Stochastic Motion by Mean Curvature


 Melvyn Spencer
 1 years ago
 Views:
Transcription
1 Arch. Rational Mech. Anal. 144 (1998) c SpringerVerlag 1998 Stochastic Motion by Mean Curvature Nung Kwan Yip Communicated by R. V. Kohn Abstract We prove the existence of a continuously timevarying subset K(t) of R n such that its boundary K(t), which is a hypersurface, has normal velocity formally equal to the (weighted) mean curvature plus a random driving force. This is the first result in such generality combining curvature motion and stochastic perturbations. Our result holds for any C 2 convex surface energy. The K(t) can have topological changes. The randomness is introduced by means of stochastic flows of diffeomorphisms generated by Brownian vector fields which are white in time but smooth in space. We work in the context of geometric measure theory, using sets of finite perimeter to represent K(t). The evolution is obtained as a limit of a timestepping scheme. Variational minimizations are employed to approximate the curvature motion. Stochastic calculus is used to prove global energy estimates, which in turn give a tightness statement of the approximating evolutions. 1. Introduction In this paper, we introduce stochastic perturbations into motion by mean curvature. This motion is but one example of the general notion of curvature driven flows for interfaces, which have been widely used in the modeling of solidification and coarsening processes [AC, Lan, KKL]. By an interface, we mean a hypersurface separating two domains in R n of different physical properties. The interfacial velocity is some prescribed function of curvature or other quantities defined in the bulk region. The motion law is such that the sum of the surface and bulk energies of the system is decreased in time. However, the physical environment is seldom deterministic there are perturbations coming from thermal fluctuations and impurities. Hence, it is important to consider the effects of randomness.
2 314 N. K. Yip Motion by mean curvature, in which the normal velocity of the interface simply equals its mean curvature, has attracted much attention. It involves interesting aspects of the topology of curves and surfaces and also poses challenging questions for partial differential equations. The motion can lead to singularities and topological changes of the interface. Several machineries have been developed to tackle these difficulties. [Bra] first used varifold theory to prove an existence result in arbitrary codimension. The technique so far only applies to the isotropic surface energy. [CGG] and [ES] established global unique viscosity solution to the level set formulation of the curvature motion. But there might be ambiguities of the interfacial locations due to the flattening of the level sets. The phasefield approach, in particular the AllenCahn equation [AC] in which the interface is diffused, was shown to produce motion by mean curvature in the sharp interfacial limit [BK] (spherical case), [MS, Che] (when a smooth solution of the interfacial motion exists). [ES] extended this result to the viscosity setting. [Ilm, Son] further showed that Brakke s varifold solution can be obtained from the phasefield approach. Recently, [ATW] used a variational method to prove a general existence result global in time. 1 The surfaces can have topological changes. The advantages of this approach compared with the previous ones are that it works directly in the sharpinterfacial regime and can handle very general (even nonsmooth) anisotropic surface energy integrand. [ATW] called their evolution flat flow 2. The evolution is approximated by a timestepping scheme which involves variational minimizations. We extend this approach to include stochastic noise. Questions about stochastic dynamics of interfaces have been widely discussed in the physics literature. The works touch upon lattice models, derivations of continuum (macroscopic) equations, the study of interfacial structures, scaling limits, etc. We refer to [BS, KrSp, Zan] for good introductions to these topics. [KO1] and [KO2] derived a stochastic version of curvature flows in the spirit of the phasefield equation. [Fun1] and [Fun2] studied random sharpinterfacial limits in the case of one spatial dimension and a convex curve in the plane. However, many questions remain unsettled in general situations Mathematical Approach In this paper, we tread stochastic motion by mean curvature in the sharpinterfacial regime by using techniques of geometric measure theory [Fed]. We establish a continuously timevarying subset K(t)} t of R n such that its boundary K(t), which is a hypersurface, has velocity formally equal to the (weighted) mean curvature plus some random vector. If K(t) undergoes pure motion by mean curvature without perturbations, its surface area decreases according to d dt H n 1 ( K(t)) = h(x) 2 dh n 1 x (1) x K(t) 1 [LS] also proved a similar result in the isotropic case. 2 The surface is shown to evolve continuously in time in terms of the flat norm for integral currents of geometric measure theory.
3 Stochastic Motion by Mean Curvature 315 where H n 1 denotes the Hausdorff (n 1)dimensional measure and h is the mean curvature of K(t). This motion law can be extended to more general surface energy integrands Φ. The corresponding concept of curvature is then Φweighted mean curvature h Φ. Now the surface energy of K(t) decreases according to d Φ( K(t)) = h Φ 2 dh n 1. (2) dt K(t) We omit the word weighted for simplicity. In [ATW], such an evolution is recast as a negative gradient flow for the surface energy functional: d K(t) = Φ( K(t)). (3) dt An implicit time stepping scheme is used to solve this equation. During each time interval, the set K(t) is changed to a new shape which is a minimizer of an appropriate functional. This procedure approximates (3) in discrete time. We incorporate randomness into the above approach. Stochastic noises are introduced by means of a random flow of diffeomorphisms of the underlying space. This flow is generated by a Brownian vector field which is white in time but smooth in space. More precisely, we want K(t) to evolve according to the equation v n = h Φ + F, ˆn (4) where v n is the normal velocity of K(t), ˆn is the outward normal, h Φ is the Φ weighted mean curvature 3 ; F is a white noise vector field defined on the whole background domain. (We only consider the normal component of F with respect to K(t) since the tangential part does not change the shape of K(t).) In essence, we have in mind that K(t) is evolving so as to reduce its surface energy Φ( K(t) but this motion is constantly perturbed by F which acts by deforming the space. One of the main difficulties in introducing white noise into such a geometric motion is how to combine the nonlinearity of the evolution and the statistical cancellation property of the noise. We achieve this by a timesplitting scheme. Within each time interval of t, we perform two operations. First, we change the set K(t) by minimizing a functional which is the same as the one in [ATW]. This approximates v n = h Φ. Then we transport the set by the flow of diffeomorphisms generated by F. We repeat this process for each interval. Using tools from stochastic calculus, we prove that the previous construction produces a tight sequence (as t ) of probability measures on an appropriate space of stochastic processes. Any weak limit of the measures concentrates on the space of continuous evolutions of K(t). The main theorem is stated in Section 2.7 after the introduction of some terminology and notations. An outline of the proof is given in Section 2.8. Some remarks are in order: The method we employ is quite general. It produces a sharpinterfacial evolution, allowing topological changes. In the deterministic case, the surface energy Φ can be any convex integrand. In our random case, we need it 3 The sign of h Φ is chosen so that the equation is wellposed: a sphere wants to shrink.
4 316 N. K. Yip to be in C 2 due to our use of Ito s formula from stochastic calculus which involves second derivatives. On the other hand, so far we can only show that our construction gives (4) formally. The motion law and regularity of our evolving set K(t) are not quite clear. For the unperturbed deterministic problem, it is shown in [ATW 7.4] that the variational approach gives the same evolution as the classical solution as long as the latter exists. It seems a challenging problem to prove similar results beyond the appearance of interfacial singularities Related Models As mentioned earlier, curvature driven flows have wide applications in modeling solidification processes. We refer to [Lan] and [KKL] for an introduction to these physical phenomena. A more general form of interfacial velocity is given by v n = µ(h Φ + ). (5) µ is the mobility function which measures the kinetics how fast the interface can react to driving forces. denotes bulk quantities which might depend on the temperature field, concentration of solutes, impurities, etc. We refer to [Gur] for a derivation of (5) from a thermodynamical point of view. [TCH] gives a review of several mathematical approaches to tackle such interfacial evolutions. In a more complete model, the bulk variables are subject to diffusion equations. This has been considered in [AW, Luc, Son]. Stochastic perturbation has also been incorporated in this case [Yip]. Many other phenomenological continuum equations have been developed to study similar growth processes, which are discussed in [BS, KrSp, Zan] and references therein. Typical equations considered in these works include f = A 1 2 f + A 2 ( f ) 2 + η, KPZ equation, (6) t f = A 1 4 f + A 2 2 ( f ) 2 + η, diffusiondominated growth, (7) t where A 1 and A 2 are positive constants. η is commonly taken to be the spacetime white noise: η(x, t), η(y, s) = δ(x y)δ(t s). Questions of particular interests concerning these equations include the interfacial structures and scaling exponents. In addition, [KO1] and [KO2] derived random interfacial dynamics starting from the timedependent stochastic GinzburgLandau equation. Assuming that the interfacial curvature is small compared with the diffused interfacial thickness, they came up with the equation 4 t f = 1 + f 2 f div + η(x, t) (8) 1 + f 2 4 Here the interface is represented by the graph of f. The term 1 + f 2 accounts for the tilt of the interface.
5 Stochastic Motion by Mean Curvature 317 where the noise term satisfies the fluctuationdissipation relation η(x, t), η(y, s) = C 1 + f 2 δ(x y)δ(t s). (9) This is similar to our equation (4) where we replace η by F, ( f, 1) with F being a vector field white in time but smooth in space. 2. Statement of Theorem and Outline of Proof We introduce here some notations for our theorem. In the whole paper, we work in a fixed domain O of R n with compact closure and nice boundary. (We can also regard O as an ntorus.) All random variables and stochastic processes (such as the Brownian motion and flows set forth later) are defined on a common probability space (, F,P)where F is a σ field of and P is a probability measure on. E always means the expectation taken with respect to P Crystal Shape (K ) These are described by subsets of O with finite perimeters. K is called such a set if } K = sup div gdl n : g C 1 (O,Rn ), g 1 < (1) K K is called the perimeter of K. K is metrized by the L 1 norm: K L L 1 = K(x) L(x) dl n x = L n (K L). (11) x O (By abuse of notation, K can mean both the set K or its characteristic function χ K.) Each K K can also be considered as an ndimensional integral current in the context of geometric measure theory [Fed]. It is denoted by [[K]]. [[K]] refers to its current boundary. The main properties we need for this kind of sets are compactness under L 1 of the collection K K : K M< } and the existence of a well defined notion of normal and boundary, namely, approximate normal (n K ) and reduced boundary ( K). These concepts are described in detail in [EG] and [Giu] Surface Energy (Φ) This notion is used to describe interfacial surface energy. A surfacesenergy integrand Φ is a function from S n 1 to R +. It is usually extended to a map from R n to R + by positive homogeneity of degree 1: Φ(λv) = λφ(v) ( λ,v S n 1). Φ is called isotropic if Φ(v) = c v for some positive constant c. The Φ surface energy of K K is defined as Φ( K) = Φ(n K )dh n 1 (12) K where n K is the outward normal vector of K. 5 5 In this paper, K always denotes the reduced boundary of K.
6 318 N. K. Yip In this paper, we assume that Φ is in C 2 and is convex as a function from R n to R ΦWeighted Mean Curvature h Φ The h Φ of a hypersurface K can be defined as a weighted sum of the mean curvatures of K or more generally as the first variation of the Φsurface energy. A nice account of such a concept is given in [Tay]. Here we give the formula in the graph case. Suppose a surface in R n is represented by a graph: x n = f(x 1,...x n 1 ) and the surface energy integrand (assumed to be positively homogenous of degree 1) is given by Φ : (p 1,...p n ) R n R +. Then the Φweighted mean curvature of f is h Φ = n 1 i=1 x i ( ) Φ ( f, 1). (13) p i 2.4. Minimization Step Approximation of Motion by Mean Curvature Given t > and a K K, we replace K by a new set K which is a (Φ, t,k)minimizer, i.e., K minimizes the functional Φ( L) + 1 Dist(x, K)dL n x (14) t x L K over all L K where L K = (L\K) (K\L) and Dist(, K) is the distance function from a point to the (topological or reduced) boundary of K. Such a change from K to K is an approximation of motion by mean curvature of K as explained in [ATW, 2.12] Perturbation Step Stochastic Flows We stochastically perturb the set K by deforming the domain O by using a Brownian flow. These and other related terminologies are described in Appendix B. We also refer to [KS] for basic concepts in probability theory such as random variables, stochastic processes, martingales, etc. Let (, F,P)be a probability space equipped with a filtration F t }t. Let F, Ft ; t< } be a Brownian Motion in the space of vector fields defined on O. The support of F is contained in O for all t. The local characteristics of F are denoted by (a(x,y,t),b(x,t)) x,y O,t, which belongs to the class B 2,δ ub (δ >) (Section B.2). Under this assumption, F can be written as F(x,t) = M(x,t) + t b(x, r) dr (15) where M(x,t) is a continuous C 2 (O,R n )valued martingale with cross variation given by
7 Stochastic Motion by Mean Curvature 319 t M i (x, t), M j (x, t) = a ij (x,y,r)dr. (16) The Brownian flow ϕ s,t generated by F is the solution of the stochastic }t s differential equation t ϕ s,t (x) = x + F(ϕ s,r (x), dr), x O, s t 1. (17) s Under the stated assumptions of F, a unique solution for this equation exists. ϕs,t } t s is a 2parameter family of C2 diffeomorphisms of O. It equals the identity map outside O for all t s. We use ϕ s,t to perturb K: ϕ s,t K = (diffeomorphic) image of K under ϕ s,t. (18) This gives the effect that the boundary of K is transported by F Construction of Discretized Stochastic Motion by Mean Curvature Now we combine the previous ingredients and define our approximate evolutions. Let t = 1/N be the time discretization interval. We denote t i = i t. Starting from a fixed initial shape K at, we construct the discretized evolution K N (t) } as follows. For i N 1, t [,1] K N (t i + ) = a (Φ, t,k N (ti ))minimizer, K N (t) = ϕ ti,tk N (t i + ) for t i t<t i+1, i.e., at each t i, we change the set by minimization so as to approximate motion by mean curvature; in between any two t i s, the set is perturbed by the Brownian flow ϕ. The K N (t) } thus defined is a piecewise continuous timevarying set with t [,1] discontinuities at the t i } s ( t i 1). Sometimes we will use K N i + to denote K N (t i + ). A similar remark holds for K N i.nowk N ( ) is a stochastic process taking values in K with its sample paths being right continuous with lefthand limits. Such a space is denoted by D ([, 1], K ) and is endowed with the Skorokhod topology 6. 6 For details of the Skorokhod topology, see [Bil]. Actually we can formulate our result without using this topology (see Theorem 1.1). We introduce this terminology here just because it is a very common space used in the study of piecewise continuous stochastic processes.
8 32 N. K. Yip 2.7. Theorem Tightness of Stochastic Motion by Mean Curvature Let Φ be a C 2 and convex surfaceenergy intergrand and let F be a Brownian vector field in the class B 2,δ ub (δ>) with support contained in O. Let N be the law of K N (t) } on D ([, 1], K ) induced by the construction described in t [,1] Section 2.6. Then N } N 1 is tight7. Furthermore, any weak limit of N satisfies the following statements. 1. (C([, 1], K )) = 1, i.e., is supported on the space of continuous evolutions of K. 2. Uniform Surface Energy Estimate. For any positive integer m, there is a constant C m such that ( Φ( K(t)) m : K C([, 1], K ) }) C m. (19) sup t [,1] 3. Weak Continuity Estimate. For any positive integer m and f C 2 (O ), there is a constant C(f,m) such that for s t 1, f(x)dl n x f(x)dl n 2m x d K K C([,1],K ) x K(t) x K(s) C(f,m) t s m. (2) 2.8. Outline of Proof As described in the previous main statement, we are establishing a compactness result. We will prove that our set evolution heuristically satisfies E K(t) K(s) 2m C m t s m in some weak sense. Then the Kolmogorov Čentsov Theorem A.1, stated in Appendix A, says that K(t) varies continuously in time. In our discrete scheme, the set is changed by two procedures: minimization and stochastic perturbation. The estimate during the first step is essentially the same as in [ATW]. We show that formally (Corollary 3.2), change of set L 1 C t. The proof relies heavily on the regularity of the minimizers the boundary of any minimizer enjoys a lower density ratio bound (Proposition 3.1). For stochastic perturbations, we establish the following weaker form of the continuity statement: fdl n x fdl n x C(f) t K N (t+ t) K N (t) where f is any smooth function defined on O. 7 See the appendix for the definitions of tightness and weak limit of probability measures.
9 Stochastic Motion by Mean Curvature 321 Combining these two estimates, we have (see (31) and (32)) E K N (t) fdl n x K N (s) fdl n x 2m C(m, f ) t s m. This proves that the set evolves weakly continuously in time. Here we treat the sets as random measures. However, our sets are much better than arbitrary measures. They have a boundary notion which acts like a spatial distributional derivative. In this regard, we prove the uniform energy estimate (see (33)) } E sup Φ( K N (λ)) m C m, λ [,1] which implies that the sets have finite perimeters. With this extra ingredient, the weak continuity statement can be improved to strong L 1 continuity. The proofs of (31) (33) make use of the techniques from stochastic calculus, mainly Ito s formula and Martingale s inequality. For their statements we refer to [KS]. A particularly useful inequality is the BurkholderDavisGundy Inequalities (BDG) [KS, ] which is used in several places in this paper. We state it here for later reference: Let M t be a continuous (local) martingale such that M =. Then for all m>, there are universal positive constants k m and K m (not depending on M) such that k m E ( M m ) ( τ E (Mτ )2m) K m E ( M m ) τ (21) where τ is any stopping time, M t is the quadratic variation of M and M t = sup s t M s. 3. Approximation of Motion by Mean Curvature In this section, we describe the estimates related to the minimization step. Recall the setup in Section 2.4. Given a set K, we find a (Φ, t,k )minimizer. In our actual application, K is the shape at time t i, and any minimizer K can be chosen to be the shape at t + i. The regularity of the (Φ, t,k )minimizers is very important in establishing the continuity statement of the overall evolution. The starting point is a lower bound for the (n 1)dimensional density ratio, from which we can control the volume change of the set. The existence of (Φ, t,k )minimizers is easily deduced from the compactness property of integral currents or functions of bounded variations. Furthermore, any minimizer lies in the convex hull of K. The following is a collection of results from [AWT, 3.4, 5.3]. We set forth the following notations which are standard in geometric measure theory:
10 322 N. K. Yip B n (p, r) = x : p x r }, U n (p, r) = x : p x <r}, Φ = sup Φ(n), Φ = inf Φ(n), γ k (2 k n) is the isoperimetric constant, α(n) is the volume of unit nball in R n, β(n) is the BesicovitchFederer covering constant for R n. Proposition 3.1 ((n 1)Dimensional Density Bound for Minimizers [ATW, 3.4]). Let K be a (Φ, t,k )minimizer. Then for all p spt [[K]], where θ = H n 1 ( K B n (p, r)) r n 1 θ for all <r t (22) ( ) 1 1/(n 2) ( ) } n 1 Φ nφ (n 1) n 1 inf 1, 2γ n 1 Φ 3D and D is the number from Proposition Proof. Denote T = [[K]]. Let p spt [[K]]. Define ρ(x) = x p. For all r>, consider T r = T x : ρ(x)<r}, m(r) = M(T r ) = H n 1 ( K B n (p, r)). } For almost every r>, the slice T,ρ,r = (T x : ρ(x) r ) = Tr is an integral (n 2)current and M( T r ) = M T,ρ,r m (r) (since Lip ρ = 1). By the isoperimetric inequality, there is an integral (n 1)current R supported in B n (p, r) such that R = T r = T,ρ,r and M(R) γ n 1 M( T r ) (n 1)/(n 2) γ n 1 m (r) (n 1)/(n 2). Consider the cone Q = [[p]] (R T r ).(Q is the n dimensional current formed by joining p to all the points on R T r. For a precise definition, see [Fed, ].) Since (R T r ) =, we have Q = R T r and M(Q) r n M(R T r) r [ ] γ n 1 m (r) (n 1)/(n 2) + m(r). n Note that Φ(T + Q) Φ(T) = Φ(R+(T T r )) Φ(T r +(T T r )) = Φ(R) Φ(T r ). Since K is a (Φ, t,k )minimizer, we have Φ( K) + 1 Dist(x, K )dl n x t K K Φ( (K + Q)) + 1 Dist(x, K )dl n x t L K where L is the set corresponding to the current K + Q. Since K L\K K K L, we deduce that } Dist(x, Φ(T r ) Φ(R) + L n K ) (K L) sup : x B n (p, r). t 8 This result implies that H n 1 (spt [[K]] [[K]]) =.
11 Stochastic Motion by Mean Curvature 323 Since L n (K L) M(Q), the last inequality gives Φ m(r) Φ γ n 1 m (r) (n 1)/(n 2) + r [ ] } Dist(x, γ n 1 m (r) (n 1)/(n 2) K ) + m(r) sup : x B n (p, r). n t By Proposition 3.3, Dist(x, K ) D t. Hence ( m(r) 1 rd ) n tφ m(r) Φ γ n 1 m (r) (n 1)/(n 2) Φ + rd [ ] n γ n 1 m (r) (n 1)/(n 2) + m(r), tφ Φ (γ )( n Φ ) rd n tφ m (r) (n 1)/(n 2). Now restrict r r = nφ t/3d and set C (n 1)/(n 2) = 2γ n 1 Φ /Φ. Then If r r t, then m(r) C (n 1)/(n 2) m (r) (n 1)/(n 2) ((n 1)m(r) 1/(n 1)) m(r) = m(r) (n 2)/(n 1) 1 C r n 1 m(r) ((n 1)C) n 1. m(r) r n 1 m(r ) r n 1 ( r The whole proposition follows if we set θ = r ) ( ) n 1 1 n 1 ( ) n 1 nφ. (n 1)C 3D ( ) 1 1/(n 2) ( ) } n 1 Φ nφ (n 1) n 1 inf 1,. 2γ n 1 Φ 3D Corollary 3.2 (Volume Difference Estimate). Let K be a set with a lower bound θ for the (n 1)dimensional density ratio in the sense of (22). Let K be a (Φ, t,k ) minimizer. Then 9 L n (K K ) A(Φ, n) R θ H n 1 ( K ) + t R (Φ( K ) Φ( K)) for all R 1 2 t, where A(Φ, n) is a number depending only on Φ and n. 9 Note that we are making use of the lower density ratio bound of K, NOT K.
12 324 N. K. Yip Proof 1. By the fact that K is a (Φ, t,k )minimizer, we have, using K as a comparison shape, that Dist(x, K )dl n t(φ( K ) Φ( K)). (23) K K Now, L n (K K ) = L n (K K Dist(x, K ) R}) + L n (24) (K K Dist(x, K ) R}). For the first term on the right of (24), we have by (23), that L n (K K Dist(x, K ) R}) t R (Φ( K ) Φ( K)). (25) For the second term on the right of (24), by BesicovitchFederer Covering Theorem, we can cover K by balls of radius 2R such that they do not overlap more than β(n) times. Hence, L n (K K Dist(x, K ) R}) L n (B(p i, 2R)) = α(n) (2R) n B(p i,2r) = α(n)2 n R p i R n 1 B(p i,2r) α(n)2 n θ 1 R p i H n 1 ( K B(p i, 2R)) (by the lower density ratio bound for K ) α(n)β(n)2 n θ 1 RH n 1 ( K ). (26) The corollary follows by adding (25) and (26). Proposition 3.3 (ATW, 5.3). Let K be a (Φ, t,k )minimizer. Then Dist( K, K ) D(Φ, n) t where D(Φ, n) depends only on Φ and the dimension. Proof. Suppose that there is a point p K such that B(p, R) K. (The proof for the case B(p, R) K c is similar.) As a comparison set, let K = K B(p, 2 1R). Then, Φ( K) + 1 Dist(x, K )dl n t K K Φ( K ) + 1 Dist(x, K )dl n t K K Dist(x, K )dl n t ( Φ( K ) Φ( K) ). (27) B(p,R/2)\K Note that Φ( K ) Φ( K) = Φ( B(p, 2 1R)) Φ( (B(p, 2 1 R) K)). 1 This proof follows [LS, 1.5]. It is much simplier than the original argument in [ATW, 4.2].
13 Stochastic Motion by Mean Curvature 325 To simplify the notation, assume that the Wulff shape of Φ is a ball 11. Then for all r> and U R n, Φ( B(p, r)) 1 n 1 L n (B(p, r)) 1 n Φ( U) 1 n 1 L n (U) 1 n [ Φ( B(p, r)) Φ( U) Φ( B(p, r)) 1 ( L n (U) L n (B(p, r)) ) n 1 ] n. Assuming further that U B(p,r), we obtain [ Φ( B(p, r)) Φ( U) Φ( B(p, r)) 1 Φ( B(p, r)) L n (B(p, r)\u) L n (B(p, r)) ( 1 L n (B(p, r)\u) L n (B(p, r)) ) n 1 ] n where in the last inequality we have used 1 (1 x) n 1 n x for x 1. Now set U = B(p, 2 1 R) K in the above. Then 1 2 RL n (B(p, 2 1 R)\K) lefthand side of (27) righthand side of (27) The extreme inequalities yield t Φ( (p, R/2)) L n (B(p, 1 2 R)\K) L n (B(p, 1 2 R)). 1 2 RL n (B(p, 2 1 n R)\K) t Φ( B(p,1 2 R))L (B(p, 2 1 R)\K) L n (B(p, 2 1 R)), 1 1 2R D(Φ, n) trn 1 R n, R D(Φ, n) t where D(Φ, n) depends only on Φ and the dimension. Proposition 3.4 (ndimensional Density Bound for Minimizers). Let K be a (Φ, t,k )minimizer. Then for all p K, L n (K B(p, r)), L n (K c B(p,r)) C(θ, n)r n for all <r t where C(θ,n) is a constant depending only on the lower bound θ for the (n 1) dimensional density ratio bound (Proposition 3.1) and on the dimension. 11 The Wulff shape of Φ is the unique shape having the smallest Φ energy among all solids with unit volume. When Φ is isotropic, the Wulff shape is just the ball.
14 326 N. K. Yip Proof (by contradiction). Suppose that there exist a point p K and r t such that L n (K B(p,r )) Cr n (28) where C will be chosen below. (The proof for L n (K c B(p,r )) is similar.) Then L n (K B(p,r )) = r Thus there exists s with 1 2 r s r such that H n 1 (K B(p,s))ds Cr n. H n 1 (K B(p,s )) 2Cr n 1. (29) Considering the comparison set K = K\B(p,s ),wehave Φ( K) + 1 Dist(x, K )dl n t K K Φ( K ) + 1 Dist(x, K )dl n, t K K Φ( K) Φ( K ) + Dist(x, K )dl n. K K Now Φ( K) Φ( K ) = Φ( K B(p,s )) Φ(K B(p,s )). Invoking Propositions 3.1, 3.3, (29) and (28), we have θs n 1 2CΦ Cr n 1 + D t L n (K K ), t θ rn 1 2 n 1 2CΦ Cr n 1 + D Cr n t, θ 2 n CΦ t r 2 n 1. CD Choosing C small enough leads to a contradiction to the hypothesis that r t. In this paper, we just make use of the lower bound for the (n 1)dimensional density ratio and the volumedifference estimate. However, any (Φ, t,k )minimizer also enjoys other regularity properties: [[K]] is Bomberi (Φ,ω,δ)minimal; spt [[K]] is Almgren (γ, δ)restricted with respect to the empty set; spt K(t) is H n 1 almost everywhere a twice differentiable hypersurface (when Φ is smooth and elliptic). These are all stated in [ATW, Section 3].
15 Stochastic Motion by Mean Curvature Continuity and Energy Estimates We now prove the continuity and energy estimates which are crucial in showing the tightness of the probability measures induced by our timediscretization scheme. In the following, we use the notations introduced in Section 2.6. Let m be any positive integer, s t 1 and f be any C 2 function on O.WeuseC(f,m), C m to denote positive constants depending only on f, m and the size of O. Theorem 4.1. The processes K N (t) } constructed in Section 2.6 satisfy the N 1 following statements. Weak Hölder Continuity. For any f C 2 (O ), let Kf N (t) = x K N (t) f(x)dl n x. It can be decomposed as K N f (t) = SN f (t) + MN f (t). (3) (i) S N f has the estimate E Sf N (t) SN f (s) 2m C(f,m) t s m. (31) (ii) Mf N (t) is a piecewise constant function with jumps at the t i s. Moreover, for any t p,t q [, 1], E Mf N (t+ q ) MN f (t p ) 2m C(f,m) t q t p m. (32) Uniform Energy Bound. } E sup Φ( K N (λ)) m C m. (33) λ [,1] We start the proof by first defining the decomposition (3). For simplicity, we assume that t = t q +. Then set Sf N (t) = Kf N (t i ) Kf N (t+ i 1 ) + KN f (t+ ), (34) M N f (t) = <t i t <t i t K N f (t+ i ) K N f (t i ). (35) Essentially Sf N measures the changes of the sets due to the deformations by stochastic flows. Mf N describes the changes (or jumps) during the minimization steps to approximate motion by mean curvature. The proof of Theorem 4.1 relies on the use of Ito s formula to estimate various quantities. It is divided into four parts. Proof of (31) (Section 5). Proof of (33) (Section 6). Proof of (32) (Section 7).
16 328 N. K. Yip Proof of the lower bound for the density ratio under stochastic perturbations (Section 8). To prove Theorem 4.1, we write the whole evolution as a stochastic integral, and patch together the estimates of each discretized interval by making use of the statistical cancellation property of the Brownian flow. Hence we need to make sure that the evolution is adapted to the filtration upon which the Brownian flow is defined. 12 To achieve this, it suffices to show the existence of a Borel measurable map Ɣ from K to K such that Ɣ(K) gives a (Φ, t,k)minimizer. The technicality underlying this is treated in [SV, Chapter 12.1]. It is applied to our present situation in [Yip]. We do not repeat here. Next, we rewrite (86) here for later reference. d F α (x, t), F β (y, t) = a α,β (x, y), d γ F α (x, t), δ F β (y, t) = γ δ aα,β (x, y), d F α (x, t), γ F β (y, t) = γ aα,β (x, y) where the differentiation on a(, ) is with respect to the first variable and to the second variable. Note that we use, to denote the cross variation process between two semimartingales. Recall also the relationship (17) between ϕ and F. 5. Proof of (31) Perturbations by Stochastic Flows Without loss of generality, assume that t = t q s = t p. Then, Sf N (t q) Sf N (t p) q = Kf N (t i ) Kf N (t+ i 1 ) i=p+1 ( q ) = f(x)dl n x f(x)dl n x i=p+1 x K N (ti ) x K N (t i 1 + ) ( q ) = f(x)dl n x f(x)dl n x i=p+1 x ϕ ti 1,t i (K N (t i 1 + )) x K N (t i 1 + ) ( q = f(ϕ ti 1 i=p+1 x K N (t i 1 + ),t i (x)) det(dϕ ti 1,t i (x)) dl n x ) f(x)dl n x. (36) x K N (t i 1 + ) 12 See [KS, Chapter 1] for the definition and the need of adaptedness.
17 Stochastic Motion by Mean Curvature 329 We apply Ito s Formula to rewrite the quantities in the parentheses and establish the following expression (see (4)), S N f (t q) S N f (t p) = tq t p A(K N (r), f, dr) + B(K N (r), f, dr) where A(K N (t), f, t) is a function of bounded variations and B(K N (t), f, t) is a semimartingale. df (ϕ ti 1,t(x)) = = n α= n α= Ito s Formula for f(ϕ ti 1,t(x)), t i 1 t f x α (ϕ ti 1,t(x)) dϕ α t i 1,t (x) n β,γ=1 2 f (ϕ ti 1,t(x))d ϕt β x β x i 1,t(x), ϕ γ t i 1,t(x) γ f x α (ϕ ti 1,t(x)) df α (ϕ ti 1,t(x), dt) n β,γ=1 2 f x β x γ (ϕ ti 1,t(x))a β,γ (ϕ ti 1,t(x), ϕ ti 1,t(x), t) dt. (37) 5.2. Ito s Formula for det(dϕ ti 1,t(x)), t i 1 t where σ } is the collection of all permutations of (1, 2,,n)and sgn(σ ) is the sign of σ. After routine calculations 13, we obtain We write det(d(ϕ ti 1,t(x)) = σ sgn(σ ) ϕ1 t i 1,t (x) x σ(1) d [ det(dϕ ti 1,t(x)) ] ϕn t i 1,t (x) x σ (n) = div F(ϕ ti 1,t(x), dt) det(dϕ ti 1,t(x)) + 1 n ( ) 2 β γ β γ a β,γ (ϕ ti 1,t(x), ϕ ti 1,t(x), t) β,γ=1 det(dϕ ti 1,t(x)) dt. (38) 13 Similar calculation has been done in [Kun, 4.3.1].
18 33 N. K. Yip 5.3. Combination of (37) and (38) d [ f(ϕ ti 1,t(x)) det(dϕ ti 1,t(x)) ] = f(ϕ ti 1,t(x))d [ det(dϕ ti 1,t(x)) ] + det(dϕ ti 1,t(x))df (ϕ ti 1,t(x)) + d f(ϕ ti 1,t(x)), det(dϕ ti 1,t(x)) = f(ϕ ti 1,t(x)) div F(ϕ ti 1,t(x), dt) det(dϕ ti 1,t(x)) + f(ϕ t i 1,t(x)) 2 n ( ) β γ β γ a β,γ (ϕ ti 1,t(x), ϕ ti 1,t(x), t) β,γ=1 det(dϕ ti 1,t(x)) dt n f + (ϕ ti 1,t(x))F α (ϕ ti 1,t(x), dt) x α α=1 + 1 n 2 f (ϕ ti 1,t(x))a β,γ (ϕ ti 1,t(x), ϕ ti 1,t(x), t) dt 2 x β x γ β,γ=1 det(dϕ ti 1,t(x)) n f + (ϕ ti 1,t(x))d F α (ϕ ti 1,t(x), t), div F(ϕ ti 1,t(x), t) } x α α=1 We can also write det(dϕ ti 1,t(x)). d F α (ϕ ti 1,t(x), t), div F(ϕ ti 1,t(x), t) = n δ aα,δ (ϕ ti 1,t(x), ϕ ti 1,t(x), t) dt. δ=1 The final formula we arrive at is f(ϕ tt 1,t(x)) det(dϕ tt 1,t(x)) dl n x K t = A i (f,x,r)dl n xdr+ t i 1 K where A i (f,x,r)denotes f(ϕ ti 1,r(x)) n β,γ=1 α,δ=1 β,γ=1 K t f(x)dl n x B i (f,x,dr)dl n x (39) t i 1 ( ) β γ β γ a β,γ (ϕ ti 1,r(x), ϕ ti 1,r(x)) n 2 f (ϕ ti 1,r(x))a β,γ (ϕ ti 1,r(x), ϕ ti 1,r(x)) x β x γ n f (ϕ ti 1,r(x)) δ x aα,δ (ϕ ti 1,r(x), ϕ ti 1,r(x)) α det(dϕ t i 1,r(x)) K
19 Stochastic Motion by Mean Curvature 331 and B i (f,x,dr)denotes f(ϕ ti 1,r(x)) div F(ϕ ti 1,r(x), dr) + In addition, we define n α=1 ti t } f (ϕ ti 1,r(x))F α (ϕ ti 1,r(x), dr) det(dϕ ti 1,r(x)). x α ti t A N (f,x,t)= i (f,x,r)dr, B i= t i 1 ta N (f,x,t)= B i (f,x,dr). i= t i 1 t Hence from (36), we get q ti Sf N (t q) Sf N (t p) = A i (f,x,r)dr + db i (f,x,r)dl n x K N i 1 + = i=p+1 tp t p t i 1 K N (r) da N (f,x,r)+ db N (f,x,r)dl n x. (4) Now A N (f,x,t)is a process of bounded variation and B N (f,x,t)is a semimartingale. Since the local characteristic (a, b) of F belongs to the class of B 1,δ ub (O ), we conclude from (113) that da N (f,x,t) C(f)dt, d B N (f, x, t), B (f,y,t) N C(f)dt where C(f) is a constant depending only on f and its derivatives up to second order. By the BDG Inequality (21), for any positive integer m,wehave tq E da N (f,x,r)+ db N (f,x,r)dl n x 2m C m E t p K N (r) tq + C m E t p K N (r) tq t p da N (f,x,r)dl n x K N (r) C m (f ) t q t p 2m + Cm (f )E tq t p C m (f ) t q t p m 2m db N (f,x,r)dl n x (x,y) (K N (r),k N (r)) d Hence the whole (31) is proved 14. 2m B N (f, x, r), B N (f,y,r) dl n xdl n y m (41) 14 There should also be a term for the boundedvariation part of the semimartingale B N. But its estimate can be absorbed into that for A N.
20 332 N. K. Yip 6. Proof of (33) Uniform Boundary Estimates Statement (33) implies that almost surely the random measures associated with our sets have finite perimeters for all time. By the definition of minimizations, we always have Φ( K N i + ) Φ( K N i ).In between the minimizations, the set K N i + is deformed by the Brownian flow ϕ, i.e., for t i t<t i+1, Φ( K N (t)) = Φ(ϕ ti,t K N i + ). Combining the two steps (assuming that t = t q for simplicity), we obtain Φ( K N q + ) Φ( K N q ) Φ( K N q ) Φ( K N q 1 + ) + Φ( K N q 1 + ). q 1 Φ( K N + ) + Φ( K N i+1 ) Φ( K N i + ) i= q 1 = Φ( K N + ) + Φ(ϕ ti,t i+1 K N i + ) Φ( K N i + ). (42) Now we look at the term Φ(ϕ ti,t i+1 K N i + ) Φ( K N i + ) in detail. i= 6.1. Ito s Formula for Φ(ϕ s,t K), s t 1 Let K K. We borrow the notations and formulas from geometric measure theory, especially the changeofvariables formula for (n 1)dimensional integration. We write Then Φ(ϕ s,t [[K]]) = [[K]] = t( K,1, σ ), ϕ s,t [[K]] = t(ϕ s,t K,1,σ t ). ϕ s,t K Φ(σ t )dh n 1 = K Φ( [ n 1 Dϕ s,t] σ)dh n 1. These notations can be found in [ATW, 3.1] and [Fed, Chapter 1]. We briefly describe them here. [[K]] is an (n 1)integral current. σ denotes the approximate tangent plane of [[K]]. It is a simple unit (n 1)vector in the Grassmann vector space n 1 Rn. n 1 Dϕ s,t is a linear map on n 1 Rn such that [ n 1 Dϕ s,t] (v1 vn 1 ) = (Dϕ s,t v 1 ) (Dϕ s,t v n 1 ), v 1,...,v n 1 R n. Let π t = [ Dϕ s,t ] σ. (It can also be treated as a vector in R n.) Since Φ is in C 2, by Ito s Formula, we have, dφ(π t ) = n i Φ(π t )dπt i i=1 n ij 2 Φ(π t)d πt i,πj t. ij
Systems with Persistent Memory: the Observation Inequality Problems and Solutions
Chapter 6 Systems with Persistent Memory: the Observation Inequality Problems and Solutions Facts that are recalled in the problems wt) = ut) + 1 c A 1 s ] R c t s)) hws) + Ks r)wr)dr ds. 6.1) w = w +
More informationMA651 Topology. Lecture 6. Separation Axioms.
MA651 Topology. Lecture 6. Separation Axioms. This text is based on the following books: Fundamental concepts of topology by Peter O Neil Elements of Mathematics: General Topology by Nicolas Bourbaki Counterexamples
More information2.3 Convex Constrained Optimization Problems
42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions
More informationFIELDSMITACS Conference. on the Mathematics of Medical Imaging. Photoacoustic and Thermoacoustic Tomography with a variable sound speed
FIELDSMITACS Conference on the Mathematics of Medical Imaging Photoacoustic and Thermoacoustic Tomography with a variable sound speed Gunther Uhlmann UC Irvine & University of Washington Toronto, Canada,
More informationMathematics Course 111: Algebra I Part IV: Vector Spaces
Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 19967 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are
More informationQuasistatic evolution and congested transport
Quasistatic evolution and congested transport Inwon Kim Joint with Damon Alexander, Katy Craig and Yao Yao UCLA, UW Madison Hard congestion in crowd motion The following crowd motion model is proposed
More informationUnderstanding Basic Calculus
Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other
More informationThe HenstockKurzweilStieltjes type integral for real functions on a fractal subset of the real line
The HenstockKurzweilStieltjes type integral for real functions on a fractal subset of the real line D. Bongiorno, G. Corrao Dipartimento di Ingegneria lettrica, lettronica e delle Telecomunicazioni,
More informationBasic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011
Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011 A. Miller 1. Introduction. The definitions of metric space and topological space were developed in the early 1900 s, largely
More informationBANACH AND HILBERT SPACE REVIEW
BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but
More informationMetric Spaces. Chapter 1
Chapter 1 Metric Spaces Many of the arguments you have seen in several variable calculus are almost identical to the corresponding arguments in one variable calculus, especially arguments concerning convergence
More informationAdaptive Online Gradient Descent
Adaptive Online Gradient Descent Peter L Bartlett Division of Computer Science Department of Statistics UC Berkeley Berkeley, CA 94709 bartlett@csberkeleyedu Elad Hazan IBM Almaden Research Center 650
More informationMetric Spaces. Chapter 7. 7.1. Metrics
Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some
More informationEXIT TIME PROBLEMS AND ESCAPE FROM A POTENTIAL WELL
EXIT TIME PROBLEMS AND ESCAPE FROM A POTENTIAL WELL Exit Time problems and Escape from a Potential Well Escape From a Potential Well There are many systems in physics, chemistry and biology that exist
More informationDuality of linear conic problems
Duality of linear conic problems Alexander Shapiro and Arkadi Nemirovski Abstract It is well known that the optimal values of a linear programming problem and its dual are equal to each other if at least
More informationOn a comparison result for Markov processes
On a comparison result for Markov processes Ludger Rüschendorf University of Freiburg Abstract A comparison theorem is stated for Markov processes in polish state spaces. We consider a general class of
More information1 if 1 x 0 1 if 0 x 1
Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or
More informationFACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z
FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z DANIEL BIRMAJER, JUAN B GIL, AND MICHAEL WEINER Abstract We consider polynomials with integer coefficients and discuss their factorization
More informationA PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS. In memory of RouHuai Wang
A PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS XAVIER CABRÉ, MANEL SANCHÓN, AND JOEL SPRUCK In memory of RouHuai Wang 1. Introduction In this note we consider semistable
More informationChapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.
Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize
More informationTHE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS
THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear
More informationA class of infinite dimensional stochastic processes
A class of infinite dimensional stochastic processes John Karlsson Linköping University CRM Barcelona, July 7, 214 Joint work with JörgUwe Löbus John Karlsson (Linköping University) Infinite dimensional
More informationPUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.
PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include
More informationSensitivity analysis of European options in jumpdiffusion models via the Malliavin calculus on the Wiener space
Sensitivity analysis of European options in jumpdiffusion models via the Malliavin calculus on the Wiener space Virginie Debelley and Nicolas Privault Département de Mathématiques Université de La Rochelle
More informationThe Dirichlet Unit Theorem
Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if
More informationMATH 425, PRACTICE FINAL EXAM SOLUTIONS.
MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES Contents 1. Random variables and measurable functions 2. Cumulative distribution functions 3. Discrete
More informationSensitivity analysis of utility based prices and risktolerance wealth processes
Sensitivity analysis of utility based prices and risktolerance wealth processes Dmitry Kramkov, Carnegie Mellon University Based on a paper with Mihai Sirbu from Columbia University Math Finance Seminar,
More informationMathematical Finance
Mathematical Finance Option Pricing under the RiskNeutral Measure Cory Barnes Department of Mathematics University of Washington June 11, 2013 Outline 1 Probability Background 2 Black Scholes for European
More informationRESULTANT AND DISCRIMINANT OF POLYNOMIALS
RESULTANT AND DISCRIMINANT OF POLYNOMIALS SVANTE JANSON Abstract. This is a collection of classical results about resultants and discriminants for polynomials, compiled mainly for my own use. All results
More informationCritical points of once continuously differentiable functions are important because they are the only points that can be local maxima or minima.
Lecture 0: Convexity and Optimization We say that if f is a once continuously differentiable function on an interval I, and x is a point in the interior of I that x is a critical point of f if f (x) =
More information1 Norms and Vector Spaces
008.10.07.01 1 Norms and Vector Spaces Suppose we have a complex vector space V. A norm is a function f : V R which satisfies (i) f(x) 0 for all x V (ii) f(x + y) f(x) + f(y) for all x,y V (iii) f(λx)
More information3. INNER PRODUCT SPACES
. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.
More informationInner Product Spaces
Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and
More informationDecember 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS
December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in twodimensional space (1) 2x y = 3 describes a line in twodimensional space The coefficients of x and y in the equation
More informationSOME PROPERTIES OF FIBER PRODUCT PRESERVING BUNDLE FUNCTORS
SOME PROPERTIES OF FIBER PRODUCT PRESERVING BUNDLE FUNCTORS Ivan Kolář Abstract. Let F be a fiber product preserving bundle functor on the category FM m of the proper base order r. We deduce that the rth
More information4. Expanding dynamical systems
4.1. Metric definition. 4. Expanding dynamical systems Definition 4.1. Let X be a compact metric space. A map f : X X is said to be expanding if there exist ɛ > 0 and L > 1 such that d(f(x), f(y)) Ld(x,
More informationContinued Fractions and the Euclidean Algorithm
Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction
More informationMathematics Review for MS Finance Students
Mathematics Review for MS Finance Students Anthony M. Marino Department of Finance and Business Economics Marshall School of Business Lecture 1: Introductory Material Sets The Real Number System Functions,
More informationARBITRAGEFREE OPTION PRICING MODELS. Denis Bell. University of North Florida
ARBITRAGEFREE OPTION PRICING MODELS Denis Bell University of North Florida Modelling Stock Prices Example American Express In mathematical finance, it is customary to model a stock price by an (Ito) stochatic
More informationSection 1.1. Introduction to R n
The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to
More informationRecall that the gradient of a differentiable scalar field ϕ on an open set D in R n is given by the formula:
Chapter 7 Div, grad, and curl 7.1 The operator and the gradient: Recall that the gradient of a differentiable scalar field ϕ on an open set D in R n is given by the formula: ( ϕ ϕ =, ϕ,..., ϕ. (7.1 x 1
More information4: SINGLEPERIOD MARKET MODELS
4: SINGLEPERIOD MARKET MODELS Ben Goldys and Marek Rutkowski School of Mathematics and Statistics University of Sydney Semester 2, 2015 B. Goldys and M. Rutkowski (USydney) Slides 4: SinglePeriod Market
More informationτ θ What is the proper price at time t =0of this option?
Now by Itô s formula But Mu f and u g in Ū. Hence τ θ u(x) =E( Mu(X) ds + u(x(τ θ))) 0 τ θ u(x) E( f(x) ds + g(x(τ θ))) = J x (θ). 0 But since u(x) =J x (θ ), we consequently have u(x) =J x (θ ) = min
More information1. Prove that the empty set is a subset of every set.
1. Prove that the empty set is a subset of every set. Basic Topology Written by MenGen Tsai email: b89902089@ntu.edu.tw Proof: For any element x of the empty set, x is also an element of every set since
More informationCommunication on the Grassmann Manifold: A Geometric Approach to the Noncoherent MultipleAntenna Channel
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 2, FEBRUARY 2002 359 Communication on the Grassmann Manifold: A Geometric Approach to the Noncoherent MultipleAntenna Channel Lizhong Zheng, Student
More informationThe Ideal Class Group
Chapter 5 The Ideal Class Group We will use Minkowski theory, which belongs to the general area of geometry of numbers, to gain insight into the ideal class group of a number field. We have already mentioned
More informationThe Heat Equation. Lectures INF2320 p. 1/88
The Heat Equation Lectures INF232 p. 1/88 Lectures INF232 p. 2/88 The Heat Equation We study the heat equation: u t = u xx for x (,1), t >, (1) u(,t) = u(1,t) = for t >, (2) u(x,) = f(x) for x (,1), (3)
More informationMathematical Methods of Engineering Analysis
Mathematical Methods of Engineering Analysis Erhan Çinlar Robert J. Vanderbei February 2, 2000 Contents Sets and Functions 1 1 Sets................................... 1 Subsets.............................
More informationNo: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics
No: 10 04 Bilkent University Monotonic Extension Farhad Husseinov Discussion Papers Department of Economics The Discussion Papers of the Department of Economics are intended to make the initial results
More informationGeometrical Characterization of RNoperators between Locally Convex Vector Spaces
Geometrical Characterization of RNoperators between Locally Convex Vector Spaces OLEG REINOV St. Petersburg State University Dept. of Mathematics and Mechanics Universitetskii pr. 28, 198504 St, Petersburg
More informationINDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS
INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS STEVEN P. LALLEY AND ANDREW NOBEL Abstract. It is shown that there are no consistent decision rules for the hypothesis testing problem
More informationProperties of BMO functions whose reciprocals are also BMO
Properties of BMO functions whose reciprocals are also BMO R. L. Johnson and C. J. Neugebauer The main result says that a nonnegative BMOfunction w, whose reciprocal is also in BMO, belongs to p> A p,and
More informationt := maxγ ν subject to ν {0,1,2,...} and f(x c +γ ν d) f(x c )+cγ ν f (x c ;d).
1. Line Search Methods Let f : R n R be given and suppose that x c is our current best estimate of a solution to P min x R nf(x). A standard method for improving the estimate x c is to choose a direction
More informationA QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS
A QUIK GUIDE TO THE FOMULAS OF MULTIVAIABLE ALULUS ontents 1. Analytic Geometry 2 1.1. Definition of a Vector 2 1.2. Scalar Product 2 1.3. Properties of the Scalar Product 2 1.4. Length and Unit Vectors
More informationConvex analysis and profit/cost/support functions
CALIFORNIA INSTITUTE OF TECHNOLOGY Division of the Humanities and Social Sciences Convex analysis and profit/cost/support functions KC Border October 2004 Revised January 2009 Let A be a subset of R m
More informationLINEAR ALGEBRA W W L CHEN
LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008 This chapter is available free to all individuals, on understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,
More informationHydrodynamic Limits of Randomized Load Balancing Networks
Hydrodynamic Limits of Randomized Load Balancing Networks Kavita Ramanan and Mohammadreza Aghajani Brown University Stochastic Networks and Stochastic Geometry a conference in honour of François Baccelli
More informationMath212a1010 Lebesgue measure.
Math212a1010 Lebesgue measure. October 19, 2010 Today s lecture will be devoted to Lebesgue measure, a creation of Henri Lebesgue, in his thesis, one of the most famous theses in the history of mathematics.
More informationIdeal Class Group and Units
Chapter 4 Ideal Class Group and Units We are now interested in understanding two aspects of ring of integers of number fields: how principal they are (that is, what is the proportion of principal ideals
More informationClass Meeting # 1: Introduction to PDEs
MATH 18.152 COURSE NOTES  CLASS MEETING # 1 18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck Class Meeting # 1: Introduction to PDEs 1. What is a PDE? We will be studying functions u = u(x
More informationExtremal equilibria for reaction diffusion equations in bounded domains and applications.
Extremal equilibria for reaction diffusion equations in bounded domains and applications. Aníbal RodríguezBernal Alejandro VidalLópez Departamento de Matemática Aplicada Universidad Complutense de Madrid,
More informationFigure 2.1: Center of mass of four points.
Chapter 2 Bézier curves are named after their inventor, Dr. Pierre Bézier. Bézier was an engineer with the Renault car company and set out in the early 196 s to develop a curve formulation which would
More informationShape Optimization Problems over Classes of Convex Domains
Shape Optimization Problems over Classes of Convex Domains Giuseppe BUTTAZZO Dipartimento di Matematica Via Buonarroti, 2 56127 PISA ITALY email: buttazzo@sab.sns.it Paolo GUASONI Scuola Normale Superiore
More information24. The Branch and Bound Method
24. The Branch and Bound Method It has serious practical consequences if it is known that a combinatorial problem is NPcomplete. Then one can conclude according to the present state of science that no
More information9 More on differentiation
Tel Aviv University, 2013 Measure and category 75 9 More on differentiation 9a Finite Taylor expansion............... 75 9b Continuous and nowhere differentiable..... 78 9c Differentiable and nowhere monotone......
More informationA matrix over a field F is a rectangular array of elements from F. The symbol
Chapter MATRICES Matrix arithmetic A matrix over a field F is a rectangular array of elements from F The symbol M m n (F) denotes the collection of all m n matrices over F Matrices will usually be denoted
More informationReference: Introduction to Partial Differential Equations by G. Folland, 1995, Chap. 3.
5 Potential Theory Reference: Introduction to Partial Differential Equations by G. Folland, 995, Chap. 3. 5. Problems of Interest. In what follows, we consider Ω an open, bounded subset of R n with C 2
More informationON COMPLETELY CONTINUOUS INTEGRATION OPERATORS OF A VECTOR MEASURE. 1. Introduction
ON COMPLETELY CONTINUOUS INTEGRATION OPERATORS OF A VECTOR MEASURE J.M. CALABUIG, J. RODRÍGUEZ, AND E.A. SÁNCHEZPÉREZ Abstract. Let m be a vector measure taking values in a Banach space X. We prove that
More informationRow Ideals and Fibers of Morphisms
Michigan Math. J. 57 (2008) Row Ideals and Fibers of Morphisms David Eisenbud & Bernd Ulrich Affectionately dedicated to Mel Hochster, who has been an inspiration to us for many years, on the occasion
More informationDefinition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: f (x) =
Vertical Asymptotes Definition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: lim f (x) = x a lim f (x) = lim x a lim f (x) = x a
More informationIntroduction to Algebraic Geometry. Bézout s Theorem and Inflection Points
Introduction to Algebraic Geometry Bézout s Theorem and Inflection Points 1. The resultant. Let K be a field. Then the polynomial ring K[x] is a unique factorisation domain (UFD). Another example of a
More informationChapter 5. Banach Spaces
9 Chapter 5 Banach Spaces Many linear equations may be formulated in terms of a suitable linear operator acting on a Banach space. In this chapter, we study Banach spaces and linear operators acting on
More informationSome stability results of parameter identification in a jump diffusion model
Some stability results of parameter identification in a jump diffusion model D. Düvelmeyer Technische Universität Chemnitz, Fakultät für Mathematik, 09107 Chemnitz, Germany Abstract In this paper we discuss
More informationLinear Maps. Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007)
MAT067 University of California, Davis Winter 2007 Linear Maps Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007) As we have discussed in the lecture on What is Linear Algebra? one of
More information1 VECTOR SPACES AND SUBSPACES
1 VECTOR SPACES AND SUBSPACES What is a vector? Many are familiar with the concept of a vector as: Something which has magnitude and direction. an ordered pair or triple. a description for quantities such
More informationLECTURE 15: AMERICAN OPTIONS
LECTURE 15: AMERICAN OPTIONS 1. Introduction All of the options that we have considered thus far have been of the European variety: exercise is permitted only at the termination of the contract. These
More informationProblem 1 (10 pts) Find the radius of convergence and interval of convergence of the series
1 Problem 1 (10 pts) Find the radius of convergence and interval of convergence of the series a n n=1 n(x + 2) n 5 n 1. n(x + 2)n Solution: Do the ratio test for the absolute convergence. Let a n =. Then,
More informationQuotient Rings and Field Extensions
Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.
More informationNOTES ON LINEAR TRANSFORMATIONS
NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all
More informationFIRST YEAR CALCULUS. Chapter 7 CONTINUITY. It is a parabola, and we can draw this parabola without lifting our pencil from the paper.
FIRST YEAR CALCULUS WWLCHENW L c WWWL W L Chen, 1982, 2008. 2006. This chapter originates from material used by the author at Imperial College, University of London, between 1981 and 1990. It It is is
More informationOPTIMAL CONTROL OF A COMMERCIAL LOAN REPAYMENT PLAN. E.V. Grigorieva. E.N. Khailov
DISCRETE AND CONTINUOUS Website: http://aimsciences.org DYNAMICAL SYSTEMS Supplement Volume 2005 pp. 345 354 OPTIMAL CONTROL OF A COMMERCIAL LOAN REPAYMENT PLAN E.V. Grigorieva Department of Mathematics
More informationLinear Threshold Units
Linear Threshold Units w x hx (... w n x n w We assume that each feature x j and each weight w j is a real number (we will relax this later) We will study three different algorithms for learning linear
More information3.8 Finding Antiderivatives; Divergence and Curl of a Vector Field
3.8 Finding Antiderivatives; Divergence and Curl of a Vector Field 77 3.8 Finding Antiderivatives; Divergence and Curl of a Vector Field Overview: The antiderivative in one variable calculus is an important
More informationHøgskolen i Narvik Sivilingeniørutdanningen STE6237 ELEMENTMETODER. Oppgaver
Høgskolen i Narvik Sivilingeniørutdanningen STE637 ELEMENTMETODER Oppgaver Klasse: 4.ID, 4.IT Ekstern Professor: Gregory A. Chechkin email: chechkin@mech.math.msu.su Narvik 6 PART I Task. Consider twopoint
More informationTOPIC 4: DERIVATIVES
TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the
More informationCONTROLLABILITY. Chapter 2. 2.1 Reachable Set and Controllability. Suppose we have a linear system described by the state equation
Chapter 2 CONTROLLABILITY 2 Reachable Set and Controllability Suppose we have a linear system described by the state equation ẋ Ax + Bu (2) x() x Consider the following problem For a given vector x in
More informationSolutions for Review Problems
olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector
More informationProbability and Statistics
CHAPTER 2: RANDOM VARIABLES AND ASSOCIATED FUNCTIONS 2b  0 Probability and Statistics Kristel Van Steen, PhD 2 Montefiore Institute  Systems and Modeling GIGA  Bioinformatics ULg kristel.vansteen@ulg.ac.be
More informationVERTICES OF GIVEN DEGREE IN SERIESPARALLEL GRAPHS
VERTICES OF GIVEN DEGREE IN SERIESPARALLEL GRAPHS MICHAEL DRMOTA, OMER GIMENEZ, AND MARC NOY Abstract. We show that the number of vertices of a given degree k in several kinds of seriesparallel labelled
More informationDate: April 12, 2001. Contents
2 Lagrange Multipliers Date: April 12, 2001 Contents 2.1. Introduction to Lagrange Multipliers......... p. 2 2.2. Enhanced Fritz John Optimality Conditions...... p. 12 2.3. Informative Lagrange Multipliers...........
More informationAdaptive Search with Stochastic Acceptance Probabilities for Global Optimization
Adaptive Search with Stochastic Acceptance Probabilities for Global Optimization Archis Ghate a and Robert L. Smith b a Industrial Engineering, University of Washington, Box 352650, Seattle, Washington,
More informationSolutions to old Exam 1 problems
Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections
More information14.11. Geodesic Lines, Local GaussBonnet Theorem
14.11. Geodesic Lines, Local GaussBonnet Theorem Geodesics play a very important role in surface theory and in dynamics. One of the main reasons why geodesics are so important is that they generalize
More informationTHREE DIMENSIONAL GEOMETRY
Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,
More informationSOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties
SOLUTIONS TO EXERCISES FOR MATHEMATICS 205A Part 3 Fall 2008 III. Spaces with special properties III.1 : Compact spaces I Problems from Munkres, 26, pp. 170 172 3. Show that a finite union of compact subspaces
More informationLimits and Continuity
Math 20C Multivariable Calculus Lecture Limits and Continuity Slide Review of Limit. Side limits and squeeze theorem. Continuous functions of 2,3 variables. Review: Limits Slide 2 Definition Given a function
More informationVariational approach to restore pointlike and curvelike singularities in imaging
Variational approach to restore pointlike and curvelike singularities in imaging Daniele Graziani joint work with Gilles Aubert and Laure BlancFéraud Roma 12/06/2012 Daniele Graziani (Roma) 12/06/2012
More informationLecture. S t = S t δ[s t ].
Lecture In real life the vast majority of all traded options are written on stocks having at least one dividend left before the date of expiration of the option. Thus the study of dividends is important
More information2.2. Instantaneous Velocity
2.2. Instantaneous Velocity toc Assuming that your are not familiar with the technical aspects of this section, when you think about it, your knowledge of velocity is limited. In terms of your own mathematical
More information