Elliptic integrals, the arithmeticgeometric mean and the BrentSalamin algorithm for π


 Meghan Thomas
 1 years ago
 Views:
Transcription
1 Elliptic integrals, the arithmeticgeometric mean and the BrentSalamin algorithm for π Notes by G.J.O. Jameson Contents. The integrals I(a, b) and K(b). The arithmeticgeometric mean 3. The evaluation of I(a, b): Gauss s theorem 4. Estimates for I(a, ) for large a and I(, b) for small b 5. The integrals J(a, b) and E(b) 6. The integrals L(a, b) 7. Further evaluations in terms of the agm; the BrentSalamin algorithm 8. Further results on K(b) and E(b).. The integrals I(a, b) and K(b) For a, b >, define I(a, b) = An important equivalent form is: π/ (a cos θ + b sin dθ. () θ) /.. We have I(a, b) = dx. () (x + a ) / (x + b ) / Proof. With the substitution x = b tan θ, the stated integral becomes π/ b sec θ (a + b tan θ) / b sec θ dθ = = π/ π/ (a + b tan θ) / cos θ dθ (a cos θ + b sin dθ. θ) / We list a number of facts that follow immediately from () or (): (I) I(a, a) = π a ; (I) (I3) I(b, a) = I(a, b); I(ca, cb) = I(a, b), hence ai(a, b) = I(, b/a); c (I4) I(a, b) decreases with a and with b; (I5) if a b, then π a I(a, b) π b.
2 Note that the substitution x = /y in () gives I(a, b) = dx. (3) ( + a x ) / ( + b x ) /.. We have I(a, b) π (ab) /. Proof. This follows from the integral CauchySchwarz inequality, applied to (). Note further that, by the inequality of the means, π (ab) π ( / 4 a + ). b This upper bound for I(a, b) is also obtained directly by applying the inequality of the means to the integrand in (). Clearly, I(a, ) is undefined, and one would expect that I(a, b) as b +. This is, indeed, true. In fact, the behaviour of I(, b) for b close to is quite interesting; we return to it in section 4. The complete elliptic integral of the first kind is defined by K(b) = π/ ( b sin dθ. (4) θ) / For b, the conjugate b is defined by b = ( b ) /, so that b + b =. Then cos θ + b sin θ = b sin θ, so that I(, b) = K(b ). (An incomplete elliptic integral is one in which the integral is over a general interval [, α]. We do not consider such integrals in these notes.) Clearly, K() = π.3. We have and K(b) increases with b. Another equivalent form is: K(b) = dt. (5) ( t ) / ( b t ) / Proof. Denote this integral by I. Substituting t = sin θ, we have I = π/ cos θ( b sin cos θ dθ = K(b). θ) /.4 PROPOSITION. For b <, π K(b) = d n b n = + 4 b b4 +, (6) n=
3 where d = and d n =.3... (n ).4... (n). where Proof. By the binomial series, ( b sin θ) / = + a n b n sin n θ, n= ( ) a n = ( ) n = n n! ( )( 3) (n (n ) ) = (n) For fixed b <, the series is uniformly convergent for θ π. Now π/ sin n θdθ = πa n: identity (6) follows. In a sense, this series can be regarded as an evaluation of I(a, b), but a more effective one will be described in section 3..5 COROLLARY. For b <, + 4 b π K(b) + b 4( b ). Proof. Just note that + 4 b n= d nb n + 4 (b + b ). Hence π K(b) + b for b. These are convenient inequalities for K(b), but when translated into an inequality for I(, b) = K(b ), the righthand inequality says I(, b) + ( π b )/(4b ) = /(4b ), and it is easily checked that this is weaker than the elementary estimate I(, b) + /b given above. 4 π The special case I(, ) The integral I(, ) equates to a beta integral, and consequently to numerous other integrals. We mention some of them, assuming familiarity with the beta and gamma functions..6 PROPOSITION. We have I(, ) = = dx ( x 4 ) / (7) dx (x 4 ) / (8) = 4 B( 4, ) (9) = Γ( 4 ) 4 π. () 3
4 Proof. For (7), substitute x = sin θ, so that x 4 = cos θ( + sin θ). Then π/ dx = ( x 4 ) / Substituting x = /y, we also have dx = ( x 4 ) / π/ ( + sin dθ = θ) / Substituting x = t /4 in (7), we obtain I(, ) = (cos θ + sin θ) / dθ = I(, ). ( y 4 ) / y dy = dy. (y 4 ) / ( t) / ( 4 t 3/4 ) dt = 4 B( 4, ). Now using the identities B(a, b) = Γ(a)Γ(b)/Γ(a + b) and Γ(a)Γ( a) = π/(sin aπ), we have Γ( ) = π and Γ( 4 )Γ( 3 4 ) = π/(sin π 4 ) = π, hence B( 4, ) = Γ( 4 )Γ( ) Γ( 3 4 ) = πγ( 4 ) π = Γ( 4 ) π..7. We have π/ (sin θ) dθ = I(, ), () / ( x 4 ) / dx = ( x ) /4 dx = 3 I(, ). () Proof. For (), substitute x = (sin θ) / in (7). Denote the two integrals in () by I, I. The substitutions x = t /4 and x = t / give I = B(, 3) and I 4 4 = B(, 5 ). The 4 identity (a + b)b(a, b + ) = bb(a, b) now gives I = I = B(, ) The arithmeticgeometric mean Given positive numbers a, b, the arithmetic mean is a = (a + b) and the geometric mean is b = (ab) /. If a = b, then a = b = a. If a > b, then a > b, since 4(a b ) = (a + b) 4ab = (a b) >. With a > b, consider the iteration given by a = a, b = b and a n+ = (a n + b n ), b n+ = (a n b n ) /. At each stage, the two new numbers are the arithmetic and geometric means of the previous two. The following facts are obvious: 4
5 (M) a n > b n ; (M) a n+ < a n and b n+ > b n ; (M3) a n+ b n+ < a n+ b n = (a n b n ), hence a n b n < n (a b). It follows that (a n ) and (b n ) converge to a common limit, which is called the arithmeticgeometric mean of a and b. We will denote it by M(a, b). Convergence is even more rapid than the estimate implied by (M3), as we will show below. First, we illustrate the procedure by the calculation of M(, ) and M(, ): n b n a n n b n a n Of course, a n and b n never actually become equal, but more decimal places would be required to show the difference at the last stage shown. In fact, in the first example, a 3 b 3 < 4, as we will see shortly. Clearly, M(a, b) = M(a n, b n ) and b n < M(a, b) < a n for all n. Also, M(ca, cb) = cm(a, b) for c >, so M(a, b) = am(, b/a) = bm(a/b, ). For further analysis of the process, define c n by a n b n = c n... With c n defined in this way, we have (M4) c n+ = (a n b n ), (M5) a n = a n+ + c n+, b n = a n+ c n+, (M6) c n = 4a n+ c n+, (M7) c n+ c n 4b. Proof. For (M4), we have c n+ = a n+ b n+ = 4 (a n + b n ) a n b n = 4 (a n b n ). (M5) follows, since a n+ = (a n + b n ), and (M6) is given by c n = (a n + b n )(a n b n ) = (a n+ )(c n+ ). Finally, (M7) follows from (M6), since a n+ > b. (M5) shows how to derive a n and b n from a n+ and b n+, reversing the agm iteration. 5
6 (M7) shows that c n (hence also a n b n ) converges to quadratically, hence very rapidly. We can derive an explicit bound for c n as follows:.. Let R > and let k be such that c k 4b/R. Then c n+k 4b/R n for all n. The same holds with b replaced by b k. Proof. The hypothesis equates to the statement for n =. Assuming it now for a general n, we have by (M7) c n+k+ < (4b) = 4b. 4b R n+ R n+ In the case M(, ), we have c = b =. Taking R = 4, we deduce c n 4/4 n for all n. For a slightly stronger variant, note that c = a a <, hence c n+ 4/(4 n ) = 4/( n+ ) for n, or c n 4/( n ) for n. In particular, c <. We finish this section with a variant of the agm iteration in the form of a single sequence instead of a pair of sequences..3. Let b >. Define a sequence (k n ) by: k = b and Then k n+ = k/ n. + k n M(, b) = n= ( + k n). Proof. Let (a n ), (b n ) be the sequences generated by the iteration for M(, b) (with a =, b = b, whether or not b < ), and let k n = b n /a n. Then k = b and k n+ = b n+ = (a nb n ) / = k/ n. a n+ a n + b n + k n So the sequence (k n ) defined by this iteration is (b n /a n ). Also, so n r= ( + k n) = a n + b n = a n+, a n a n ( + k r) = a n M(, b) as n. Quadratic convergence of (k n ) to is easily established directly: k n+ = k/ n + k n < kn / + k n = ( kn / ) < ( k n ). + k n 6
7 Another way to present this iteration is as follows. Assume now that b <. Recall that for k, the conjugate k is defined by k + k =. Clearly, if t = k / /( + k) (where k ), then t = ( k)/( + k). So we have kn+ = ( k n )/( + k n ), hence + kn+ = /( + k n ), so that M(, b) =. + kn n= 3. The evaluation of I(a, b): Gauss s theorem We now come to the basic theorem relating I(a, b) and M(a, b). It was established by Gauss in 799. There are two distinct steps, which we present as separate theorems. In the notation of section, we show first that I(a, b) = I(a, b ). It is then a straightforward deduction that I(a, b) = π/[m(a, b)]. Early proofs of the first step, including that of Gauss, were far from simple. Here we present a proof due to Newman [New] based on an ingenious substitution. 3. THEOREM. Let a b >, and let a = (a + b), b = (ab) /. Then I(a, b) = I(a, b ). () is even: Substitute Proof. We write I(a, b ) as an integral on (, ), using the fact that the integrand I(a, b ) = dx. (x + a ) / (x + b / ) x = t ab t. Then x as t and x as t +. Also, dx dt = ( + ab/t ) and 4(x + b ) = 4x + 4ab = t + ab + a b = t ( t + ab t ), hence Further, (x + b ) / = ( t + ab ). t 4(x + a ) = 4x + (a + b) = t + a + b + a b t = t (t + a )(t + b ). 7
8 Hence I(a, b ) = ( t (t + a ) / (t + b ) / ab (t + ) + ab ) t t = dt (t + a ) / (t + b ) / = I(a, b). dt Lord [Lo] gives an interesting alternative proof based on the area in polar coordinates. 3. THEOREM. We have I(a, b) = π M(a, b) () Proof. Let (a n ), (b n ) be the sequences generated by the iteration for M(a, b). By Theorem 3., I(a, b) = I(a n, b n ) for all n. Hence π a n I(a, b) for all n. Since both a n and b n converge to M(a, b), the statement follows. We describe some immediate consequences; more will follow later. π b n 3.3. We have π a + b I(a, b) π. (3) (ab) / Proof. This follows from Theorem 3., since π/(a ) I(a, b ) π/(b ). The righthand inequality in (3) repeats., but I do not know an elementary proof of the lefthand inequality. From the expressions equivalent to I(, ) given in.6, we have: 3.4. Let M = M(, ) (.984). Then ( x 4 ) / dx = I(, ) = π M (.39), B( 4, ) = π M ( 5.446), Γ( 4 ) = (π)3/4 M / ( 3.656) Example. From the value M(, ) 6.67 found in section, we have I(, ) 8
9 Finally, we present several ways in which Theorem 3. can be rewritten in terms of K(b). Recall that I(, b) = K(b ), where b + b =, and that if k = ( b)/( + b), then k = k / /( + b) For b <, K(b) = I( + b, b). (4) Proof. By Theorem 3., I( + b, b) = I[, ( b ) / ] = I(, b ) = K(b) For < b <, K(b) = + b K K(b ) = + b K ( b / + b ( b + b ), (5) ). (6) Proof. By (4) and the property I(ca, cb) = I(a, b), c K(b) = I( + b, b) = ( + b I, b ) = + b + b K Also, by Theorem 3., K(b ) = I(, b) = I ( ) + b, b/ = + b I ( b / ) (, b/ = + b + b K + b ). ( ) b. + b Conversely, any of (4), (5), (6) implies () (to show this for (4), start by choosing c and k so that ca = + k and cb = k). For another proof of Theorem 3., based on this observation and the series expansion of ( + ke iθ ) / )( + ke iθ ) /, see [Bor, p. ]. 4. Estimates for I(a, ) for large a and I(, b) for small b In this section, we will show that I(, b) is closely approximated by log(4/b) for b close to. Equivalently, ai(a, ) is approximated by log 4a for large a, and consequently M(a, ) is approximated by F (a) =: π a log 4a. By way of illustration, F () = 6.7 to four d.p., while M(, ) This result has been known for a long time, with varying estimates of the accuracy of the approximation. For example, a version appears in [WW, p. 5], published in 97. 9
10 A highly effective method was introduced by Newman in [New], but only sketched rather briefly, with the statement given in the form ai(a, ) = log 4a+O(/a ). Following [Jam], we develop Newman s method in more detail to establish a more precise estimation. The method requires nothing more than some elementary integrals and the binomial and logarithmic series, and a weaker form of the result is obtained with very little effort. The starting point is: 4.. We have (ab) / dx = (x + a ) / (x + b ) / dx. (ab) (x / + a ) / (x + b ) / Proof. With the substitution x = ab/y, the lefthand integral becomes ab (ab) / ( a b + a y ) / ( a b + b y ) / y dy = dy. (ab) (b / + y ) / (a + y ) / where Hence b / I(, b) = H(x) dx, () H(x) =. () (x + ) / (x + b ) / Now ( + y) / > y for < y <, as is easily seen by multiplying out ( + y)( y), so for < x <, ( x ) (x + b ) < H(x) <. (3) / (x + b ) / Now observe that the substitution x = by gives b / /b / dx = (x + b ) / (y + ) dy = / sinh b. / 4. LEMMA. We have log b < / sinh < log b/ b + b. (4) / 4 Proof. Recall that sinh x = log[x + (x + ) / ], which is clearly greater than log x. Also, since ( + b) / < + b, ( ) / b + / b + = b [ + ( + / b)/ ] < b ( + b) = / b ( + b). / 4 The righthand inequality in (4) now follows from the fact that log( + x) x.
11 where This is already enough to prove the following weak version of our result: 4.3 PROPOSITION. For < b and a, log 4 b b < I(, b) < log 4 b + b, (5) log 4a a < ai(a, ) < log 4a + a. (6) Proof. The two statements are equivalent, because ai(a, ) = I(, ). By () and (3), a Since (x + b ) / > x, we have sinh b / R (b) < I(, b) < sinh b /, R (b) < R (b) = b / b / x dx. (7) (x + b ) / x b / x dx = x dx = b. Both inequalities in (5) now follow from (4), since log b / = log 4 b. This result is sufficient to show that M(a, ) F (a) as a. To see this, write ai(a, ) = log 4a + r(a). Then I(a, ) which tends to as a, since ar(a). a log 4a = ar(a) log 4a[log 4a + r(a)], Some readers may be content with this version, but for those with the appetite for it, we now refine the method to establish closer estimates. All we need to do is improve our estimations by the insertion of further terms. ( + y) / <. Instead, we now use the stronger bound ( + y) / < y y The upper estimate in (3) only used for < y <. These are the first three terms of the binomial expansion, and the stated inequality holds because the terms of the expansion alternate in sign and decrease in magnitude. So we have instead of (3): ( x ) (x + b ) < H(x) < ( / x x4 ). (8) (x + b ) / We also need a further degree of accuracy in the estimates for sinh b / and R (b).
12 4.4 LEMMA. For < b, we have log b + b 3 / 4 3 b < sinh < log b/ b + b / 4 Proof. Again by the binomial series, we have So, as in Lemma 4., 6 b + 3 b3. (9) + b 8 b < ( + b) / < + b 8 b + 6 b3. () ( ) / b + / b + < b ( + b / 8 b + 6 b3 ) = b ( + b / 4 6 b + 3 b3 ). The righthand inequality in (9) now follows from log( + x) x. Also, ( ) / b + / b + > b ( + b / 8 b ) = ( + B), b/ where B = 4 b 6 b (so B < 4 b). By the log series, log( + x) > x x for < x <, so log( + B) > B B > 4 b 6 b 3 b = 4 b 3 3 b. 4.5 LEMMA. For < b, we have: R (b) < b + 4 b b log, () b/ R (b) > b + 4 b b log b / 3 6 b3, () R (b) < b 5 b. (3) Proof: We can evaluate R (b) explicitly by the substitution x = b sinh t: R (b) = c(b) where c(b) = sinh (/b / ). Now c(b) b sinh t dt = b (cosh t ) dt = 4 b sinh c(b) b c(b), sinh c(b) = sinh c(b) cosh c(b) = ( ) / b / b + = b ( + b)/, so R (b) = b( + b)/ b c(b). Statement () now follows from ( + b) / < + b and c(b) > log. Statement () b / follows from the lefthand inequality in () and the righthand one in (4).
13 Unfortunately, (3) does not quite follow from (). We prove it directly from the integral, as follows. Write x /(x + b ) / = g(x). Since g(x) < x, we have b / g(x) dx < b (b b ). For < x < b, we have by the binomial expansion again ) x x g(x) = ( x b( + x /b ) / b b + 3x4, 8b 4 and hence b g(x) dx < ( )b < 3 b. Together, these estimates give R (b) < b 5 b. We can now state the full version of our Theorem. 4.6 THEOREM. For < b and a, we have log 4 b < I(, b) < ( + 4 b ) log 4 b, (4) ( log 4a < ai(a, ) < + ) log 4a. (5) 4a Moreover, the following lower bounds also apply: Hence I(, b) > ( + 4 b ) log 4 b 7 6 b, (6) ( ai(a, ) > + ) log 4a 7 4a 6a. (7) I(, b) = ( + 4 b ) log 4 b + O(b ) for < b <, ( ai(a, ) = + ) log 4a + O(/a ) for a >. 4a Note. As this shows, the estimation log 4a + O(/a ) in [New] is not quite correct. Proof: lower bounds. By (8), (9) and (3), I(, b) > sinh b / R (b) > log 4 b + b 3 6 b ( b 5 b ) > log 4 b, (with a spare term 8 b ). Of course, the key fact is the cancellation of the term b. Also, using () instead of (3), we have I(, b) > log 4 b + b 3 6 b ( b + 4 b 4 b log 4 b ) = ( + 4 b ) log 4 b 7 6 b. 3
14 Upper bound: By (8), I(, b) < sinh b / R (b) R (b), where So by (9) and (), R (b) = b / x 4 b / dx < x 3 dx = (x + b ) / 4 b. I(, b) < log 4 b + b 8 b + 6 b3 ( b + 4 b 4 b log 4 b 3 6 b3 ) b = ( + 4 b ) log 4 b 3 6 b + 4 b3. If b < 3 4, then 3 6 b 4 b3, so I(, b) < ( + 4 b ) log 4 b. For b 3 4, we reason as follows. By., I(, b) π 4 (+ b ). Write h(b) = (+ 4 b ) log 4 b π ( + ). We find that h( 3 ) >. One verifies by differentiation that h(b) 4 b 4 is increasing for < b (we omit the details), hence h(b) > for 3 b. 4 By Gauss s theorem and the inequality /( + x) > x, applied with x = /(4a ), statement (5) translates into the following pair of inequalities for M(a, ): 4.7 COROLLARY. Let F (a) = (πa)/( log 4a). Then for a, ( ) F (a) < M(a, ) < F (a). (8) 4a Since M(a, b) = b M(a/b, ) we can derive the following bounds for M(a, b) (where a > b) in general: π ) a ( b < M(a, b) < π log(4a/b) 4a a log(4a/b). (9) Note: We mention very briefly an older, perhaps better known, approach (cf. [Bow, p. ]). Use the identity I(, b) = K(b ), and note that b when b. Define A(b ) = π/ b sin θ ( b sin dθ θ) / and B(b ) = K(b ) A(b ). One shows by direct integration that A(b ) = log[(+b )/b] and B() = log, so that when b, we have A(b ) log b and hence K(b ) log 4 b. This method can be developed to give an estimation with error term O(b log ), [Bor, p. b ], but the details are distinctly more laborious, and (even with some refinement) the end result does not achieve the accuracy of our Theorem
15 By a different method, we now establish exact upper and lower bounds for I(, b) log(/b) on (, ]. The lower bound amounts to a second proof that I(, b) > log(4/b) The expression I(, b) log(/b) increases with b for < b. Hence log 4 I(, b) log b π for < b ; () π log 4 ai(a, ) log a π for a ; () a log a + π M(a, ) π a for a. () log a + log 4 Proof. We show that K(b) log(/b ) decreases with b, so that I(, b) log(/b) = K(b ) log(/b) increases with b. Once this is proved, the inequalities follow, since I(, b) log(/b) takes the value π/ at b = and (by 4.3) tends to log 4 as b +. By.4, for b <, we have K(b) = π n= d nb n, where d = and d n =.3... (n ).4... (n). Hence K (b) = π n= nd nb n. Meanwhile, log(/b ) = log( b ), so d db log b = b b = b n. By wellknown inequalities for the Wallis product, nπd n <, so K (b) < d db log(/b ). n= Application to the calculation of logarithms and π. Theorem 4.6 has pleasing applications to the calculation of logarithms (assuming π known) and π (assuming logarithms known), exploiting the rapid convergence of the agm iteration. Consider first the problem of calculating log x (where x > ). Choose n, in a way to be discussed below, and let 4a = x n, so that n log x = log 4a, which is approximated by ai(a, ). We calculate M = M(a, ), and hence I(a, ) = π/(m). Then log x is approximated by (a/n)i(a, ). How accurate is this approximation? By Theorem 4.6, log 4a = ai(a, ) r(a), where < r(a) < 4a log 4a. Hence in which log x = a r(a) I(a, ) n n, < r(a) n < log x = 4 log x 4a x. n We choose n so that this is within the desired degree of accuracy. It might seem anomalous that log x, which we are trying to calculate, appears in this error estimation, but a rough estimate for it is always readily available. 5
16 For illustration, we apply this to the calculation of log, taking n =, so that a = = 4. We find that M = M(4, ) , so our approximation is π 4 M , while in fact log = to seven d.p.. The discussion above (just taking log < ) shows that the approximation overestimates log, with error no more than 4/ 4 = /. We now turn to the question of approximating π. The simpleminded method is as follows. Choose a suitably large a. By Theorems 3. and 4.6, where π = M(a, )I(a, ) = M(a, )log 4a a + s(a), s(a) = M(a, ) r(a) 4a < M(a, )log a 4a. 3 So an approximation to π is M(a, ) log 4a, with error no more than s(a). Using our a original example with a =, this gives to five d.p., with the error estimated as no more than 8 5 (the actual error is about ). For a better approximation, one would repeat with a larger a. However, there is a way to generate a sequence of increasingly close approximations from a single agm iteration, which we now describe (cf. [Bor, Proposition 3]). In the original agm iteration, let c n = (a n b n) /. Note that c n converges rapidly π to. By Gauss s theorem, = M(a, c )I(a, c ). To apply Theorem 4.6, we need to equate I(a, c ) to an expression of the form I(d n, e n ), where e n /d n tends to. This is achieved as follows. Recall from. that a n = a n+ + c n+ and c n = 4a n+ c n+, so the arithmetic mean of a n+ and c n+ is a n, while the geometric mean is c n. So by Theorem 3., I(a n, c n ) = I(a n+, c n+ ), and hence I(a, c ) = I( n a n, n c n ) = n a n I (, c ) n. a n Since c n /a n tends to, Theorem 4.6 (or even 4.3) applies to show that I(a, c ) = lim log 4a n. n n a n c n Now take a = and b =. Then c = b, so M(a, b ) = M(a, c ), and (a n ) converges to this value. Since π = M(a, c )I(a, c ), we have established the following: 4.9 PROPOSITION. With a n, b n, c n defined in this way, we have π = lim n log 4a n. n c n 6
17 Denote this approximation by p n. With enough determination, one can derive an error estimation, but we will just illustrate the speed of convergence by performing the first three steps. Values are rounded to six significant figures. To calculate c n, we use c n = c n /(4a n ) rather than (a n b n ), since this would require much greater accuracy in the values of a n and b n. n a n b n c n p n More accurate calculation gives the value p 3 = , showing that it actually agrees with π to eight decimal places. While this expression does indeed converge rapidly to π, it has the disadvantage that it requires the calculation of logarithms at each stage. This is overcome by the GaussBrent Salamin algorithm, which we describe in section The integrals J(a, b) and E(b) For a, b, define J(a, b) = π/ (a cos θ + b sin θ) / dθ. () Note that 4J(a, b) is the perimeter of the ellipse x /a + y /b =. Some immediate facts: (E) J(a, a) = (E) J(a, ) = π/ π/ a dθ = πa, a cos θ dθ = a, (E3) for c >, J(ca, cb) = cj(a, b); (E4) J(b, a) = J(a, b) (substitute θ = π φ); (E5) J(a, b) increases with a and with b; (E6) if a b, then πb J(a, b) πa. (E6) follows from (E) and (E5), since J(b, b) J(a, b) J(a, a). Since x + for x >, we have I(a, b) + J(a, b) π. For < b, we have x J(, b) π I(, b). 7
18 We start with some further inequalities for J(a, b). Given that J(a, b) is the length of the quarterellipse, it would seem geometrically more or less obvious that (a + b ) / J(a, b) a + b, () since this says that the curve is longer than the straightline path between the same points, but shorter than two sides of the rectangle. An analytic proof of the righthand inequality is very easy: since (x + y ) / x + y for positive x, y, we have (a cos θ + b sin θ) / a cos θ + b sin θ for each θ. Integration on [, π/] gives J(a, b) a + b. We will improve this inequality below. For the lefthand inequality in (), and some further estimations, we use the Cauchy Schwarz inequality, in both its discrete and its integral form. 5.. We have J(a, b) (a + b ) /. (3) Proof. By the CauchySchwarz inequality, a cos θ + b sin θ = a(a cos θ) + b(b sin θ) (a + b ) / (a cos θ + b sin θ) /. Integrating on [, π/], we obtain a + b (a + b ) / J(a, b), hence (3). A slight variation of this reasoning gives a second lower bound, improving upon (E6). 5.. We have J(a, b) π (a + b). (4) 4 Proof. By the CauchySchwarz inequality, a cos θ + b sin θ = (a cos θ) cos θ + (b sin θ) sin θ (a cos θ + b sin θ) / (cos θ + sin θ) / = (a cos θ + b sin θ) /. Integration gives (4), since π/ cos θ dθ = π/ sin θ dθ = π 4. Note that equality holds in (3) when b =, and in (4) when b = a. 8
19 5.3. We have Equality holds when a = b. J(a, b) π (a + b ) /. (5) Proof. By the CauchySchwarz inequality for integrals (with both sides squared), ( ) π/ π/ J(a, b) (a cos θ + b sin θ) dθ = π π 4 (a + b ). Since π/( ).7, J(a, b) is actually modelled fairly well by (a + b ) /. For u = (a, b), write u = (a + b ) / : this is the Euclidean norm on R. In this notation, we have J(a, b) = π/ (a cos θ, b sin θ) dθ. The triangle inequality for vectors says that u + u u + u. We show that J(a, b) also satisfies the triangle inequality (so in fact is also a norm on R ) Let u j = (a j, b j ) (j =, ), where a j, b j. Then Proof. For each θ, we have J(u + u ) J(u ) + J(u ). (6) [(a + a ) cos θ, (b + b ) sin θ] (a cos θ, b sin θ) + (a cos θ, b sin θ). Integrating on [, π ], we deduce that J(a + a, b + b ) J(a, b ) + J(a, b ). By suitable choices of u and u, we can read off various inequalities for J(a, b). Firstly, J(a, b) J(a, ) + J(, b) = a + b, as seen in (). Secondly: Second proof of (4). Since (a + b, a + b) = (a, b) + (b, a), we have (a + b) π = J(a + b, a + b) J(a, b) + J(b, a) = J(a, b). Thirdly, we can compare J(a, b) with the linear function of b that agrees with J(a, b) at b = and b = a. The resulting upper bound improves simultaneously on those in (E6) and (). 9
20 5.5. For b a, we have J(a, b) a + Equality holds when b = and when b = a. Proof. Since (a, b) = (a b, ) + (b, b), ( π ) b. (7) J(a, b) J(a b, ) + J(b, b) = (a b) + π b. Inequality (7) reflects the fact that J(a, b) is a convex functon of b for fixed a; this also follows easily from (6). We now consider equivalent and related integrals We have J(a, b) = b (x + a ) / dx. (8) (x + b ) 3/ Proof. Substituting x = b tan θ, we obtain (x + a ) / dx. = (x + b ) 3/ π/ (a + b tan θ) / b sec θ dθ b 3 sec 3 θ = π/ (a + b tan θ) / cos θ dθ b = J(a, b). b The complete elliptic integral of the second kind is E(b) = π/ Since cos θ + b sin θ = b sin θ, we have J(, b) = E(b ). ( b sin θ) / dθ. (9) Clearly, E() = π/, E() = and E(b) decreases with b. Also, K(b) E(b) = π/ ( b sin θ) ( b sin dθ = θ) / π/ b sin θ ( b sin dθ. () θ) / We use the usual mathematical notation E (b) for the derivative d E(b). We alert the db reader to the fact that some of the literature on this subject, including [Bor], writes b where we have b and then uses E (b) to mean E(b ) We have E (b) = [E(b) K(b)] for < b <. () b
21 Proof. This follows at once by differentiating under the integral sign in (9) and comparing with () We have E(b) = ( b t ) / ( t ) / dt. () Proof. Denote this integral by I. The substitution t = sin θ gives I = π/ ( b sin θ) / cos θ cos θ dθ = E(b) For b, b π E(b) 4 b. (3) Proof. For x, we have x ( x) / x. Hence E(b) π/ and similarly for the upper bound. ( b sin θ) dθ = π ( b ), When applied to J(, b) = E(b ), (3) gives weaker inequalities than (4) and (5). We now give the power series expression. Recall from.4 that π K(b) = n= d nb n, where d = and d n =.3... (n ).4... (n). 5. PROPOSITION. For b <, π E(b) = d n n bn = 4 b 3 64 b4 + (4) n= where Proof. By the binomial series, ( b sin θ) / = + ( ) a n = ( ) n = ( )n ( n n! )( ) ( a n b n sin n θ, n=... (n 3) n + ) = (n) For fixed b <, the series is uniformly convergent for θ π. The statement follows, since π/ sin n θ dθ = π (n ) (n)
22 6. The integral L(a, b) Most of the material in this section follows the excellent exposition in [Lo]. Further results on I(a, b) and J(a, b) are most conveniently derived and expressed with the help of another integral. For a > and b, define L(a, b) = π/ cos θ (a cos θ + b sin dθ. () θ) / The first thing to note is that L(b, a) L(a, b). In fact, we have: 6.. For a and b >, L(b, a) = π/ sin θ (a cos θ + b sin dθ. () θ) / Proof. The substitution θ = π φ gives L(b, a) = π/ cos θ π/ sin φ (b cos θ + a sin dθ = θ) / (a cos φ + b sin dφ. φ) / Hence, immediately: 6.. For a, b >, L(a, b) + L(b, a) = I(a, b), (3) a L(a, b) + b L(b, a) = J(a, b). (4) 6.3 COROLLARY. For a, b >, (a b )L(a, b) = J(a, b) b I(a, b). (5) Some immediate facts: (L) L(a, ) = ; L(, b) is undefined; a (L) L(a, a) = π 4a ; (L3) L(ca, cb) = L(a, b) for c > ; c (L4) L(a, b) decreases with a and with b; (L5) L(a, b) a for all b; (L6) if a b, then π 4a L(a, b) π, and similarly for L(b, a) (by (L5) and (L)). 4b
23 6.4. We have J(a, b) = bl(b, a). (6) b Proof. Differentiate under the integral sign in the expression for J(a, b). π/4. So if we write J (b) for J(, b), then J (b) = bl(b, ). In particular, J () = L(, ) = 6.5. We have L(a, b) = L(b, a) = b dx, (7) (x + a ) / (x + b ) 3/ x dx, (8) (x + a ) / (x + b ) 3/ Proof. With the substitution x = b tan θ, the integral in (7) becomes π/ b 3 sec θ (a + b tan θ) / b 3 sec 3 θ dθ = = π/ π/ cos θ dθ (a + b tan θ) / cos θ (a cos θ + b sin dθ. θ) / The integral in (8) now follows from (3) and the integral (.) for I(a, b) If a > b, then L(a, b) < L(b, a). Proof. By (7), applied to both L(a, b) and L(b, a), L(b, a) L(a, b) = a (x + b ) b (x + a ) (x + a ) 3/ (x + b ) 3/ dx. This is positive, since the numerator is (a b )x We have b I(a, b) = L(a, b), (9) b b(a b ) b I(a, b) = b I(a, b) J(a, b). () Proof. (9) is obtained by differentiating the integral expression (.) for I(a, b) under the integral sign and comparing with (7). (The integral expressions in terms of θ do not deliver this result so readily.) Using (5) to substitute for L(a, b), we obtain (). Hence, writing I (b) for I(, b), we have I () = L(, ) = π/4. There is a corresponding expression for K (b), but we defer it to section 8. 3
24 Identities (9) and () are an example of a relationship that is expressed more pleasantly in terms of L(a, b) rather than J(a, b). More such examples will be encountered below. The analogue of the functions K(b) and E(b) is the pair of integrals L(, b ) = π/ cos θ ( b sin θ) / dθ, L(b, ) = π/ Corresponding results apply. For example, the substitution t = sin θ gives L(, b ) = ( t ) / dt ( b t ) / sin θ ( b sin dθ. θ) / (compare.3 and 5.8), and power series in terms of b are obtained by modifying.5. However, we will not introduce a special notation for these functions. Recall Theorem 4.6, which stated: log 4 < I(, b) < ( + b 4 b ) log 4 for < b <. We b now derive a corresponding estimation for J(, b) (actually using the upper bound from 4.8). 6.8 LEMMA. For < b <, where c = log 4, c = π/4. log b + c L(b, ) log b + c, () Proof. By 4.8, we have log b + log 4 I(, b) log b + π. Also, π 4 Statement () follows, by (3). L(, b). 6.9 PROPOSITION. For < b <, J(, b) = + b log b + r(b), () where c 3 b r(b) < c 4 b, with c 3 = log 4 and c 4 = 4 + π 8. Proof. Write J (t) = J(, t). By (6), J (t) = tl(t, ), so J (b) = b tl(t, ) dt. Now b ( t log t) dt = [ t log t ] b b + t dt = b log b + 4 b. By (), a lower bound for J(, b) is obtained by adding b c t dt = c b, and an upper bound by adding c b. Since J(a, ) = aj(, ), we can derive the following estimation for a >, a where c 3 /a r (a) c 4 /a. J(a, ) = a + log a a 4 + r (a),
ANALYTIC NUMBER THEORY LECTURE NOTES BASED ON DAVENPORT S BOOK
ANALYTIC NUMBER THEORY LECTURE NOTES BASED ON DAVENPORT S BOOK ANDREAS STRÖMBERGSSON These lecture notes follow to a large extent Davenport s book [5], but with things reordered and often expanded. The
More informationOrthogonal Bases and the QR Algorithm
Orthogonal Bases and the QR Algorithm Orthogonal Bases by Peter J Olver University of Minnesota Throughout, we work in the Euclidean vector space V = R n, the space of column vectors with n real entries
More informationA Course on Number Theory. Peter J. Cameron
A Course on Number Theory Peter J. Cameron ii Preface These are the notes of the course MTH6128, Number Theory, which I taught at Queen Mary, University of London, in the spring semester of 2009. There
More informationPROOFS BY DESCENT KEITH CONRAD
PROOFS BY DESCENT KEITH CONRAD As ordinary methods, such as are found in the books, are inadequate to proving such difficult propositions, I discovered at last a most singular method... that I called the
More informationON THE DISTRIBUTION OF SPACINGS BETWEEN ZEROS OF THE ZETA FUNCTION. A. M. Odlyzko AT&T Bell Laboratories Murray Hill, New Jersey ABSTRACT
ON THE DISTRIBUTION OF SPACINGS BETWEEN ZEROS OF THE ZETA FUNCTION A. M. Odlyzko AT&T Bell Laboratories Murray Hill, New Jersey ABSTRACT A numerical study of the distribution of spacings between zeros
More informationhow to use dual base log log slide rules
how to use dual base log log slide rules by Professor Maurice L. Hartung The University of Chicago Pickett The World s Most Accurate Slide Rules Pickett, Inc. Pickett Square Santa Barbara, California 93102
More informationA mini course on additive combinatorics
A mini course on additive combinatorics 1 First draft. Dated Oct 24th, 2007 These are notes from a mini course on additive combinatorics given in Princeton University on August 2324, 2007. The lectures
More informationOPRE 6201 : 2. Simplex Method
OPRE 6201 : 2. Simplex Method 1 The Graphical Method: An Example Consider the following linear program: Max 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2
More information784: algebraic NUMBER THEORY (Instructor s Notes)*
Math 784: algebraic NUMBER THEORY (Instructor s Notes)* Algebraic Number Theory: What is it? The goals of the subject include: (i) to use algebraic concepts to deduce information about integers and other
More informationBasic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011
Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011 A. Miller 1. Introduction. The definitions of metric space and topological space were developed in the early 1900 s, largely
More informationALGEBRAIC NUMBER THEORY AND QUADRATIC RECIPROCITY
ALGEBRAIC NUMBER THEORY AND QUADRATIC RECIPROCITY HENRY COHN, JOSHUA GREENE, JONATHAN HANKE 1. Introduction These notes are from a series of lectures given by Henry Cohn during MIT s Independent Activities
More informationReading material on the limit set of a Fuchsian group
Reading material on the limit set of a Fuchsian group Recommended texts Many books on hyperbolic geometry and Kleinian and Fuchsian groups contain material about limit sets. The presentation given here
More informationThe whole of analytic number theory rests on one marvellous formula due to Leonhard Euler (17071783): n s = primes p. 1 p
Chapter Euler s Product Formula. The Product Formula The whole of analytic number theory rests on one marvellous formula due to Leonhard Euler (707783): n N, n>0 n s = primes p ( p s ). Informally, we
More information1 Sets and Set Notation.
LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most
More informationControllability and Observability of Partial Differential Equations: Some results and open problems
Controllability and Observability of Partial Differential Equations: Some results and open problems Enrique ZUAZUA Departamento de Matemáticas Universidad Autónoma 2849 Madrid. Spain. enrique.zuazua@uam.es
More informationCalderón problem. Mikko Salo
Calderón problem Lecture notes, Spring 2008 Mikko Salo Department of Mathematics and Statistics University of Helsinki Contents Chapter 1. Introduction 1 Chapter 2. Multiple Fourier series 5 2.1. Fourier
More informationAn Introductory Course in Elementary Number Theory. Wissam Raji
An Introductory Course in Elementary Number Theory Wissam Raji 2 Preface These notes serve as course notes for an undergraduate course in number theory. Most if not all universities worldwide offer introductory
More informationDimensioning Large Call Centers
OPERATIONS RESEARCH Vol. 52, No. 1, January February 2004, pp. 17 34 issn 0030364X eissn 15265463 04 5201 0017 informs doi 10.1287/opre.1030.0081 2004 INFORMS Dimensioning Large Call Centers Sem Borst
More informationAlgebra & Number Theory. A. Baker
Algebra & Number Theory [0/0/2009] A. Baker Department of Mathematics, University of Glasgow. Email address: a.baker@maths.gla.ac.uk URL: http://www.maths.gla.ac.uk/ ajb Contents Chapter. Basic Number
More informationIEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 4, APRIL 2006 1289. Compressed Sensing. David L. Donoho, Member, IEEE
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 4, APRIL 2006 1289 Compressed Sensing David L. Donoho, Member, IEEE Abstract Suppose is an unknown vector in (a digital image or signal); we plan to
More informationWhat Every Computer Scientist Should Know About FloatingPoint Arithmetic
What Every Computer Scientist Should Know About FloatingPoint Arithmetic D Note This document is an edited reprint of the paper What Every Computer Scientist Should Know About FloatingPoint Arithmetic,
More informationA Modern Course on Curves and Surfaces. Richard S. Palais
A Modern Course on Curves and Surfaces Richard S. Palais Contents Lecture 1. Introduction 1 Lecture 2. What is Geometry 4 Lecture 3. Geometry of InnerProduct Spaces 7 Lecture 4. Linear Maps and the Euclidean
More informationSwitching Algebra and Logic Gates
Chapter 2 Switching Algebra and Logic Gates The word algebra in the title of this chapter should alert you that more mathematics is coming. No doubt, some of you are itching to get on with digital design
More informationAn Introduction to the NavierStokes InitialBoundary Value Problem
An Introduction to the NavierStokes InitialBoundary Value Problem Giovanni P. Galdi Department of Mechanical Engineering University of Pittsburgh, USA Rechts auf zwei hohen Felsen befinden sich Schlösser,
More informationTopics in Number Theory, Algebra, and Geometry. Ambar N. Sengupta
Topics in Number Theory, Algebra, and Geometry Ambar N. Sengupta December, 2006 2 Ambar N. Sengupta Contents Introductory Remarks........................... 5 1 Topics in Number Theory 7 1.1 Basic Notions
More informationWHICH SCORING RULE MAXIMIZES CONDORCET EFFICIENCY? 1. Introduction
WHICH SCORING RULE MAXIMIZES CONDORCET EFFICIENCY? DAVIDE P. CERVONE, WILLIAM V. GEHRLEIN, AND WILLIAM S. ZWICKER Abstract. Consider an election in which each of the n voters casts a vote consisting of
More informationCOSAMP: ITERATIVE SIGNAL RECOVERY FROM INCOMPLETE AND INACCURATE SAMPLES
COSAMP: ITERATIVE SIGNAL RECOVERY FROM INCOMPLETE AND INACCURATE SAMPLES D NEEDELL AND J A TROPP Abstract Compressive sampling offers a new paradigm for acquiring signals that are compressible with respect
More informationFoundations of Data Science 1
Foundations of Data Science John Hopcroft Ravindran Kannan Version /4/204 These notes are a first draft of a book being written by Hopcroft and Kannan and in many places are incomplete. However, the notes
More informationFoundations of Data Science 1
Foundations of Data Science John Hopcroft Ravindran Kannan Version 2/8/204 These notes are a first draft of a book being written by Hopcroft and Kannan and in many places are incomplete. However, the notes
More informationAn Iteration Method for the Solution of the Eigenvalue Problem of Linear Differential and Integral Operators 1
Journal of Research of the National Bureau of Standards Vol. 45, No. 4, October 95 Research Paper 233 An Iteration Method for the Solution of the Eigenvalue Problem of Linear Differential and Integral
More information