 Statistical modeling and inference: Concerns: Define a model Rules / parameters / quantities Explore properties Summary stats / graphical data exploration / simulation Estimate model parameters from the data Moments / maximum likelihood / Bayesian methods Test goodness of fit Compare estimators / heterogeneity / outliers Refine Model Update parameters Forces of evolution Natural populations Sample Mutation Stochastic evolutionary process Stochastic sampling process Migration Recombination Selection ACTTAGGACTTATAA ACAAAGGACTTATAA ACTTAGCACTTATAA ACTTAGGACAAATAA ACCCAGGACTTATAA Genetic drift Inference 3

4 Population: a subgroup of individuals of the same species living within some set of restrictions, usually in a restricted geographic area. also called a local population or deme. the practical implementation of the definition will vary among researchers the evolving unit of the species the unit within which the evolution of adaptive characteristics occurs In this section: Evolution: the change in the genetic constitution of a population over time. More simply, the change in allele frequencies in a population over time. [microevolution] In all sections of this course: Evolution Natural selection [alone] Allele frequencies in populations Eskimo MN blood group data: Genotypes MM MN NN Total (n) count Frequency of M = p p + q = 1 Frequency of N = q ( MM) 1( MN) + p = q = 1 p n ( 33) + ( 385) p = = 0.57 q = =

5 Allele frequencies in populations p and q are parameters of a population p and q were estimated p and q have error Var ( p) = ( 1 p) p n Assuming that repeated estimates would be normally distributed we can use the variance to predict how close our estimate of p is to the population value. AA = 8 / Aa = 6 / aa = p = var(p) = StdDev = (x = 0.164) 95%CI = (0.53, 0.851) width = AA = 80 / Aa = 60 / aa = 0 p = var(p) = StdDev = (x = 0.05) 95%CI = (0.636, 0.739) width = Allele frequencies differ among populations Genotypes Total (n) MM MN NN Iceland Greenland Evolution has occurred! What is the origin and evolutionary significance of such change? 5

6 Allele frequencies differ among populations What are the possible causes for microevolution: 1. Finite population size. Mutation 3. Non-random mating 4. Natural selection 5. Migration / gene flow Our null model: Nothing interesting ever happens in the population (or Hardy-Weinberg equilibrium; G.H. Hardy and W. Weinberg, 1908) Assumption of the HW model 1. The organism is diploid. Reproduction is sexual 3. Mating is random 4. Generations are discrete 5. Population size is infinite (or very large) 6. No migration 7. No mutation 8. No natural selection Idealized population 6

7 Hardy-Weinberg equilibrium M or N and M or N (p + q) x (p + q) (p + q) x (p + q) = 1 p + pq + q = 1 So, under HW conditions, the frequency of the blood group genotypes in the next generation are: f MM = p f MN = pq f NN = q Same thing, but by using the traditional cross-multiplication table Male gametes Female gametes M (p) AA (p ) M(p) N(q) Aa (pq) N (q) Aa (pq) aa (q ) Note 1: here we are mixing gametes at random among all members of the population! (Not, as in transmission genetics, mixing gametes of just two parents at random Note : these are the expected frequencies of alleles at the same locus when they are randomly associated with each other. 7

8 Hardy-Weinberg equilibrium Keynotes of the HW model: HW model specifies the relationship between allele frequencies and gene frequencies Natural populations can be tested for HW Mendelian inheritance means that frequencies do not change unless some external pressure is acting. No matter what the initial frequencies, just one generation of random mating will result in HW frequencies. Note: HW is not very sensitive to certain kinds of violations power issue Rare recessive alleles can hide in the heterozygotes q pq : q : : :1 Cystic Fibrosis (CF) example: CF: about 1 in 1700 newborn Caucasians ASSUMING HW: q = 1/1700 q = (1/1700) 1/ = 0.04 pq = x 0.04 x (1-0.04) = Note we assumed HW without testing the assumption. Clearly it is subject to natural selection. But, with just one generation of random mating we see 1 in 1 individuals are carriers, although only 1 in 1700 exhibit the disease. 8

9 A proof of the HW model Genotypes MM MN NN Genotype frequencies P 1 P P 3 Present generation P 1 P P 3 Next generation P 1 P P 3 If in HW equilibrium: P 1 = P 1 = p P = P = pq P 3 = P 3 = q A reminder of allele frequencies in populations Eskimo MN blood group data: Genotypes MM MN NN Total (n) count ( MM) 1( MN) + p = n ( MM) p = n 1(MN) + n q = 1 p p = P1 + ( P 1 ) 9

10 A proof of the HW model Genotype frequencies of offspring Mating Frequency MM MN NN MM MM P MM MN P1 P 1/ 1/ 0 MM NN P1 P MN MN P 1/4 1/ 1/4 MN NN P P3 0 1/ 1/ NN NN P Total in next generation: P1 P P3 Note: p = (P1) + (P 1/) and q = (P3) + (P 1/) ( If HWE ) ' P P1 = P1 + P1 P + ( 1/ 4) P = P 1 + = p P 1 = P 1 ' P P P = P1 P + P1 P P ' 3 ( 1/) P + P P = P + P + pq = = ( 1/ ) P + P P + P = P + = q P P = P P 3 = P 3 Nice proof: HW in 1 generation; hence, no changes once in HW Testing for HW equilibrium 3 steps: 1. Compute observed genotype frequencies. Compute expected genotype frequencies 3. Test goodness of fit Let s use some real data as an example: the following data are for the MN blood genotypes in Pueblo Indians: MN blood types in Pueblo Indians Genotypes MM MN NN Observed counts Total = n =

11 Testing for HW equilibrium PART 1: Observed Genotype frequencies: MM = 83/140 = 0.59 MN = 46/140 = 0.33 NN = 11/140 = 0.08 Observed allele frequencies: M = p = (1/) = N = q = ( ) = 0.45 Do NOT compute the allele frequencies at this step by assuming HW (i.e., p 0.59). Anyone who does this will automatically get an F in the class! Testing for HW equilibrium PART : Expected genotype frequencies: p = (0.755) = 0.57 pq = x x 0.45 = 0.37 q = (0.45) = 0.06 Expected genotype counts: p x n = = 79.8 pq x n = = 51.8 q x n = = 8.4 Compare these counts to the observed counts in the table above. 11

12 Testing for HW equilibrium PART 3: ( observed - expected ) ( ) ( ) ( ) χ = = + + expected χ = χ =1.58 d.f. = [(number of categories tested) (non-independent categories) (calculate p from data)] = [3 1 1] = 1 P = 0.0; i.e., there is a 0% chance that we would have observed a test statistic this large (or larger) under HW. Testing for HW equilibrium Testing HW is NOT possible under dominance Example: Rh + phenotype (DD or Dd) in North America: Genotype Phenotype DD Rh + Dd Rh + dd Rh - Rh + = (DD or Dd) Rh - = 0.14 (dd) q = (0.14) 1/ = p = ( ) = 0.63 d.f. = (for two classes of data) 1 1 (for estimating q) = 0 1

13 HW equilibrium with three alleles Alleles: A 1 A and A 3 Frequencies: p 1 p and p 3 p 1 + p + p 3 = 1 Female gametes The traditional cross-multiplication square A1 (p1) A (p) A3 (p3) Male gametes A1 (p1) A (p) A3 (p3) A1A1 p1 A1A p1 p A1A3 p1 p3 A1A p1 p AA p AA3 p p3 A1A3 p1 p3 AA3 p p3 A3A3 p3 Genotype frequencies in the next generation A1A1: p1 A1A: p1 p A1A3: p1 p3 AA: p AA3: p p3 A3A3: p3 Statistical modeling and inference: Concerns: Define a model Rules / parameters / quantities Explore properties Summary stats / graphical data exploration / simulation Estimate model parameters from the data Moments / maximum likelihood / Bayesian methods Test goodness of fit Compare estimators / heterogeneity / outliers Refine Model Update parameters 13

14 HW model: no change in frequencies Alt model; change in frequencies (molecular evolution) Change in frequencies Agency Genotype Allele Notes Linkage no no Creates disequilibrium among loci Inbreeding yes no Acts on all loci in genome; results in loss of heterozygosity Assortative Mating yes no Only acts on the locus subject to assortment, and those loci linked to it Migration a yes yes Depends of migration rate and frequency differences between populations Mutation yes yes Very very very slow Natural Selection yes yes Acts on the locus subject to selection, and those loci linked to it Genetic Drift yes yes Acts on all loci in the genome; results in loss of heterozygosity and loss of alleles 14

Basic Principles of Forensic Molecular Biology and Genetics. Population Genetics

Basic Principles of Forensic Molecular Biology and Genetics. Population Genetics Basic Principles of Forensic Molecular Biology and Genetics Population Genetics Significance of a Match What is the significance of: a fiber match? a hair match? a glass match? a DNA match? Meaning of

More information

Genetics and Evolution: An ios Application to Supplement Introductory Courses in. Transmission and Evolutionary Genetics

Genetics and Evolution: An ios Application to Supplement Introductory Courses in. Transmission and Evolutionary Genetics G3: Genes Genomes Genetics Early Online, published on April 11, 2014 as doi:10.1534/g3.114.010215 Genetics and Evolution: An ios Application to Supplement Introductory Courses in Transmission and Evolutionary

More information

Biology 1406 - Notes for exam 5 - Population genetics Ch 13, 14, 15

Biology 1406 - Notes for exam 5 - Population genetics Ch 13, 14, 15 Biology 1406 - Notes for exam 5 - Population genetics Ch 13, 14, 15 Species - group of individuals that are capable of interbreeding and producing fertile offspring; genetically similar 13.7, 14.2 Population

More information

PRINCIPLES OF POPULATION GENETICS

PRINCIPLES OF POPULATION GENETICS PRINCIPLES OF POPULATION GENETICS FOURTH EDITION Daniel L. Hartl Harvard University Andrew G. Clark Cornell University UniversitSts- und Landesbibliothek Darmstadt Bibliothek Biologie Sinauer Associates,

More information

Summary. 16 1 Genes and Variation. 16 2 Evolution as Genetic Change. Name Class Date

Summary. 16 1 Genes and Variation. 16 2 Evolution as Genetic Change. Name Class Date Chapter 16 Summary Evolution of Populations 16 1 Genes and Variation Darwin s original ideas can now be understood in genetic terms. Beginning with variation, we now know that traits are controlled by

More information

Mendelian and Non-Mendelian Heredity Grade Ten

Mendelian and Non-Mendelian Heredity Grade Ten Ohio Standards Connection: Life Sciences Benchmark C Explain the genetic mechanisms and molecular basis of inheritance. Indicator 6 Explain that a unit of hereditary information is called a gene, and genes

More information

Deterministic computer simulations were performed to evaluate the effect of maternallytransmitted

Deterministic computer simulations were performed to evaluate the effect of maternallytransmitted Supporting Information 3. Host-parasite simulations Deterministic computer simulations were performed to evaluate the effect of maternallytransmitted parasites on the evolution of sex. Briefly, the simulations

More information

AP: LAB 8: THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics

AP: LAB 8: THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics Ms. Foglia Date AP: LAB 8: THE CHI-SQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,

More information

7 POPULATION GENETICS

7 POPULATION GENETICS 7 POPULATION GENETICS 7.1 INTRODUCTION Most humans are susceptible to HIV infection. However, some people seem to be able to avoid infection despite repeated exposure. Some resistance is due to a rare

More information

Biology 1406 Exam 4 Notes Cell Division and Genetics Ch. 8, 9

Biology 1406 Exam 4 Notes Cell Division and Genetics Ch. 8, 9 Biology 1406 Exam 4 Notes Cell Division and Genetics Ch. 8, 9 Ch. 8 Cell Division Cells divide to produce new cells must pass genetic information to new cells - What process of DNA allows this? Two types

More information

Hardy-Weinberg Equilibrium Problems

Hardy-Weinberg Equilibrium Problems Hardy-Weinberg Equilibrium Problems 1. The frequency of two alleles in a gene pool is 0.19 (A) and 0.81(a). Assume that the population is in Hardy-Weinberg equilibrium. (a) Calculate the percentage of

More information

Forensic Statistics. From the ground up. 15 th International Symposium on Human Identification

Forensic Statistics. From the ground up. 15 th International Symposium on Human Identification Forensic Statistics 15 th International Symposium on Human Identification From the ground up UNTHSC John V. Planz, Ph.D. UNT Health Science Center at Fort Worth Why so much attention to statistics? Exclusions

More information

Principles of Evolution - Origin of Species

Principles of Evolution - Origin of Species Theories of Organic Evolution X Multiple Centers of Creation (de Buffon) developed the concept of "centers of creation throughout the world organisms had arisen, which other species had evolved from X

More information

Mendelian inheritance and the

Mendelian inheritance and the Mendelian inheritance and the most common genetic diseases Cornelia Schubert, MD, University of Goettingen, Dept. Human Genetics EUPRIM-Net course Genetics, Immunology and Breeding Mangement German Primate

More information

Population Genetics and Multifactorial Inheritance 2002

Population Genetics and Multifactorial Inheritance 2002 Population Genetics and Multifactorial Inheritance 2002 Consanguinity Genetic drift Founder effect Selection Mutation rate Polymorphism Balanced polymorphism Hardy-Weinberg Equilibrium Hardy-Weinberg Equilibrium

More information

LAB : THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics

LAB : THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics Period Date LAB : THE CHI-SQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,

More information

Chapter 9 Patterns of Inheritance

Chapter 9 Patterns of Inheritance Bio 100 Patterns of Inheritance 1 Chapter 9 Patterns of Inheritance Modern genetics began with Gregor Mendel s quantitative experiments with pea plants History of Heredity Blending theory of heredity -

More information

Evolution (18%) 11 Items Sample Test Prep Questions

Evolution (18%) 11 Items Sample Test Prep Questions Evolution (18%) 11 Items Sample Test Prep Questions Grade 7 (Evolution) 3.a Students know both genetic variation and environmental factors are causes of evolution and diversity of organisms. (pg. 109 Science

More information

A and B are not absolutely linked. They could be far enough apart on the chromosome that they assort independently.

A and B are not absolutely linked. They could be far enough apart on the chromosome that they assort independently. Name Section 7.014 Problem Set 5 Please print out this problem set and record your answers on the printed copy. Answers to this problem set are to be turned in to the box outside 68-120 by 5:00pm on Friday

More information

Heredity. Sarah crosses a homozygous white flower and a homozygous purple flower. The cross results in all purple flowers.

Heredity. Sarah crosses a homozygous white flower and a homozygous purple flower. The cross results in all purple flowers. Heredity 1. Sarah is doing an experiment on pea plants. She is studying the color of the pea plants. Sarah has noticed that many pea plants have purple flowers and many have white flowers. Sarah crosses

More information

Heredity - Patterns of Inheritance

Heredity - Patterns of Inheritance Heredity - Patterns of Inheritance Genes and Alleles A. Genes 1. A sequence of nucleotides that codes for a special functional product a. Transfer RNA b. Enzyme c. Structural protein d. Pigments 2. Genes

More information

Continuous and discontinuous variation

Continuous and discontinuous variation Continuous and discontinuous variation Variation, the small differences that exist between individuals, can be described as being either discontinuous or continuous. Discontinuous variation This is where

More information

Bio EOC Topics for Cell Reproduction: Bio EOC Questions for Cell Reproduction:

Bio EOC Topics for Cell Reproduction: Bio EOC Questions for Cell Reproduction: Bio EOC Topics for Cell Reproduction: Asexual vs. sexual reproduction Mitosis steps, diagrams, purpose o Interphase, Prophase, Metaphase, Anaphase, Telophase, Cytokinesis Meiosis steps, diagrams, purpose

More information

Popstats Unplugged. 14 th International Symposium on Human Identification. John V. Planz, Ph.D. UNT Health Science Center at Fort Worth

Popstats Unplugged. 14 th International Symposium on Human Identification. John V. Planz, Ph.D. UNT Health Science Center at Fort Worth Popstats Unplugged 14 th International Symposium on Human Identification John V. Planz, Ph.D. UNT Health Science Center at Fort Worth Forensic Statistics From the ground up Why so much attention to statistics?

More information

PRACTICE PROBLEMS - PEDIGREES AND PROBABILITIES

PRACTICE PROBLEMS - PEDIGREES AND PROBABILITIES PRACTICE PROBLEMS - PEDIGREES AND PROBABILITIES 1. Margaret has just learned that she has adult polycystic kidney disease. Her mother also has the disease, as did her maternal grandfather and his younger

More information

Chapter 4 Pedigree Analysis in Human Genetics. Chapter 4 Human Heredity by Michael Cummings 2006 Brooks/Cole-Thomson Learning

Chapter 4 Pedigree Analysis in Human Genetics. Chapter 4 Human Heredity by Michael Cummings 2006 Brooks/Cole-Thomson Learning Chapter 4 Pedigree Analysis in Human Genetics Mendelian Inheritance in Humans Pigmentation Gene and Albinism Fig. 3.14 Two Genes Fig. 3.15 The Inheritance of Human Traits Difficulties Long generation time

More information

Name: 4. A typical phenotypic ratio for a dihybrid cross is a) 9:1 b) 3:4 c) 9:3:3:1 d) 1:2:1:2:1 e) 6:3:3:6

Name: 4. A typical phenotypic ratio for a dihybrid cross is a) 9:1 b) 3:4 c) 9:3:3:1 d) 1:2:1:2:1 e) 6:3:3:6 Name: Multiple-choice section Choose the answer which best completes each of the following statements or answers the following questions and so make your tutor happy! 1. Which of the following conclusions

More information

Simulation Model of Mating Behavior in Flies

Simulation Model of Mating Behavior in Flies Simulation Model of Mating Behavior in Flies MEHMET KAYIM & AYKUT Ecological and Evolutionary Genetics Lab. Department of Biology, Middle East Technical University International Workshop on Hybrid Systems

More information

Basics of Marker Assisted Selection

Basics of Marker Assisted Selection asics of Marker ssisted Selection Chapter 15 asics of Marker ssisted Selection Julius van der Werf, Department of nimal Science rian Kinghorn, Twynam Chair of nimal reeding Technologies University of New

More information

2 GENETIC DATA ANALYSIS

2 GENETIC DATA ANALYSIS 2.1 Strategies for learning genetics 2 GENETIC DATA ANALYSIS We will begin this lecture by discussing some strategies for learning genetics. Genetics is different from most other biology courses you have

More information

I. Genes found on the same chromosome = linked genes

I. Genes found on the same chromosome = linked genes Genetic recombination in Eukaryotes: crossing over, part 1 I. Genes found on the same chromosome = linked genes II. III. Linkage and crossing over Crossing over & chromosome mapping I. Genes found on the

More information

5 GENETIC LINKAGE AND MAPPING

5 GENETIC LINKAGE AND MAPPING 5 GENETIC LINKAGE AND MAPPING 5.1 Genetic Linkage So far, we have considered traits that are affected by one or two genes, and if there are two genes, we have assumed that they assort independently. However,

More information

Chromosomes, Mapping, and the Meiosis Inheritance Connection

Chromosomes, Mapping, and the Meiosis Inheritance Connection Chromosomes, Mapping, and the Meiosis Inheritance Connection Carl Correns 1900 Chapter 13 First suggests central role for chromosomes Rediscovery of Mendel s work Walter Sutton 1902 Chromosomal theory

More information

HLA data analysis in anthropology: basic theory and practice

HLA data analysis in anthropology: basic theory and practice HLA data analysis in anthropology: basic theory and practice Alicia Sanchez-Mazas and José Manuel Nunes Laboratory of Anthropology, Genetics and Peopling history (AGP), Department of Anthropology and Ecology,

More information

Name: Class: Date: ID: A

Name: Class: Date: ID: A Name: Class: _ Date: _ Meiosis Quiz 1. (1 point) A kidney cell is an example of which type of cell? a. sex cell b. germ cell c. somatic cell d. haploid cell 2. (1 point) How many chromosomes are in a human

More information

Chapter 3. Chapter Outline. Chapter Outline 9/11/10. Heredity and Evolu4on

Chapter 3. Chapter Outline. Chapter Outline 9/11/10. Heredity and Evolu4on Chapter 3 Heredity and Evolu4on Chapter Outline The Cell DNA Structure and Function Cell Division: Mitosis and Meiosis The Genetic Principles Discovered by Mendel Mendelian Inheritance in Humans Misconceptions

More information

The Making of the Fittest: Natural Selection in Humans

The Making of the Fittest: Natural Selection in Humans OVERVIEW MENDELIN GENETIC, PROBBILITY, PEDIGREE, ND CHI-QURE TTITIC This classroom lesson uses the information presented in the short film The Making of the Fittest: Natural election in Humans (http://www.hhmi.org/biointeractive/making-fittest-natural-selection-humans)

More information

Chapter 13: Meiosis and Sexual Life Cycles

Chapter 13: Meiosis and Sexual Life Cycles Name Period Chapter 13: Meiosis and Sexual Life Cycles Concept 13.1 Offspring acquire genes from parents by inheriting chromosomes 1. Let s begin with a review of several terms that you may already know.

More information

Gene Mapping Techniques

Gene Mapping Techniques Gene Mapping Techniques OBJECTIVES By the end of this session the student should be able to: Define genetic linkage and recombinant frequency State how genetic distance may be estimated State how restriction

More information

Two-locus population genetics

Two-locus population genetics Two-locus population genetics Introduction So far in this course we ve dealt only with variation at a single locus. There are obviously many traits that are governed by more than a single locus in whose

More information

CCR Biology - Chapter 7 Practice Test - Summer 2012

CCR Biology - Chapter 7 Practice Test - Summer 2012 Name: Class: Date: CCR Biology - Chapter 7 Practice Test - Summer 2012 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A person who has a disorder caused

More information

Chapter 13: Meiosis and Sexual Life Cycles

Chapter 13: Meiosis and Sexual Life Cycles Name Period Concept 13.1 Offspring acquire genes from parents by inheriting chromosomes 1. Let s begin with a review of several terms that you may already know. Define: gene locus gamete male gamete female

More information

P (B) In statistics, the Bayes theorem is often used in the following way: P (Data Unknown)P (Unknown) P (Data)

P (B) In statistics, the Bayes theorem is often used in the following way: P (Data Unknown)P (Unknown) P (Data) 22S:101 Biostatistics: J. Huang 1 Bayes Theorem For two events A and B, if we know the conditional probability P (B A) and the probability P (A), then the Bayes theorem tells that we can compute the conditional

More information

Genetics Lecture Notes 7.03 2005. Lectures 1 2

Genetics Lecture Notes 7.03 2005. Lectures 1 2 Genetics Lecture Notes 7.03 2005 Lectures 1 2 Lecture 1 We will begin this course with the question: What is a gene? This question will take us four lectures to answer because there are actually several

More information

Answer Key Problem Set 5

Answer Key Problem Set 5 7.03 Fall 2003 1 of 6 1. a) Genetic properties of gln2- and gln 3-: Answer Key Problem Set 5 Both are uninducible, as they give decreased glutamine synthetase (GS) activity. Both are recessive, as mating

More information

Cystic Fibrosis Webquest Sarah Follenweider, The English High School 2009 Summer Research Internship Program

Cystic Fibrosis Webquest Sarah Follenweider, The English High School 2009 Summer Research Internship Program Cystic Fibrosis Webquest Sarah Follenweider, The English High School 2009 Summer Research Internship Program Introduction: Cystic fibrosis (CF) is an inherited chronic disease that affects the lungs and

More information

Genetic Mutations. Indicator 4.8: Compare the consequences of mutations in body cells with those in gametes.

Genetic Mutations. Indicator 4.8: Compare the consequences of mutations in body cells with those in gametes. Genetic Mutations Indicator 4.8: Compare the consequences of mutations in body cells with those in gametes. Agenda Warm UP: What is a mutation? Body cell? Gamete? Notes on Mutations Karyotype Web Activity

More information

Genetics 301 Sample Final Examination Spring 2003

Genetics 301 Sample Final Examination Spring 2003 Genetics 301 Sample Final Examination Spring 2003 50 Multiple Choice Questions-(Choose the best answer) 1. A cross between two true breeding lines one with dark blue flowers and one with bright white flowers

More information

A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes.

A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes. 1 Biology Chapter 10 Study Guide Trait A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes. Genes Genes are located on chromosomes

More information

arxiv:0801.0753v1 [q-bio.pe] 4 Jan 2008

arxiv:0801.0753v1 [q-bio.pe] 4 Jan 2008 EPJ manuscript No. (will be inserted by the editor) Why Y chromosome is shorter and women live longer? Przemyslaw Biecek 1 and Stanislaw Cebrat 2 1 przemyslaw.biecek@gmail.com, 2 cebrat@smorfland.uni.wroc.pl,

More information

MAGIC design. and other topics. Karl Broman. Biostatistics & Medical Informatics University of Wisconsin Madison

MAGIC design. and other topics. Karl Broman. Biostatistics & Medical Informatics University of Wisconsin Madison MAGIC design and other topics Karl Broman Biostatistics & Medical Informatics University of Wisconsin Madison biostat.wisc.edu/ kbroman github.com/kbroman kbroman.wordpress.com @kwbroman CC founders compgen.unc.edu

More information

Bayesian coalescent inference of population size history

Bayesian coalescent inference of population size history Bayesian coalescent inference of population size history Alexei Drummond University of Auckland Workshop on Population and Speciation Genomics, 2016 1st February 2016 1 / 39 BEAST tutorials Population

More information

Asexual Versus Sexual Reproduction in Genetic Algorithms 1

Asexual Versus Sexual Reproduction in Genetic Algorithms 1 Asexual Versus Sexual Reproduction in Genetic Algorithms Wendy Ann Deslauriers (wendyd@alumni.princeton.edu) Institute of Cognitive Science,Room 22, Dunton Tower Carleton University, 25 Colonel By Drive

More information

Genetics 1. Defective enzyme that does not make melanin. Very pale skin and hair color (albino)

Genetics 1. Defective enzyme that does not make melanin. Very pale skin and hair color (albino) Genetics 1 We all know that children tend to resemble their parents. Parents and their children tend to have similar appearance because children inherit genes from their parents and these genes influence

More information

LAB : PAPER PET GENETICS. male (hat) female (hair bow) Skin color green or orange Eyes round or square Nose triangle or oval Teeth pointed or square

LAB : PAPER PET GENETICS. male (hat) female (hair bow) Skin color green or orange Eyes round or square Nose triangle or oval Teeth pointed or square Period Date LAB : PAPER PET GENETICS 1. Given the list of characteristics below, you will create an imaginary pet and then breed it to review the concepts of genetics. Your pet will have the following

More information

Introduction. What is Ecological Genetics?

Introduction. What is Ecological Genetics? 1 Introduction What is Ecological enetics? Ecological genetics is at the interface of ecology, evolution, and genetics, and thus includes important elements from each of these fields. We can use two closely

More information

Title: Genetics and Hearing Loss: Clinical and Molecular Characteristics

Title: Genetics and Hearing Loss: Clinical and Molecular Characteristics Session # : 46 Day/Time: Friday, May 1, 2015, 1:00 4:00 pm Title: Genetics and Hearing Loss: Clinical and Molecular Characteristics Presenter: Kathleen S. Arnos, PhD, Gallaudet University This presentation

More information

Mendelian Genetics in Drosophila

Mendelian Genetics in Drosophila Mendelian Genetics in Drosophila Lab objectives: 1) To familiarize you with an important research model organism,! Drosophila melanogaster. 2) Introduce you to normal "wild type" and various mutant phenotypes.

More information

Association between Dopamine Gene and Alcoholism in Pategar Community of Dharwad, Karnataka

Association between Dopamine Gene and Alcoholism in Pategar Community of Dharwad, Karnataka International Journal of Scientific and Research Publications, Volume 3, Issue 10, October 2013 1 Association between Dopamine Gene and Alcoholism in Pategar Community of Dharwad, Karnataka SOMASHEKHAR

More information

AP Biology Essential Knowledge Student Diagnostic

AP Biology Essential Knowledge Student Diagnostic AP Biology Essential Knowledge Student Diagnostic Background The Essential Knowledge statements provided in the AP Biology Curriculum Framework are scientific claims describing phenomenon occurring in

More information

Exploring contact patterns between two subpopulations

Exploring contact patterns between two subpopulations Exploring contact patterns between two subpopulations Winfried Just Hannah Callender M. Drew LaMar December 23, 2015 In this module 1 we introduce a construction of generic random graphs for a given degree

More information

Biology Behind the Crime Scene Week 4: Lab #4 Genetics Exercise (Meiosis) and RFLP Analysis of DNA

Biology Behind the Crime Scene Week 4: Lab #4 Genetics Exercise (Meiosis) and RFLP Analysis of DNA Page 1 of 5 Biology Behind the Crime Scene Week 4: Lab #4 Genetics Exercise (Meiosis) and RFLP Analysis of DNA Genetics Exercise: Understanding how meiosis affects genetic inheritance and DNA patterns

More information

SeattleSNPs Interactive Tutorial: Web Tools for Site Selection, Linkage Disequilibrium and Haplotype Analysis

SeattleSNPs Interactive Tutorial: Web Tools for Site Selection, Linkage Disequilibrium and Haplotype Analysis SeattleSNPs Interactive Tutorial: Web Tools for Site Selection, Linkage Disequilibrium and Haplotype Analysis Goal: This tutorial introduces several websites and tools useful for determining linkage disequilibrium

More information

A Hands-On Exercise To Demonstrate Evolution

A Hands-On Exercise To Demonstrate Evolution HOW-TO-DO-IT A Hands-On Exercise To Demonstrate Evolution by Natural Selection & Genetic Drift H ELEN J. YOUNG T RUMAN P. Y OUNG Although students learn (i.e., hear about) the components of evolution by

More information

Biology Final Exam Study Guide: Semester 2

Biology Final Exam Study Guide: Semester 2 Biology Final Exam Study Guide: Semester 2 Questions 1. Scientific method: What does each of these entail? Investigation and Experimentation Problem Hypothesis Methods Results/Data Discussion/Conclusion

More information

Forensic DNA Testing Terminology

Forensic DNA Testing Terminology Forensic DNA Testing Terminology ABI 310 Genetic Analyzer a capillary electrophoresis instrument used by forensic DNA laboratories to separate short tandem repeat (STR) loci on the basis of their size.

More information

Problems 1-6: In tomato fruit, red flesh color is dominant over yellow flesh color, Use R for the Red allele and r for the yellow allele.

Problems 1-6: In tomato fruit, red flesh color is dominant over yellow flesh color, Use R for the Red allele and r for the yellow allele. Genetics Problems Name ANSWER KEY Problems 1-6: In tomato fruit, red flesh color is dominant over yellow flesh color, Use R for the Red allele and r for the yellow allele. 1. What would be the genotype

More information

Report. A Note on Exact Tests of Hardy-Weinberg Equilibrium. Janis E. Wigginton, 1 David J. Cutler, 2 and Gonçalo R. Abecasis 1

Report. A Note on Exact Tests of Hardy-Weinberg Equilibrium. Janis E. Wigginton, 1 David J. Cutler, 2 and Gonçalo R. Abecasis 1 Am. J. Hum. Genet. 76:887 883, 2005 Report A Note on Exact Tests of Hardy-Weinberg Equilibrium Janis E. Wigginton, 1 David J. Cutler, 2 and Gonçalo R. Abecasis 1 1 Center for Statistical Genetics, Department

More information

Understanding by Design. Title: BIOLOGY/LAB. Established Goal(s) / Content Standard(s): Essential Question(s) Understanding(s):

Understanding by Design. Title: BIOLOGY/LAB. Established Goal(s) / Content Standard(s): Essential Question(s) Understanding(s): Understanding by Design Title: BIOLOGY/LAB Standard: EVOLUTION and BIODIVERSITY Grade(s):9/10/11/12 Established Goal(s) / Content Standard(s): 5. Evolution and Biodiversity Central Concepts: Evolution

More information

Genetics Module B, Anchor 3

Genetics Module B, Anchor 3 Genetics Module B, Anchor 3 Key Concepts: - An individual s characteristics are determines by factors that are passed from one parental generation to the next. - During gamete formation, the alleles for

More information

GENOMIC SELECTION: THE FUTURE OF MARKER ASSISTED SELECTION AND ANIMAL BREEDING

GENOMIC SELECTION: THE FUTURE OF MARKER ASSISTED SELECTION AND ANIMAL BREEDING GENOMIC SELECTION: THE FUTURE OF MARKER ASSISTED SELECTION AND ANIMAL BREEDING Theo Meuwissen Institute for Animal Science and Aquaculture, Box 5025, 1432 Ås, Norway, theo.meuwissen@ihf.nlh.no Summary

More information

MOT00 KIMURAZ. Received January 29, 1962

MOT00 KIMURAZ. Received January 29, 1962 ON THE PROBABILITY OF FIXATION OF MUTANT GENES IN A POPULATION MOT00 KIMURAZ Uniuersity of Wisconsin, Madison, Wisconsin Received January 29, 1962 HE success or failure of a mutant gene in a population

More information

MEDICAL GENETICS GENERAL OBJECTIVE SPECIFIC OBJECTIVES

MEDICAL GENETICS GENERAL OBJECTIVE SPECIFIC OBJECTIVES SUBJECT MEDICAL GENETICS CREDITS Total: 4.5 Theory 2.5 Practical 2 GENERAL OBJECTIVE To provide students with terminology and knowledge from the field of human genetics that will enable them to understand

More information

AP BIOLOGY 2010 SCORING GUIDELINES (Form B)

AP BIOLOGY 2010 SCORING GUIDELINES (Form B) AP BIOLOGY 2010 SCORING GUIDELINES (Form B) Question 2 Certain human genetic conditions, such as sickle cell anemia, result from single base-pair mutations in DNA. (a) Explain how a single base-pair mutation

More information

7A The Origin of Modern Genetics

7A The Origin of Modern Genetics Life Science Chapter 7 Genetics of Organisms 7A The Origin of Modern Genetics Genetics the study of inheritance (the study of how traits are inherited through the interactions of alleles) Heredity: the

More information

(1-p) 2. p(1-p) From the table, frequency of DpyUnc = ¼ (p^2) = #DpyUnc = p^2 = 0.0004 ¼(1-p)^2 + ½(1-p)p + ¼(p^2) #Dpy + #DpyUnc

(1-p) 2. p(1-p) From the table, frequency of DpyUnc = ¼ (p^2) = #DpyUnc = p^2 = 0.0004 ¼(1-p)^2 + ½(1-p)p + ¼(p^2) #Dpy + #DpyUnc Advanced genetics Kornfeld problem set_key 1A (5 points) Brenner employed 2-factor and 3-factor crosses with the mutants isolated from his screen, and visually assayed for recombination events between

More information

Evolution, Natural Selection, and Adaptation

Evolution, Natural Selection, and Adaptation Evolution, Natural Selection, and Adaptation Nothing in biology makes sense except in the light of evolution. (Theodosius Dobzhansky) Charles Darwin (1809-1882) Voyage of HMS Beagle (1831-1836) Thinking

More information

Biology 274: Genetics Syllabus

Biology 274: Genetics Syllabus Biology 274: Genetics Syllabus Description: An examination of the basic principles of genetics in eukaryotes and prokaryotes at the level of molecules, cells, and multicelluar organisms, including humans.

More information

B2 5 Inheritrance Genetic Crosses

B2 5 Inheritrance Genetic Crosses B2 5 Inheritrance Genetic Crosses 65 minutes 65 marks Page of 55 Q. A woman gives birth to triplets. Two of the triplets are boys and the third is a girl. The triplets developed from two egg cells released

More information

Y Chromosome Markers

Y Chromosome Markers Y Chromosome Markers Lineage Markers Autosomal chromosomes recombine with each meiosis Y and Mitochondrial DNA does not This means that the Y and mtdna remains constant from generation to generation Except

More information

Genetics Review for USMLE (Part 2)

Genetics Review for USMLE (Part 2) Single Gene Disorders Genetics Review for USMLE (Part 2) Some Definitions Alleles variants of a given DNA sequence at a particular location (locus) in the genome. Often used more narrowly to describe alternative

More information

The Evolution of Populations

The Evolution of Populations 23 he Evolution of Populations Key oncepts 23.1 enetic variation makes evolution possible 23.2 he Hardy-Weinberg equation can be used to test whether a population is evolving 23.3 Natural selection, genetic

More information

The correct answer is c A. Answer a is incorrect. The white-eye gene must be recessive since heterozygous females have red eyes.

The correct answer is c A. Answer a is incorrect. The white-eye gene must be recessive since heterozygous females have red eyes. 1. Why is the white-eye phenotype always observed in males carrying the white-eye allele? a. Because the trait is dominant b. Because the trait is recessive c. Because the allele is located on the X chromosome

More information

REVIEWS. Computer programs for population genetics data analysis: a survival guide FOCUS ON STATISTICAL ANALYSIS

REVIEWS. Computer programs for population genetics data analysis: a survival guide FOCUS ON STATISTICAL ANALYSIS FOCUS ON STATISTICAL ANALYSIS REVIEWS Computer programs for population genetics data analysis: a survival guide Laurent Excoffier and Gerald Heckel Abstract The analysis of genetic diversity within species

More information

INBREEDING depression is the reduction of the value

INBREEDING depression is the reduction of the value Copyright Ó 2008 by the Genetics Society of America DOI: 10.1534/genetics.108.090597 A Simple Method to Account for Natural Selection When Predicting Inbreeding Depression Aurora García-Dorado 1 Departamento

More information

A Genetic Algorithm Processor Based on Redundant Binary Numbers (GAPBRBN)

A Genetic Algorithm Processor Based on Redundant Binary Numbers (GAPBRBN) ISSN: 2278 1323 All Rights Reserved 2014 IJARCET 3910 A Genetic Algorithm Processor Based on Redundant Binary Numbers (GAPBRBN) Miss: KIRTI JOSHI Abstract A Genetic Algorithm (GA) is an intelligent search

More information

Lecture 10 Friday, March 20, 2009

Lecture 10 Friday, March 20, 2009 Lecture 10 Friday, March 20, 2009 Reproductive isolating mechanisms Prezygotic barriers: Anything that prevents mating and fertilization is a prezygotic mechanism. Habitat isolation, behavioral isolation,

More information

Why Taking This Course? Course Introduction, Descriptive Statistics and Data Visualization. Learning Goals. GENOME 560, Spring 2012

Why Taking This Course? Course Introduction, Descriptive Statistics and Data Visualization. Learning Goals. GENOME 560, Spring 2012 Why Taking This Course? Course Introduction, Descriptive Statistics and Data Visualization GENOME 560, Spring 2012 Data are interesting because they help us understand the world Genomics: Massive Amounts

More information

This fact sheet describes how genes affect our health when they follow a well understood pattern of genetic inheritance known as autosomal recessive.

This fact sheet describes how genes affect our health when they follow a well understood pattern of genetic inheritance known as autosomal recessive. 11111 This fact sheet describes how genes affect our health when they follow a well understood pattern of genetic inheritance known as autosomal recessive. In summary Genes contain the instructions for

More information

From: Conner, J. and D. Hartl, A Primer of Ecological Genetics. In prep. for Sinauer

From: Conner, J. and D. Hartl, A Primer of Ecological Genetics. In prep. for Sinauer Conner and Hartl p. 4-1 From: Conner, J. and D. Hartl, A Primer of Ecological Genetics. In prep. for Sinauer Chapter 4: Quantitative genetics I: Genetic variation 4.1 Mendelian basis of continuous traits

More information

Lecture 6: Single nucleotide polymorphisms (SNPs) and Restriction Fragment Length Polymorphisms (RFLPs)

Lecture 6: Single nucleotide polymorphisms (SNPs) and Restriction Fragment Length Polymorphisms (RFLPs) Lecture 6: Single nucleotide polymorphisms (SNPs) and Restriction Fragment Length Polymorphisms (RFLPs) Single nucleotide polymorphisms or SNPs (pronounced "snips") are DNA sequence variations that occur

More information

DNA Determines Your Appearance!

DNA Determines Your Appearance! DNA Determines Your Appearance! Summary DNA contains all the information needed to build your body. Did you know that your DNA determines things such as your eye color, hair color, height, and even the

More information

A Correlation of Miller & Levine Biology 2014

A Correlation of Miller & Levine Biology 2014 A Correlation of Miller & Levine Biology To Ohio s New Learning Standards for Science, 2011 Biology, High School Science Inquiry and Application Course Content A Correlation of, to Introduction This document

More information

somatic cell egg genotype gamete polar body phenotype homologous chromosome trait dominant autosome genetics recessive

somatic cell egg genotype gamete polar body phenotype homologous chromosome trait dominant autosome genetics recessive CHAPTER 6 MEIOSIS AND MENDEL Vocabulary Practice somatic cell egg genotype gamete polar body phenotype homologous chromosome trait dominant autosome genetics recessive CHAPTER 6 Meiosis and Mendel sex

More information

Influence of Sex on Genetics. Chapter Six

Influence of Sex on Genetics. Chapter Six Influence of Sex on Genetics Chapter Six Humans 23 Autosomes Chromosomal abnormalities very severe Often fatal All have at least one X Deletion of X chromosome is fatal Males = heterogametic sex XY Females

More information

CHROMOSOMES AND INHERITANCE

CHROMOSOMES AND INHERITANCE SECTION 12-1 REVIEW CHROMOSOMES AND INHERITANCE VOCABULARY REVIEW Distinguish between the terms in each of the following pairs of terms. 1. sex chromosome, autosome 2. germ-cell mutation, somatic-cell

More information

Introduction to Physical Anthropology - Study Guide - Focus Topics

Introduction to Physical Anthropology - Study Guide - Focus Topics Introduction to Physical Anthropology - Study Guide - Focus Topics Chapter 1 Species: Recognize all definitions. Evolution: Describe all processes. Culture: Define and describe importance. Biocultural:

More information

Sample Size and Power in Clinical Trials

Sample Size and Power in Clinical Trials Sample Size and Power in Clinical Trials Version 1.0 May 011 1. Power of a Test. Factors affecting Power 3. Required Sample Size RELATED ISSUES 1. Effect Size. Test Statistics 3. Variation 4. Significance

More information

10 Evolutionarily Stable Strategies

10 Evolutionarily Stable Strategies 10 Evolutionarily Stable Strategies There is but a step between the sublime and the ridiculous. Leo Tolstoy In 1973 the biologist John Maynard Smith and the mathematician G. R. Price wrote an article in

More information

GENETIC CROSSES. Monohybrid Crosses

GENETIC CROSSES. Monohybrid Crosses GENETIC CROSSES Monohybrid Crosses Objectives Explain the difference between genotype and phenotype Explain the difference between homozygous and heterozygous Explain how probability is used to predict

More information