10g (average: 3-4g) Average lifetime [year] 12

Size: px
Start display at page:

Download "10g (average: 3-4g) Average lifetime [year] 12"

Transcription

1 5. Industrial robots 5.1. Entity of industrial robots Standard EN 775 defines an industrial robot as automatically controlled, programmable, multifunctional, with several degrees of freedom of a machine that is installed in automated manufacturing systems. In short, industrial robots are special purpose machines that are used in manufacturing automation (1) Today s industrial robots allow programmability in different programming languages and programming environments, possibility to determine positions, coordinate systems, paths and repeat the movements with high accuracy, ability of industrial controllers to control inputs and outputs, handle the information, communicate with users and other controllers via different field buses, coordinate robot movements with other devices and be connected into local area networks. The main features of today s industrial robots are summed up in Table 6.1 Table 6.1 Main features of today s industrial robots Feature Value Degrees of freedom 3-7 Speed [m/s] 20 (average 1-5) Repeating accuracy [mm] 0, Payload [kg] Resolution [mm] 0, ,5 Acceleration [m/s 2 ] 10g (average: 3-4g) Average lifetime [year] 12 Today robotics is developing very fast, incorporating mechatronics, electrical engineering and infotechnology. Because of high work quality they are more often implemented in manufacturing systems. An industrial robot (Fig. 1.1) consists of joints, rotating parts, and links that connect them. Joints are actuated with an actuator that can be an electrical motor (stepper motor, brushless DC motor, synchronous motor), pneumatic or hydraulic cylinder etc. Each joint is also equipped with a brake, usually an electromagnetic brake. Brakes hold the joints from moving, when supplied with DC voltage of +24 V the brakes are released. The joints can be roative or linear. Working area of each joint is limited with mechanical brakes or with software. It is necessary for robot not to cross the limit positions. To reduce the motor torque different gear boxes are used in the joints. Using gears allows choosing smaller motors.

2 Industrial robots are also equipped with many sensors that allow them to work safely and precisely. Industrial robot is able to identify a collision with a surrounding object, overspeeding, position divergence, wrong programming parameters etc. In addition many additional protective features can be added to the robot. Fig. 6.1 Fig. 6.1 Manipulator IRB Robot system A robot is not able to work alone. In order to perform any technological operation also other machines and devices are also necessary. A detail must be fed to the robot and information must be given to start work, also the whole process must be monitored during the process. So, each manufacturing unit must be analyzed as a whole system, i.e. a robot system. Robot system is an automatically functioning manufacturing module that consists of one or more manipulators, technological machines and a positioner to hold the detail [10]. The block schema of the robot system is shown in Fig. 6.2 and each block is described below.

3 Teach pendant Interface Mains Controller Manipulator Process Positioner Feedback Fig. 6.2 Block scheme of a robot system Controller Controller is a part of the robot system that controls the manipulator and other devices, gathers and analyzes the information from transducers about the status of the system, also exchanges data between users and other controllers via fieldbuses. Controller controls the manipulator and positioner at one time according to the program and is able to work simulatneously with other controllers. ABB controller IRC 5 is shown in Fig Fig. 6.3 ABB controller IRC Teach pendant A teach pendant is a handheld device that is used for jogging the manipulator, for teaching the targets, programming, testing of a program, configuration. The communication between the

4 user and the controller finds the state through the teach pendant. Teach pendant is not suitable for programming complicated paths. Instead the teach pendant, a special programming environment, (e.g. RobotStudio) must be used. An example of a teach pendant is shown in Fig. 6.4 Fig. 6.4 Teach pendant Manipulator A manipulator is a mechanism that consists of several links, motors and gears. A manipulator is the actuator of the robot system that uses different tools to accomplish the task. A manipulator is able to turn itself in different directions and achieve various positions in the room. The more axes (degrees of freedom) the robot has, the more flexible it is. Each axis is excited with and electrical motor (or other actuator) that is controlled via controller. Each motor is also equipped with a gear and a feedback transducer that is necessary for reliable control of manipulator. The tool (also called end-effector) is connected to the end of the robot arm. Different manipulators are shown in (Fig. 6.5). Fig. 6.5 Examples of some manipulators Positioner Positioner or underframe is a part of a robot system that holds the detail and puts it in appropriate position for the manipulator. Axes of the positioner can also be as an additional degree of freedom of the whole system and be controlled via one controller with manipulator. ABB positioner IRBP 250 D is shown in (Fig. 6.6).

5 Fig. 6.6 ABB positioner IRBP 250 D 5.3. Control of industrial robots Control of an industrial robot is much more complicated than the control of motors or other actuators (cylinders, transistors etc). Control motors required the control of rotational speed, direction and torque. Control of cylinders is based on switching between on and off states. Control of industrial robots must be realized with simultaneous control of many axes a threedimensinal room, also considering the orientation of the tool. An industrial robot moves the end effector so, that it follows the programmed path. For that, the controller must first calculate the path, calculate the characteristic of each motor and monitor the whole process (path tracking). If the path information gathered from feedback sensors deviates from calculated path, the program execution is stopped. A manipulator is always moving from one point to another. Movement between two points can be either linear or non-linear. In order to move between these targets, the controller must calculate the trajectory. When calculating the trajectory, the rotational speed and direction of each motor is determined, so that all axes reach the target at same time. An example of the trajectory between two points is shown in figure Fig. 6.7, where the manipulator with tree axis moves between them, following an unregular path.

6 Θ 3 Θ 2 Θ 3 Θ 1 Θ 2 Fig. 6.7 Path tracking of a manipulator To realize a smooth and accurate path tracking motors on each axis are equipped with transducers (e.g. resolver, absolute encoder) that give a controller the information about motor shaft s position, speed, acceleration and direction. A block schema of a robot controller is shown in Fig Teach Pendant Avansed Sensor Serial User Interface IQ Computer Sensor Interface Fieldbuses Communication Computer Robot Computer Motion Computer Ethernet User Memory Program Memory System Memory USB Fig. 6.8 Control schema of an industrial robot

7 5.4. End effectors Industrial robots are always equipped with an end effector that is used to accomplish a certain task. For example, a gripper can be used for pick and place, holding, supplying. An arc welding gun is used for welding applications. End effectors are also controlled with a controller (also, a separate controller may be used for it). The most common tools are pneumatic or electric grippers, welding guns, borers, milling tools and painting tool. Some end effectors are shown in Fig. 6.9 a b c d Fig. 6.9 Different tools: a arc welding gun; b pneumatic gripper with a camera; c pneumatic gripper; d milling tools 5.5. Industrial robots in manufacturing automation The greatest challenge in today s manufacturing is to achieve good quality with as low price as possible. It means that each company that deals with flexible manufacturing is not competitive without using industrial robots. Industrial robots replace people in the works that are either too hard or dangerous for people, require high accuracy or are too monotonic. The

8 most common works are arc- and spot welding, painting, packaging, die casting, palletizing, gluing and detail handling works. Industrial robots are mainly used in welding applications. Car industry uses welding robots in welding the car body. The welding process harms people with dangerous gases, glaring electric arc and sparks. These factors do not harm a robot. Also, an industrial robot works much faster and more accurately than people. Use of industrial robots in different fields is shown in Fig Fig Use of industrial robots in different industrial Ares 5.6. Classification of industrial robots Different types of applications require specific types of robots that differ by construction, control, power and other technical characteristics. For example, if a process requires moving in three directions it is reasonable to use an industrial robot with 3 degrees of freedom. If a robot with more degrees of freedom is used, then the resources of the robot are not used optimally. Each degree of freedom means adding a new joint to the robot that consists of a motor, mechanical transmission, feedback sensors and cables, which in turn increases a robots price and maintenance costs. Industrial robots can be classified by the design of the manipulator, by the type of joint actuators, by control principles and by the technological process. Classification of industrial robots by the design of the manipulator is shown in (Table 6.2.) Table 6.2 Classification of industrial robots by the design of the manipulator Type Kinematic structure Work range Example

9 Cartesian robot Cylinder robot Sphere robot SCARA robot Articulated robot Parallel robot

10 5.7. Implementation of industrial robots In the following chapters a short description of two technological processes with industrial robots are described: Abgrading of alu wheels and die casting Abgrading of aluminum wheels The manufacturing system consists of one industrial robot that grasps an alu wheel from conveyor. Afterward, using the laser measurement system it puts it in the fixed position, so that an abgrading machine could separate the unlinearities that occur during manufacture. During the process the robot turns the wheel in an appropriate position for the abgrading machine. After the agrading is over, the robot puts the wheel back to conveyor and takes the next detail. Advantages of such a system are continuous manufacturing, good quality because of high accuracy of the robot Die casting Die casting is one of the most dangerous and harmful process for industrial robots, because die casting is made in dirty environment, where the temperature is high and metal sparks get between moving parts of joints (gaskets of motors). In the following example the robot grasps a detail from the rope conveyor with a pneumatic gripper. Using a special camera system the robot positions the detail correctly into the bath with liquid metal (e.g. Zn), holds it for a while and takes out. Afterwards it hangs it back to the rope conveyor Self check 35. What are the most important technical properties of an industrial robots? 1. repeatability precision 2. acceleration 3. number of errors 36. What kind of a device is used to teach the robot the position points? 1. controller 2. personal Computer 3. control unit 37. What is a resolver? 1. feedback sensor rotary electrical transformer 2. sensor for measuring acceleration 3. a Limit switch 38. Which of these manipulator movements is not suitable for this list? 1. cartesian robot 2. SCARA robot 3. articulated robot 4. spherical robot

Industrial Robotics. Training Objective

Industrial Robotics. Training Objective Training Objective After watching the program and reviewing this printed material, the viewer will learn the basics of industrial robot technology and how robots are used in a variety of manufacturing

More information

Robot coined by Karel Capek in a 1921 science-fiction Czech play

Robot coined by Karel Capek in a 1921 science-fiction Czech play Robotics Robot coined by Karel Capek in a 1921 science-fiction Czech play Definition: A robot is a reprogrammable, multifunctional manipulator designed to move material, parts, tools, or specialized devices

More information

Thermodynamic efficiency of an actuator that provides the mechanical movement for the driven equipments:

Thermodynamic efficiency of an actuator that provides the mechanical movement for the driven equipments: 1. Introduction 1.1. Industry Automation Industry automation is the term that describes a vital development programme of a production community where the project engineers build up automated manufacturing

More information

CIM Computer Integrated Manufacturing

CIM Computer Integrated Manufacturing INDEX CIM IN BASIC CONFIGURATION CIM IN ADVANCED CONFIGURATION CIM IN COMPLETE CONFIGURATION DL CIM A DL CIM B DL CIM C DL CIM C DL CIM B DL CIM A Computer Integrated Manufacturing (CIM) is a method of

More information

Stirling Paatz of robot integrators Barr & Paatz describes the anatomy of an industrial robot.

Stirling Paatz of robot integrators Barr & Paatz describes the anatomy of an industrial robot. Ref BP128 Anatomy Of A Robot Stirling Paatz of robot integrators Barr & Paatz describes the anatomy of an industrial robot. The term robot stems from the Czech word robota, which translates roughly as

More information

Robotics and Automation Blueprint

Robotics and Automation Blueprint Robotics and Automation Blueprint This Blueprint contains the subject matter content of this Skill Connect Assessment. This Blueprint does NOT contain the information one would need to fully prepare for

More information

UNIT 1 INTRODUCTION TO NC MACHINE TOOLS

UNIT 1 INTRODUCTION TO NC MACHINE TOOLS UNIT 1 INTRODUCTION TO NC MACHINE TOOLS Structure 1.1 Introduction Objectives 1.2 NC Machines 1.2.1 Types of NC Machine 1.2.2 Controlled Axes 1.2.3 Basic Components of NC Machines 1.2.4 Problems with Conventional

More information

Design of a Robotic Arm with Gripper & End Effector for Spot Welding

Design of a Robotic Arm with Gripper & End Effector for Spot Welding Universal Journal of Mechanical Engineering 1(3): 92-97, 2013 DOI: 10.13189/ujme.2013.010303 http://www.hrpub.org Design of a Robotic Arm with Gripper & End Effector for Spot Welding Puran Singh *, Anil

More information

Learning Systems Software Simulation

Learning Systems Software Simulation Learning Systems Software Simulation EasyVeep PLC controls and technology training FluidSIM Fluid Power training aid for instructors and design tool for engineers COSIMIR PLC 3D simulation tool for practical

More information

Design Aspects of Robot Manipulators

Design Aspects of Robot Manipulators Design Aspects of Robot Manipulators Dr. Rohan Munasinghe Dept of Electronic and Telecommunication Engineering University of Moratuwa System elements Manipulator (+ proprioceptive sensors) End-effector

More information

Submitted By: Submitted To: XYZ ABCD ******** Mechatronics

Submitted By: Submitted To: XYZ ABCD ******** Mechatronics Submitted To: ABCD Submitted By: XYZ ******** Mechatronics END EFFECTORS In robotics, an end effector is the device at the end of a robotic arm, designed to interact with the environment. The exact nature

More information

UNIT II Robots Drive Systems and End Effectors Part-A Questions

UNIT II Robots Drive Systems and End Effectors Part-A Questions UNIT II Robots Drive Systems and End Effectors Part-A Questions 1. Define End effector. End effector is a device that is attached to the end of the wrist arm to perform specific task. 2. Give some examples

More information

Introduction to Robotics Analysis, systems, Applications Saeed B. Niku

Introduction to Robotics Analysis, systems, Applications Saeed B. Niku Saeed B. Niku 1. Introduction Fig. 1.1 (a) A Kuhnezug truck-mounted crane Reprinted with permission from Kuhnezug Fordertechnik GmbH. Fig. 1.1 (b) Fanuc S-500 robots performing seam-sealing on a truck.

More information

RIA : 2013 Market Trends Webinar Series

RIA : 2013 Market Trends Webinar Series RIA : 2013 Market Trends Webinar Series Robotic Industries Association A market trends education Available at no cost to audience Watch live or archived webinars anytime Learn about the latest innovations

More information

Industrial Robot Technology

Industrial Robot Technology Unit 132: Industrial Robot Technology Unit code: Y/602/5130 QCF Level 3: BTEC Nationals Credit value: 10 Guided learning hours: 60 Aim and purpose This unit will develop learners understanding of the operation

More information

How To Choose The Right End Effector. For Your Application

How To Choose The Right End Effector. For Your Application How To Choose The Right End Effector For Your Application TABLE OF CONTENTS INTRODUCTION... 3 DIFFERENT END EFFECTORS ON THE MARKET... 3 ROBOT GRIPPERS... 3 ROBOTIC TOOLS... 7 HOW TO CHOOSE?... 8 HOW MUCH

More information

All round in Motion Control Rotating, linear and combinations of both! know-how makes the difference

All round in Motion Control Rotating, linear and combinations of both! know-how makes the difference All round in Motion Control Rotating, linear and combinations of both! know-how makes the difference How state-of-the-art are your drive solutions? As a manufacturer you face complex challenges. The world

More information

5 WAYS TO EVEN GREATER EFFICIENCY

5 WAYS TO EVEN GREATER EFFICIENCY EPSON PROSIX C4 AND C8 SERIES 6 AXIS ROBOTS 5 WAYS TO EVEN GREATER EFFICIENCY ENGINEERED FOR BUSINESS 2 / 3 / THE OPTIMAL FAMILY PACKAGE DIFFERENT RANGES, VARIOUS LOAD CAPACITIES You don t want a standard

More information

Chapter 2 Fundamentals of Robotics

Chapter 2 Fundamentals of Robotics This sample chapter is for review purposes only. Copyright The Goodheart-Willcox Co., Inc. All rights reserved. Chapter 2 Fundamentals of Robotics Chapter Topics 2.1 Parts of a Robot 2.2 Degrees of Freedom

More information

GANTRY ROBOTS FLEXIBILITY SPEED PRECISION

GANTRY ROBOTS FLEXIBILITY SPEED PRECISION GANTRY ROBOTS FLEXIBILITY SPEED PRECISION GANTRY ROBOTS FLEXIBILITY SPEED PRECISION FPT gantry robots have a modular design and the standard versions are provided with 3 axes. The Subito Coro is the maximum

More information

INTRODUCTION. Robotics is a relatively young field of modern technology that crosses traditional

INTRODUCTION. Robotics is a relatively young field of modern technology that crosses traditional 1 INTRODUCTION Robotics is a relatively young field of modern technology that crosses traditional engineering boundaries. Understanding the complexity of robots and their applications requires knowledge

More information

CIS009-2, Mechatronics Robotic Arms & Hands

CIS009-2, Mechatronics Robotic Arms & Hands CIS009-2, Robotic Arms & Hands Bedfordshire 06 th December 2012 Outline Bedfordshire 47 1 2 3 Considering design specifications 4 Bedfordshire 47 Robots are designed for specific purposes. For this reason

More information

New robot improves costefficiency. spot welding. 4 ABB Review 3/1996

New robot improves costefficiency. spot welding. 4 ABB Review 3/1996 New robot improves costefficiency of spot welding Field-proven technology; the robot system belongs to the well-proven IRB 6400 robot family. More than 7000 IRB 6000/6400 systems for spotwelding car bodies

More information

Autonomous Mobile Robot-I

Autonomous Mobile Robot-I Autonomous Mobile Robot-I Sabastian, S.E and Ang, M. H. Jr. Department of Mechanical Engineering National University of Singapore 21 Lower Kent Ridge Road, Singapore 119077 ABSTRACT This report illustrates

More information

INTRODUCTION TO ROBOTICS. Dr. Bob Williams, williar4@ohio.edu, Ohio University

INTRODUCTION TO ROBOTICS. Dr. Bob Williams, williar4@ohio.edu, Ohio University INTRODUCTION TO ROBOTICS Dr. Bob Williams, williar4@ohio.edu, Ohio University History Leonardo da Vinci created many robot-like sketches and designs in the 1500 s. The word robot first appeared in print

More information

FUNDAMENTALS OF ROBOTICS

FUNDAMENTALS OF ROBOTICS FUNDAMENTALS OF ROBOTICS Lab exercise Stäubli AULINAS Josep (u1043469) GARCIA Frederic (u1038431) Introduction The aim of this tutorial is to give a brief overview on the Stäubli Robot System describing

More information

INTRODUCTION TO ROBOTICS

INTRODUCTION TO ROBOTICS Tallinn Technical University Department of Electrical Drives and Power Electronics TÕNU LEHTLA INTRODUCTION TO ROBOTICS Tallinn 2008 1 T. Lehtla. Introduction to robotics. TTU, Dept. of Electrical Drives

More information

INTRODUCTION TO SERIAL ARM

INTRODUCTION TO SERIAL ARM INTRODUCTION TO SERIAL ARM A robot manipulator consists of links connected by joints. The links of the manipulator can be considered to form a kinematic chain. The business end of the kinematic chain of

More information

Smooth. Slim. Flexible. EVG Universal Gripper

Smooth. Slim. Flexible. EVG Universal Gripper EVG Smooth. Slim. Flexible. EVG Universal Gripper S ervo-electric 2-finger parallel gripper with highly precise gripping force control and long stroke Field of Application All-purpose, ultra-flexible gripper

More information

Technology Applied Control Technology

Technology Applied Control Technology Leaving Certificate Technology Applied Control Technology Introduction to Robotics Introduction to Robotics... 1 Degrees of Freedom... 4 Robotic Joints... 6 Work Envelope... 8 Coordinate Frames... 10

More information

Electronic Interface for Pneumatic Grippers Using USB Port

Electronic Interface for Pneumatic Grippers Using USB Port ISBN 978-1-84626-xxx-x Proceedings of 2011 International Conference on Optimization of the Robots and Manipulators (OPTIROB 2011) Sinaia, Romania, 26-28 Mai, 2011, pp. xxx-xxx Electronic Interface for

More information

Definitions. A [non-living] physical agent that performs tasks by manipulating the physical world. Categories of robots

Definitions. A [non-living] physical agent that performs tasks by manipulating the physical world. Categories of robots Definitions A robot is A programmable, multifunction manipulator designed to move material, parts, tools, or specific devices through variable programmed motions for the performance of a variety of tasks.

More information

Sensors Collecting Manufacturing Process Data

Sensors Collecting Manufacturing Process Data Sensors & Actuators Sensors Collecting Manufacturing Process Data Data must be collected from the manufacturing process Data (commands and instructions) must be communicated to the process Data are of

More information

Ecopaint Robot Painting Station

Ecopaint Robot Painting Station Ecopaint Robot Painting Station Newest Generation of EcoRP Painting Robots Technologies Systems Solutions Ecopaint Robot Painting Station The Basis for Shining Results Exterior painting Ecopaint Robot

More information

Introduction to Process Control Actuators

Introduction to Process Control Actuators 1 Introduction to Process Control Actuators Actuators are the final elements in a control system. They receive a low power command signal and energy input to amplify the command signal as appropriate to

More information

Phil Crowther, Product Management, April 2015 YuMi IRB 14000 Overview

Phil Crowther, Product Management, April 2015 YuMi IRB 14000 Overview Phil Crowther, Product Management, April 2015 YuMi IRB 14000 Overview YuMi: IRB 14000 Agenda Differentiated value proposition Overview and vision Main features Payload Working range Performance and accuracy

More information

LINEAR ACTUATORS. Linear Actuators. Linear Actuators. Linear Actuators are Actuators that creates motion in a straight line, as contrasted

LINEAR ACTUATORS. Linear Actuators. Linear Actuators. Linear Actuators are Actuators that creates motion in a straight line, as contrasted LINEAR ACTUATORS Linear Actuators Linear Actuators Linear Actuators are Actuators that creates motion in a straight line, as contrasted with circular motion of a conventional electric motor. Linear actuators

More information

High Accuracy Articulated Robots with CNC Control Systems

High Accuracy Articulated Robots with CNC Control Systems Copyright 2012 SAE International 2013-01-2292 High Accuracy Articulated Robots with CNC Control Systems Bradley Saund, Russell DeVlieg Electroimpact Inc. ABSTRACT A robotic arm manipulator is often an

More information

KEYPOINT An industrial robot is a general-purpose, programmable machine possessing certain anthropomorphic characteristics.

KEYPOINT An industrial robot is a general-purpose, programmable machine possessing certain anthropomorphic characteristics. Unit 6 Industrial Robotics Assigned Core Text Reading for this Unit: Groover, M. P. (2008), Automation, Production Systems, and Computer- Integrated Manufacturing, 3 rd ed., Chapter 8. 6.1 Unit Introduction

More information

UOM Robotics and Industrial Automation Laboratory

UOM Robotics and Industrial Automation Laboratory UOM Robotics and Industrial Automation Laboratory Department of Industrial and Manufacturing Engineering, RIAL Mission o to be a Centre of Excellence in Malta for research, development, teaching and outreach

More information

ROBOT END EFFECTORS SCRIPT

ROBOT END EFFECTORS SCRIPT Slide 1 Slide 2 Slide 3 Slide 4 An end effector is the business end of a robot or where the work occurs. It is the device that is designed to allow the robot to interact with its environment. Similar in

More information

Industrial robots. SCARA robots for industrial applications.»» Reliable and versatile»»simple programming and quick set-up»»economical and efficient

Industrial robots. SCARA robots for industrial applications.»» Reliable and versatile»»simple programming and quick set-up»»economical and efficient Industrial robots SCARA robots for industrial applications»» Reliable and versatile»»simple programming and quick set-up»»economical and efficient A win-win mechatronics proposition Your benefits: Simplify

More information

Robotics. Efficient robot-based automation for solar cell and module production

Robotics. Efficient robot-based automation for solar cell and module production Robotics Efficient robot-based automation for solar cell and module production Robot based automation Our automation solutions for the photovoltaics industry contribute significantly to sustainable energy

More information

Linear Motion System: Transport and positioning for demanding applications

Linear Motion System: Transport and positioning for demanding applications Linear Motion System: Transport and positioning for demanding applications 2 The Perfect Concept for a variety of applications The Linear Motion System (LMS) from Rexroth is a unique technical solution

More information

ModS. SIO. USB analog. computer

ModS. SIO. USB analog. computer Dedi dicated Electronic Handwheel Instructions Dedi dicated Electronic Handwheel Instructions PCB Version : 1.0 Procedure Version: 1.0 Mach 3 Version: Above 1.84 1 Dedi dicated Electronic Handwheel Instructions

More information

ABB drives. Automation solutions Drives, PLC, motion, motors and safety

ABB drives. Automation solutions Drives, PLC, motion, motors and safety ABB drives Automation solutions Drives, PLC, motion, motors and safety Motion control solutions ADVANCED MOTION CONTROL Real-time motion bus systems Multi-axis coordinated motion Distributed motion control

More information

LEGO NXT-based Robotic Arm

LEGO NXT-based Robotic Arm Óbuda University e Bulletin Vol. 2, No. 1, 2011 LEGO NXT-based Robotic Arm Ákos Hámori, János Lengyel, Barna Reskó Óbuda University barna.resko@arek.uni-obuda.hu, hamoriakos@gmail.com, polish1987@gmail.com

More information

Thomas Fuhlbrigge, Global Program Manager of Next Generation Robotics, ABB Corporate Research, April 2016 Current Uses of Robotics and Teleoperation

Thomas Fuhlbrigge, Global Program Manager of Next Generation Robotics, ABB Corporate Research, April 2016 Current Uses of Robotics and Teleoperation Thomas Fuhlbrigge, Global Program Manager of Next Generation Robotics, ABB Corporate Research, April 2016 Current Uses of Robotics and Teleoperation in Industry Outline ABB Group Overview ABB Robotics

More information

Selecting Robots for Use in Drug Discovery and Testing

Selecting Robots for Use in Drug Discovery and Testing Selecting Robots for Use in Drug Discovery and Testing What Are the Essential Things to Know? Drug discovery and testing, with their need for speed, repeatability and verification, are ideally suited to

More information

The modular Line and Room Gantry design from SCHUNK

The modular Line and Room Gantry design from SCHUNK The modular Line and Room Gantry design from SCHUNK Save up to 50% Exceptional precision from the competence leader for clamping technology and gripping systems Standard Gantries ready for assembly, at

More information

Unit 1: INTRODUCTION TO ADVANCED ROBOTIC DESIGN & ENGINEERING

Unit 1: INTRODUCTION TO ADVANCED ROBOTIC DESIGN & ENGINEERING Unit 1: INTRODUCTION TO ADVANCED ROBOTIC DESIGN & ENGINEERING Technological Literacy Review of Robotics I Topics and understand and be able to implement the "design 8.1, 8.2 Technology Through the Ages

More information

Advantages of Auto-tuning for Servo-motors

Advantages of Auto-tuning for Servo-motors Advantages of for Servo-motors Executive summary The same way that 2 years ago computer science introduced plug and play, where devices would selfadjust to existing system hardware, industrial motion control

More information

14. Mechanisation. and Welding Fixture

14. Mechanisation. and Welding Fixture 14. Mechanisation and Welding Fixture 14. Mechanisation and Welding Fixtures 197 As the production costs of the metal-working industry are nowadays mainly determined by the costs of labour, many factories

More information

Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill

Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill Objectives: Analyze the operation of sequential logic circuits. Understand the operation of digital counters.

More information

Choosing Between Electromechanical and Fluid Power Linear Actuators in Industrial Systems Design

Choosing Between Electromechanical and Fluid Power Linear Actuators in Industrial Systems Design Choosing Between Electromechanical and Fluid Power Linear Actuators in Industrial Systems Design James Marek, Business Unit Director, Thomson Systems Thomson Industries, Inc. 540-633-3549 www.thomsonlinear.com

More information

Year 1805 Doll, made by Maillardet, that wrote in either French or English and could draw landscapes

Year 1805 Doll, made by Maillardet, that wrote in either French or English and could draw landscapes Unit 8 : ROBOTICS INTRODUCTION Robots are devices that are programmed to move parts, or to do work with a tool. Robotics is a multidisciplinary engineering field dedicated to the development of autonomous

More information

1 Different types of systems... 2. 2 Sub-systems... 4 3 Different types of control systems... 5. 4 Simple systems analysis... 10

1 Different types of systems... 2. 2 Sub-systems... 4 3 Different types of control systems... 5. 4 Simple systems analysis... 10 1 Different types of systems... 2 (a) Mechanical system... 2 (b) Electronic system... 2 (c) Computer control system... 3 (d) Pneumatic system... 3 (e) Other systems... 4 2 Sub-systems... 4 3 Different

More information

Bionic Handling Assistant

Bionic Handling Assistant Bionic Handling Assistant Platform for the development of new technologies Systematic expertise through continuous further development Platform for innovations from the Festo range of products Flexible

More information

A descriptive definition of valve actuators

A descriptive definition of valve actuators A descriptive definition of valve actuators Abstract A valve actuator is any device that utilizes a source of power to operate a valve. This source of power can be a human being working a manual gearbox

More information

10 tips for servos and steppers a simple guide

10 tips for servos and steppers a simple guide 10 tips for servos and steppers a simple guide What are the basic application differences between servos and steppers? Where would you choose one over the other? This short 10 point guide, offers a simple

More information

GANTRY ROBOTIC CELL FOR AUTOMATIC STORAGE AND RETREIVAL SYSTEM

GANTRY ROBOTIC CELL FOR AUTOMATIC STORAGE AND RETREIVAL SYSTEM Advances in Production Engineering & Management 4 (2009) 4, 255-262 ISSN 1854-6250 Technical paper GANTRY ROBOTIC CELL FOR AUTOMATIC STORAGE AND RETREIVAL SYSTEM Ata, A., A.*; Elaryan, M.**; Gemaee, M.**;

More information

Introduction to Accuracy and Repeatability in Linear Motion Systems

Introduction to Accuracy and Repeatability in Linear Motion Systems Introduction to accuracy and repeatability in linear motion systems By Gary Rosengren, Director of Engineering Tolomatic, Inc. About the Author Gary Rosengren is Director of Engineering at Tolomatic and

More information

10. CNC Hardware Basics

10. CNC Hardware Basics CAD/CAM Principles and Applications 10 CNC Hardware Basics 10-1/10-20 by P.N.Rao 10. CNC Hardware Basics 10.1 Structure of CNC machine tools Table 10.1 Some design criteria for CNC machine tool design

More information

Automation System TROVIS 6400 TROVIS 6493 Compact Controller

Automation System TROVIS 6400 TROVIS 6493 Compact Controller Automation System TROVIS 6400 TROVIS 6493 Compact Controller For panel mounting (front frame 48 x 96 mm/1.89 x 3.78 inch) Application Digital controller to automate industrial and process plants for general

More information

The SOLUTION for Gathering Rotary Torque Sensor with Encoder Data

The SOLUTION for Gathering Rotary Torque Sensor with Encoder Data 10Thomas,Irvine,CA92618USA Tel:(949)465?0900 Fax:(949)465?0905 The SOLUTION for Gathering Rotary Torque Sensor with Encoder Data Rotary torque sensors with encoder options are common in test and measurement

More information

IR-Zimmerman Lifting Equipment Product Overview

IR-Zimmerman Lifting Equipment Product Overview IR-Zimmerman Lifting Equipment Product Overview Handling Devices Torque Reaction Products Irax Spring Balancers Quantum Electric Chain Hoists End Effectors The real workhorse of material handling equipment

More information

Speed Control Methods of Various Types of Speed Control Motors. Kazuya SHIRAHATA

Speed Control Methods of Various Types of Speed Control Motors. Kazuya SHIRAHATA Speed Control Methods of Various Types of Speed Control Motors Kazuya SHIRAHATA Oriental Motor Co., Ltd. offers a wide variety of speed control motors. Our speed control motor packages include the motor,

More information

SERVOMECH Linear Actuators

SERVOMECH Linear Actuators . SERVOMECH Linear actuators SERVOMECH mechanical linear actuators are motorised mechanical cylinders able to transform the rotary motion of a motor into the linear motion of a push rod. They are designed

More information

Intelligent Robotics Lab.

Intelligent Robotics Lab. 1 Variable Stiffness Actuation based on Dual Actuators Connected in Series and Parallel Prof. Jae-Bok Song (jbsong@korea.ac.kr ). (http://robotics.korea.ac.kr) ti k Depart. of Mechanical Engineering, Korea

More information

CE801: Intelligent Systems and Robotics Lecture 3: Actuators and Localisation. Prof. Dr. Hani Hagras

CE801: Intelligent Systems and Robotics Lecture 3: Actuators and Localisation. Prof. Dr. Hani Hagras 1 CE801: Intelligent Systems and Robotics Lecture 3: Actuators and Localisation Prof. Dr. Hani Hagras Robot Locomotion Robots might want to move in water, in the air, on land, in space.. 2 Most of the

More information

Programming ABB Industrial Robot for an Accurate Handwriting

Programming ABB Industrial Robot for an Accurate Handwriting Programming ABB Industrial Robot for an Accurate Handwriting ABIGO IZABO 1, TARIG FAISAL 1* MAHMUD IWAN 1, H M A A AL-ASSADI 2, HANIF RAMLI 2 1 Faculty of Engineering, Technology & Built Environment, UCSI

More information

Series: IDAM Servo Drive E Digital Motor Drive - DMD-078.12

Series: IDAM Servo Drive E Digital Motor Drive - DMD-078.12 Series: IDAM Servo Drive E Digital Motor Drive - DMD-078.12 inside Integrated amplifiers for 8 single-phase motors, 4 two-phases motors or 4 three-phases motors or combinations of them in one device Position

More information

Robots are ready for medical manufacturing

Robots are ready for medical manufacturing Robotics Industry focus Robots are ready for medical manufacturing Robots provide new twists, bends, and rolls for automated medical manufacturing. Leslie Gordon Senior Editor R Robotic automation has

More information

Series 6000 Torque measured metal bellow coupling

Series 6000 Torque measured metal bellow coupling Properties Free of float metal bellow coupling with integrated torque measurement Non-contact measurement system, high robustness High torsional stiffness Limited torque of inertia Performance Measurement

More information

Automotive Applications of 3D Laser Scanning Introduction

Automotive Applications of 3D Laser Scanning Introduction Automotive Applications of 3D Laser Scanning Kyle Johnston, Ph.D., Metron Systems, Inc. 34935 SE Douglas Street, Suite 110, Snoqualmie, WA 98065 425-396-5577, www.metronsys.com 2002 Metron Systems, Inc

More information

C Standard AC Motors

C Standard AC Motors C Standard AC Standard AC C-1 Overview, Product Series... C-2 Constant... C-9 C-21 C-113 Reversible C-147 Overview, Product Series Constant Reversible Electromagnetic Brake C-155 Electromagnetic Brake

More information

Siemens AG 2011 SINAMICS V60. The perfect solution for basic servo applications. Brochure May 2011 SINAMICS. Answers for industry.

Siemens AG 2011 SINAMICS V60. The perfect solution for basic servo applications. Brochure May 2011 SINAMICS. Answers for industry. The perfect solution for basic servo applications Brochure May 2011 SINAMICS Answers for industry. with 1FL5 servomotors The solution for basic servo applications There is a requirement to automate motion

More information

Alternative Linear Motion Systems. Iron Core Linear Motors

Alternative Linear Motion Systems. Iron Core Linear Motors Alternative Linear Motion Systems ME EN 7960 Precision Machine Design Topic 5 ME EN 7960 Precision Machine Design Alternative Linear Motion Systems 5-1 Iron Core Linear Motors Provide actuation forces

More information

HYDRAULIC ARM MODELING VIA MATLAB SIMHYDRAULICS

HYDRAULIC ARM MODELING VIA MATLAB SIMHYDRAULICS Engineering MECHANICS, Vol. 16, 2009, No. 4, p. 287 296 287 HYDRAULIC ARM MODELING VIA MATLAB SIMHYDRAULICS Stanislav Věchet, Jiří Krejsa* System modeling is a vital tool for cost reduction and design

More information

Robotics. DressPack Application Equipment & Accessories

Robotics. DressPack Application Equipment & Accessories Robotics DressPack Application Equipment & Accessories DressPacks The need for well integrated cable and hose packages on the robot, DressPacks, has made ABB develop flexible packages to support applications

More information

Fig 3. PLC Relay Output

Fig 3. PLC Relay Output 1. Function of a PLC PLC Basics A PLC is a microprocessor-based controller with multiple inputs and outputs. It uses a programmable memory to store instructions and carry out functions to control machines

More information

ITT Control Technologies Industrial Products

ITT Control Technologies Industrial Products ITT Control Technologies Industrial Products Application Solutions ITT Control Technologies product lines are continually expanding to provide its customers with solutions for applications in two market

More information

MECE 102 Mechatronics Engineering Orientation

MECE 102 Mechatronics Engineering Orientation MECE 102 Mechatronics Engineering Orientation Mechatronic System Components Associate Prof. Dr. of Mechatronics Engineering Çankaya University Compulsory Course in Mechatronics Engineering Credits (2/0/2)

More information

Robotics & Automation

Robotics & Automation Robotics & Automation Levels: Grades 10-12 Units of Credit: 1.0 CIP Code: 21.0117 Core Code: 38-01-00-00-130 Prerequisite: None Skill Test: 612 COURSE DESCRIPTION Robotics & Automation is a lab-based,

More information

CNC Machine Control Unit

CNC Machine Control Unit NC Hardware a NC Hardware CNC Machine Control Unit Servo Drive Control Hydraulic Servo Drive Hydraulic power supply unit Servo valve Servo amplifiers Hydraulic motor Hydraulic Servo Valve Hydraulic Servo

More information

Introduction to Robotics. Vikram Kapila, Associate Professor, Mechanical Engineering

Introduction to Robotics. Vikram Kapila, Associate Professor, Mechanical Engineering Introduction to Robotics Vikram Kapila, Associate Professor, Mechanical Engineering Definition Types Uses History Key components Applications Future Robotics @ MPCRL Outline Robot Defined Word robot was

More information

How To Program A Laser Cutting Robot

How To Program A Laser Cutting Robot Robotics ABB Robotics Laser Cutting Software High precision laser cutting made easy - Greater manufacturing flexibility at lower capital investment Robotic laser cutting Overview Allows for the increased

More information

IRB 2600ID-15/1.85 Simple integration, high performance

IRB 2600ID-15/1.85 Simple integration, high performance Per Lowgren, Product Manager, Medium robots IRB 2600ID-15/1.85 Simple integration, high performance February 9, 2011 Slide 1 Overview of main features General purpose robot for integrated dressing solutions.

More information

ABB Robotics, June 2014. IRB 1200 Overview. ABB Group August 21, 2014 Slide 1

ABB Robotics, June 2014. IRB 1200 Overview. ABB Group August 21, 2014 Slide 1 ABB Robotics, June 2014 IRB 1200 Overview August 21, 2014 Slide 1 Overview Differentiated value proposition Have you ever wanted to make your machines 15% smaller and 10% faster? ABB s new IRB 1200 allows

More information

CNC HARDWARE & TOOLING BASICS

CNC HARDWARE & TOOLING BASICS Computer Aided Manufacturing (CAM) CNC HARDWARE & TOOLING BASICS Assoc. Prof. Dr. Tamer S. Mahmoud 1. Parts of CNC Machine Tools Any CNC machine tool essentially consists of the following parts: Part Program,

More information

Storage and conveyor APPLICAtIoNS EFFICIENtLY SoLVED

Storage and conveyor APPLICAtIoNS EFFICIENtLY SoLVED Applications efficiently solved TASKS in storage and conveyor Industry Flexibility and cost-efficiency The competitive advantage in storage and conveyor systems The storage and conveyor system plays a

More information

Positioner Versions. Remote feed-back. Local display, Electric / Hydraulic. Remote feed-back Electric / Hydraulic. Embedded Control Positioner

Positioner Versions. Remote feed-back. Local display, Electric / Hydraulic. Remote feed-back Electric / Hydraulic. Embedded Control Positioner Quick Stepper 3G ECP Positioner Versions Mechanical feed-back Pneumatic Remote feed-back Local display, Pneumatic Remote feed-back Local display, Electric / Hydraulic Remote feed-back Electric / Hydraulic

More information

An overview of Computerised Numeric Control (C.N.C.) and Programmable Logic Control (P.L.C.) in machine automation

An overview of Computerised Numeric Control (C.N.C.) and Programmable Logic Control (P.L.C.) in machine automation An overview of Computerised Numeric Control (C.N.C.) and Programmable Logic Control (P.L.C.) in machine automation By Pradeep Chatterjee, Engine Division Maintenance, TELCO, Jamshedpur 831010 E-mail: pradeep@telco.co.in

More information

OUTCOME 1 TUTORIAL 1 - MECHATRONIC SYSTEMS AND PRODUCTS

OUTCOME 1 TUTORIAL 1 - MECHATRONIC SYSTEMS AND PRODUCTS Unit 57: Mechatronic System Unit code: F/601/1416 QCF level: 4 Credit value: 15 OUTCOME 1 TUTORIAL 1 - MECHATRONIC SYSTEMS AND PRODUCTS 1. Understand the applications of a range of mechatronic systems

More information

Moving Magnet Actuator MI FFA series

Moving Magnet Actuator MI FFA series Moving Magnet Actuator MI FFA series The moving magnet MI-FFA series actuators are a line of actuators designed to be a true alternative for pneumatic cylinders. The actuators incorporate an ISO 6432 interface

More information

Development of Easy Teaching Interface for a Dual Arm Robot Manipulator

Development of Easy Teaching Interface for a Dual Arm Robot Manipulator Development of Easy Teaching Interface for a Dual Arm Robot Manipulator Chanhun Park and Doohyeong Kim Department of Robotics and Mechatronics, Korea Institute of Machinery & Materials, 156, Gajeongbuk-Ro,

More information

Figure 3.1.2 Cartesian coordinate robot

Figure 3.1.2 Cartesian coordinate robot Introduction to Robotics, H. Harry Asada Chapter Robot Mechanisms A robot is a machine capable of physical motion for interacting with the environment. Physical interactions include manipulation, locomotion,

More information

Rise of the robot. Celebrating 40 years of industrial robotics at ABB

Rise of the robot. Celebrating 40 years of industrial robotics at ABB IRB 6000 IRB 2000 IRB 90 IRB 6 Celebrating 40 years of industrial robotics at ABB DAVID MARSHALL, NICK CHAMBERS In this centenary edition of ABB Review, one other important anniversary can be celebrated:

More information

[ means: Save time, money and space! MAXXMILL 500. Vertical milling center for 5-side machining

[ means: Save time, money and space! MAXXMILL 500. Vertical milling center for 5-side machining [ E[M]CONOMY] means: Save time, money and space! MAXXMILL 500 Vertical milling center for 5-side machining MAXXMILL 500 MAXXMILL 500 is the ideal vertical milling center for the for the 5-axis operation

More information

Electronic Power Control

Electronic Power Control Service. Self-Study Programme 210 Electronic Power Control Design and Function With the Electronic Power Control system, the throttle valve is actuated only by an electric motor. This eliminates the need

More information