From stochastic dominance to meanrisk models: Semideviations as risk measures 1


 Stephanie McDonald
 1 years ago
 Views:
Transcription
1 European Journal of Operational Research 116 (1999) 33±50 Theory and Methodoloy From stochastic dominance to meanrisk models: Semideviations as risk measures 1 Wøodzimierz Oryczak a, *, Andrzej Ruszczynski b a Department of Mathematics and Computer Science, Warsaw University, Banacha 2, Warsaw, Poland b Department of Manaement Science and Information Systems, Ruters University, 94 Rockafeller Rd, Piscataway, NJ 08854, USA Received 1 November 1997; accepted 1 April 1998 Abstract Two methods are frequently used for modelin the choice amon uncertain outcomes: stochastic dominance and meanrisk approaches. The former is based on an axiomatic model of riskaverse preferences but does not provide a convenient computational recipe. The latter quanti es the problem in a lucid form of two criteria with possible tradeo analysis, but cannot model all riskaverse preferences. In particular, if variance is used as a measure of risk, the resultin mean±variance (Markowitz) model is, in eneral, not consistent with stochastic dominance rules. This paper shows that the standard semideviation (square root of the semivariance) as the risk measure makes the meanrisk model consistent with the second deree stochastic dominance, provided that the tradeo coe cient is bounded by a certain constant. Similar results are obtained for the absolute semideviation, and for the absolute and standard deviations in the case of symmetric or bounded distributions. In the analysis we use a new tool, the Outcome±Risk (O±R) diaram, which appears to be particularly useful for comparin uncertain outcomes. Ó 1999 Elsevier Science B.V. All rihts reserved. Keywords: Decisions under risk; Portfolio optimization; Stochastic dominance; Meanrisk model 1. Introduction * Correspondin author. 1 This work was partially supported by the International Institute for Applied Systems Analysis, Laxenbur, Austria, and distributed online as the IIASA Report IR (June 1997). Comparin uncertain outcomes is one of fundamental interests of decision theory. Our objective is to analyze relations between the existin approaches and to provide some tools to facilitate the analysis. We consider decisions with realvalued outcomes, such as return, net pro t or number of lives saved. A leadin example, oriinatin from  nance, is the problem of choice amon investment opportunities or portfolios havin uncertain returns. Althouh we discuss the consequences of our analysis in the portfolio selection context, we do not assume any speci city related to this or /99/$ ± see front matter Ó 1999 Elsevier Science B.V. All rihts reserved. PII: S ( 9 8 )
2 34 W. Oryczak, A. Ruszczynski / European Journal of Operational Research 116 (1999) 33±50 another application. We consider the eneral problem of comparin realvalued random variables (distributions), assumin that larer outcomes are preferred. We describe a random variable X by the probability measure P X induced by it on the real line R. It is a eneral framework: the random variables considered may be discrete, continuous, or mixed (Pratt et al., 1995). Owin to that, our analysis covers a variety of problems of choosin amon uncertain prospects that occur in economics and manaement. Two methods are frequently used for modelin choice amon uncertain prospects: stochastic dominance (Whitmore and Findlay, 1978; Levy, 1992), and meanrisk analysis (Markowitz, 1987). The former is based on an axiomatic model of riskaverse preferences: it leads to conclusions which are consistent with the axioms. Unfortunately, the stochastic dominance approach does not provide us with a simple computational recipe ± it is, in fact, a multiple criteria model with a continuum of criteria. The meanrisk approach quanti es the problem in a lucid form of only two criteria: the mean, representin the expected outcome, and the risk: a scalar measure of the variability of outcomes. The meanrisk model is appealin to decision makers and allows a simple tradeo analysis, analytical or eometrical. On the other hand, meanrisk approaches are not capable of modelin the entire amut of riskaverse preferences. Moreover, for typical dispersion statistics used as risk measures, the meanrisk approach may lead to inferior conclusions. The seminal Markowitz (1952) portfolio optimization model uses the variance as the risk measure in the meanrisk analysis. Since then many authors have pointed out that the mean± variance model is, in eneral, not consistent with stochastic dominance rules. The use of the semivariance rather than variance as the risk measure was already suested by Markowitz (1959) himself. Porter (1974) showed that the meanrisk model usin a xedtaret semivariance as the risk measure is consistent with stochastic dominance. This approach was extended by Fishburn (1977) to more eneral risk measures associated with outcomes below some xed taret. There are many aruments for the use of xed tarets. On the other hand, when one of performance measures is the expected return, the risk measure should take into account all possible outcomes below the mean. Therefore, we focus our analysis on central semimoments which measure the expected value of deviations below the mean. To be more precise, we consider the absolute semideviation (from the mean) d X ˆ Z l X ˆ 1 2 l X n P X dn jn l X j P X dn and the standard semideviation 0 r X Z l X 1 l X n 2 P X dn A 1=2 1 ; 2 where l X ˆ EfX. We show that meanrisk models usin standard or absolute semideviations as risk measures are consistent with the stochastic dominance, if a bounded set of meanrisk tradeo s is considered. In the portfolio selection context these models correspond to the Markowitz (1959, 1987) mean±semivariance model and the Konno and Yamazaki (1991) MAD model with absolute deviation. The paper is oranized as follows. In Section 3 we recall the basics of the stochastic dominance and meanrisk approaches. We also specify what we mean by consistency of these approaches. In Section 3 we introduce a convenient raphical tool for the stochastic dominance methodoloy: the Outcome±Risk (O±R) diaram, and we examine various risk measures within the diaram. We further use the O±R diaram to establish consistency of meanrisk models usin the absolute semideviation (Section 4) and the standard semideviation (Section 5), respectively, with the second deree stochastic dominance rules. In a similar way we reexamine the standard deviation as a possible risk measure in Section 6. Owin to the use of the O±R diaram all proofs are easy, nevertheless, riorous.
3 W. Oryczak, A. Ruszczynski / European Journal of Operational Research 116 (1999) 33± Stochastic dominance and meanrisk models Stochastic dominance is based on an axiomatic model of riskaverse preferences (Fishburn, 1964). It oriinated in the majorization theory (Hardy et al., 1934) for the discrete case and was later extended to eneral distributions (Hanoch and Levy, 1969; Rothschild and Stilitz, 1970). Since that time it has been widely used in economics and  nance (see Bawa (1982) and Levy (1992) for numerous references). In the stochastic dominance approach random variables are compared by pointwise comparison of some performance functions constructed from their distribution functions. Let X be a random variable with the probability is de ned as the rihtcontinuous cumulative distribution function itself: measure P X. The rst performance function F 1 X F 1 X ˆ F X ˆ PfX 6 for 2 R: The weak relation of the rst deree stochastic dominance (FSD) is de ned as follows: X FSD Y () F X 6 F Y for all 2 R: 3 The second performance function X is iven by areas below the distribution function F X : X ˆ F X n dn for 2 R; and de nes the weak relation of the second deree stochastic dominance (SSD): X SSD Y () X 6 Y for all 2 R: 4 The correspondin strict dominance relations FSD and SSD are de ned by the standard rule X Y () X Y and Y ² X : 5 Thus, we say that X dominates Y under the FSD rules (X FSD Y ), if F X 6 F Y for all 2 R, where at least one strict inequality holds. Similarly, we say that X dominates Y under the SSD rules (X SSD Y ), if X 6 Y for all 2 R, with at least one inequality strict. Certainly, X FSD Y implies X SSD Y and X FSD Y implies X SSD Y. Note that F X expresses the probability of underachievement for a iven taret value. Thus the rst deree stochastic dominance is based on the multidimensional (continuumdimensional) objective de ned by the probabilities of underachievement for all taret values. The FSD is the most eneral relation. If X FSD Y, then X is preferred to Y within all models preferrin larer outcomes, no matter how riskaverse or riskseekin they are. For decision makin under risk most important is the second deree stochastic dominance relation,. If X SSD Y, then X is preferred to Y within all riskaverse preference models that prefer larer outcomes. It is therefore a matter of primary importance that an approach to the comparison of random outcomes be consistent with the second deree stochastic dominance relation. Our paper focuses on the consistency of meanrisk approaches with SSD. Meanrisk approaches are based on comparin two scalar characteristics (summary statistics), the rst of which ± denoted l ± represents the expected outcome (reward), and the second ± denoted r ± is some measure of risk. The weak relation of meanrisk dominance is de ned as follows: associated with the function X X l=r Y () l X P l Y and r X 6 r Y : The correspondin strict dominance relation l=r is de ned in the standard way, as in Eq. (5). We say that X dominates Y under the l=r rules (X l=r Y ), if l X P l Y and r X 6 r Y, and at least one of these inequalities is strict. Note that random variables X and Y such that l X ˆ l Y and r X ˆ r Y are indi erent under the l=r rules (X l=r Y and Y l=r X ). We say then that X and Y enerate a tie in the l=r model. An important advantae of meanrisk approaches is the possibility of a pictorial tradeo analysis. Havin assumed a tradeo coe cient k between the risk and the mean, one may directly compare real values of l X kr X and l Y kr Y. Indeed, the followin implication holds: X l=r Y ) l X kr X P l Y kr Y for all k > 0: We say that the tradeo approach is consistent with the meanrisk dominance.
4 36 W. Oryczak, A. Ruszczynski / European Journal of Operational Research 116 (1999) 33±50 Suppose now that the meanrisk model is consistent with the SSD model by the implication X SSD Y ) X l=r Y : Then meanrisk and tradeo approaches lead to uaranteed results: X l=r Y ) Y ² SSD X ; l X kr X > l Y kr Y for some k > 0 ) Y ² SSD X : In other words, they cannot strictly prefer an inferior decision. In this paper we show that some meanrisk models are consistent with the SSD model in the followin sense: there exists a positive constant a such that for all X and Y X SSD Y ) l X P l Y and l X a r X P l Y a r Y : 6 In particular, for the risk measure r de ned as the absolute semideviation (1) or standard semideviation (2), the constant a turns out to be equal to 1. Yitzhaki (1982) showed a similar result for the risk measure de ned as the RGini's R mean (absolute) di erence r X ˆ C X ˆ 1 2 jn j PX dn P X d. Relation (6) directly expresses the consistency with SSD of the model usin only two criteria: l and l a r. Both, however, are de ned by l and r, and we have l X P l Y and l X a r X P l Y a r Y ) l X kr X P l Y kr Y for 0 < k 6 a: Consequently, Eq. (6) may be interpreted as the consistency with SSD of the meanrisk model, provided that the tradeo coe cient is bounded from above by a. Namely, Eq. (6) uarantees that l X kr X > l Y kr Y ) Y ² SSD X : for some 0 < k 6 a Comparison of random variables is usually related to the problem of choice amon risky alternatives in a iven feasible set Q. For instance, in the simplest problem of portfolio selection (Markowitz, 1987) the feasible set of random variables is de ned as all convex combinations (weihted averaes with nonneative weihts totalin 1) of a iven number of investment opportunities (securities). A feasible random variable X 2 Q is called e cient under the relation if there is no Y 2 Q such that Y X. Consistency (6) leads to the followin result. Proposition 1. If the meanrisk model satis es (6), then except for random variables with identical l and r, every random variable that is maximal by l kr with 0 < k < a is e cient under the SSD rules. Proof. Let 0 < k < a and X 2 Q be maximal by l kr. This means that l X kr X P l Y kr Y for all Y 2 Q. Suppose that there exists Z 2 Q such that Z SSD X. Then, from Eq. (6), l Z P l X and l Z ar Z P l X ar X : 7 Addin these inequalities multiplied by 1 k=a and k=a, respectively, we obtain 1 k=a l Z k=a l Z ar Z P 1 k=a l X k=a l X ar X ; which after simpli cation reads: l Z kr Z P l X kr X : But X is maximal, so we must have l Z kr Z ˆ l X kr X ; 8 that is, equality in Eq. (8) holds. This combined with Eq. (7) implies l Z ˆ l X and r Z ˆ r X : Proposition 1 justi es the results of the meanrisk tradeo analysis for 0 < k < a. This can be extended to k ˆ a provided that the inequality l X a r X P l Y a r Y turns into equality only in the case of l X ˆ l Y. Corollary 1. If the meanrisk model satis es (6) as well as X SSD Y and l X > l Y ) l X a r X > l Y a r Y 9
5 W. Oryczak, A. Ruszczynski / European Journal of Operational Research 116 (1999) 33±50 37 then, except for random variables with identical l and r, every random variable that is maximal by l kr with 0 < k 6 a is e cient under the SSD rules. Proof. Due to Proposition 1, we only need to prove the case of k ˆ a. Let X 2 Q be maximal by l ar. Suppose that there exists Z 2 Q such that Z SSD X. Hence, by Eq. (6), l Z P l X. If l Z > l X, then Eq. (9) yields l X ar X < l Z ar Z, which contradicts the maximality of X. Thus, l Z ˆ l X and, by Eq. (6) and the maximality of X, one has l X ar X ˆ l Z ar Z. Hence, l Z ˆ l X and r Z ˆ r X : It follows from Proposition 1 that for meanrisk models satisfyin Eq. (6) the optimal solution of the problem maxfl X k r X : X 2 Q 10 with 0 < k < a, if it is unique, is e cient under the SSD rules. However, in the case of nonunique optimal solutions, we only know that the optimal set of Problem (10) contains a solution which is e cient under the SSD rules. The optimal set may contain, however, also some SSDdominated solutions. Exactly, due to Proposition 1, an optimal solution X 2 Q can be SSD dominated only by another optimal solution Y 2 Q which enerates a l=r tie with X (i.e., l Y ˆ l X and r Y ˆ r X ). A question arises whether it is possible to additionally reularize (re ne) problem (10) in order to select those optimal solutions that are e cient under the SSD rules. We resolve this question durin the analysis of speci c risk measures. In many applications, especially in the portfolio selection problem, the meanrisk model is analyzed with the socalled critical line alorithm (Markowitz, 1987). This is a technique for identifyin the l=r e cient frontier by parametric optimization (10) for varyin k > 0. Proposition 1 uarantees that the part of the e cient frontier (in the l=r imae space) correspondin to tradeo coe cients 0 < k < a is also e cient under the SSD rules. 3. The O±R diaram The second deree stochastic dominance is based on the pointwise dominance of functions. Therefore, properties of the function are important for the analysis of relations between the second deree stochastic dominance and the meanrisk models. The followin proposition summarizes the basic properties which we use in our analysis. Proposition 2. If EfjX j < 1, then the function X is well de ned for all 2 R and has the followin properties: P1. X is continuous, convex, nonneative and nondecreasin. P2. If F X 0 > 0, then X is strictly increasin for all P 0. P3. X ˆ R n df X n ˆ R n P X dn ˆ PfX 6 Ef X jx 6. P4. lim! X ˆ 0. P5. X l X ˆ R 1 n df X n ˆ R 1 n P X dn ˆ PfX P EfX jx P. P6. X l X is a continuous, convex, nonneative and nonincreasin function of. P7. lim!1 X l X Š ˆ 0. P8. For any iven 0 2 R X P X 0 0 supff X n j n < 0 P X 0 0 for all < 0 ; X 6 X 0 0 supff X n j n < 6 X 0 0 for all > 0 : Properties P1±P4 are rather commonly known but frequently not expressed in such a riorous form for eneral random variables. Properties P5± P8 seem to be less known or at least not widely used in the stochastic dominance literature. In Appendix A we ive a formal proof of Proposition 2. From now on, we assume that all random variables under consideration are interable in the sense that EfjX j < 1. Therefore, we are allowed us to use all the properties P1±P8 in our analysis.
6 38 W. Oryczak, A. Ruszczynski / European Journal of Operational Research 116 (1999) 33±50 Note that, due to property P3, X ˆ PfX 6 Ef X j X 6 thus expressin the expected shortae for each taret outcome. So, in addition to bein the most eneral dominance relation for all riskaverse preferences, SSD is a rather intuitive multidimensional (continuumdimensional) risk measure. Therefore, we will refer to the raph of X as to the O±R diaram for the random variable X (Fi. 1). The raph of the function X has two asymptotes which intersect at the point l X ; 0. Speci cally, the axis is the left asymptote (property P4) and the line l X is the riht asymptote (property P7). In the case of a deterministic outcome (X ˆ l X ), the raph of X coincides with the asymptotes, whereas any uncertain outcome with the same expected value l X yields a raph above (precisely, not below) the asymptotes. Hence, the space between the curve ; X, 2 R, and its asymptotes represents the dispersion (and thereby the riskiness) of X in comparison to the deterministic outcome of l X. We shall call it the dispersion space. Both size and shape of the dispersion space are important for complete description of the riskiness. Nevertheless, it is quite natural to consider some size parameters as summary characteristics of riskiness. As the simplest size parameter one may consider the maximal vertical diameter. By properties P1 and P6, it is equal to X l X. Moreover, property P3 yields the followin corollary. Corollary 2. If EfjX j < 1, then X l X ˆ d X. The absolute semideviation d X turns out to be a linear measure of the dispersion space. There are many aruments (see, e.., Markowitz, 1959) that only the dispersion related to underachievements should be considered as a measure of riskiness. In such a case we should rather focus on the downside dispersion space, that is, to the left of l X. Note that d X is the larest vertical diameter for both the entire dispersion space and the downside dispersion space. Thus d X seems to be a quite reasonable linear measure of the risk related to the representation of a random variable X by its expected value l X. Moreover, the absolute deviation d X ˆ jn l X j P X dn 11 is symmetric in the sense that d X ˆ 2 d X for any (possible nonsymmetric) random variable X. Thus absolute mean d also can be considered a linear measure of riskiness. A better measure of the dispersion space should be iven by its area. To evaluate it one needs to calculate the correspondin interals. The followin proposition ives these results. Proposition 3. If EfX 2 < 1, then X f df ˆ 1 2 n 2 P X dn ˆ 1 2 PfX 6 Ef X 2 jx 6 ; 12 Fi. 1. The O±R diaram.
7 W. Oryczak, A. Ruszczynski / European Journal of Operational Research 116 (1999) 33±50 39 X f f l X Š df ˆ 1 2 n 2 P X dn ˆ 1 2 PfX P Ef X 2 jx P : 13 Formula (12) was shown by Porter (1974) for continuous random variables. The second formula seems to be new in the SSD literature. In the Appendix A we ive a formal proof of both formulas for eneral random variables. Corollary 3. If EfX 2 < 1, then Z lx r 2 X ˆ 2 X f df; 14 Z lx r 2 X ˆ 2 X f df 2 X f f l X Š df: l X 15 Hereafter, whenever considerin variance r 2 or semivariance r 2 (standard deviation r or standard semideviation r) we will assume that EfX 2 < 1. Therefore, we are eliible to use formulas (14) and (15) in our analysis. By Corollary 3, the variance r 2 X represents the doubled area of the dispersion space of the random variable X, whereas the semivariance r 2 X is the doubled area of the downside dispersion space. Thus the semimoments d and r 2, as well as the absolute moments d and r 2, can be rearded as some risk characteristics and they are well depicted in the O±R diaram (Fis. 2 and 3). In further sections we will use the O±R diaram to prove that the meanrisk model usin the semideviations d and r is consistent with the second deree stochastic dominance. Geometrical relations in the O±R diaram make the proofs easy. However, as the eometrical relations are the consequences of Propositions 2 and 3, the proofs are riorous. To conclude this section we derive some additional consequences of Propositions 2 and 3. Let us observe that in the O±R diaram the diaonal line X 0 0 is parallel to the riht as Fi. 2. The O±R diaram and the semimoments. Fi. 3. The O±R diaram and the absolute moments.
8 40 W. Oryczak, A. Ruszczynski / European Journal of Operational Research 116 (1999) 33±50 ymptote l X and intersects the raph of X at the point 0 ; X 0. Therefore, property P8 can be interpreted as follows. If a diaonal line (parallel to the riht asymptote) intersects the raph of X at ˆ 0, then for < 0, X is bounded from below by the line, and for > 0, X is bounded from above by the line. Moreover, the boundin is strict except in the case of supff X n j n < 0 ˆ 1 or F X 0 ˆ 1, respectively. Settin 0 ˆ l X we obtain the followin proposition (Fi. 4). Proposition 4. If EfX 2 < 1, then r X P d X and this inequality is strict except in the case r X ˆ d X ˆ 0. Proof. From P8 in Proposition 2, X > X l X l X for all < l X ; since supff X n j n < l X < 1. Hence, in the case of X l X > 0, one has 1 2 r2 X > 1 d 2 2 X and r X > d X. Otherwise r X ˆ d X ˆ 0: Recall that, due to the Lyapunov inequality for absolute moments (Kendall and Stuart, 1958), the standard deviation and the absolute deviation satisfy the followin inequality: r X P d X : 16 Proposition 4 is its analoue for absolute and standard semideviations. While considerin two random variables X and Y in the common O±R diaram one may easily notice that, if l X < l Y, then the riht asymptote of X (the diaonal line l X ) must intersect the raph of Y at some 0. By property P8, X P l X P Y for P 0 : Moreover, since l Y is the riht asymptote of (property P7), there exists 1 > 0 such that Y X > Y for P 1 : Thus, from the O±R diaram one can easily derive the followin, commonly known, necessary condition for the second deree stochastic dominance (Fishburn, 1980; Levy, 1992). Proposition 5. If X SSD Y, then l X P l Y. While considerin in the common O±R diaram two random variables X and Y with equal expected values l X ˆ l Y, one may easily notice that the functions X and Y have the same asymptotes. It leads us to the followin commonly known result (Fishburn, 1980; Levy, 1992). Proposition 6. For random variables X and Y with equal means l X ˆ l Y ; X SSD Y ) r 2 X 6 r2 Y ; 17 X SSD Y ) r 2 X < r2 Y : Absolute deviation as risk measure In this section we analyze the meanrisk model with the risk de ned by the absolute semideviation d iven by Eq. (1). Recall that dx ˆ X l X (Corollary 2) and it represents the larest vertical diameter of the (downside) dispersion space. Fi r2 X P 1 2 d 2 X.
9 W. Oryczak, A. Ruszczynski / European Journal of Operational Research 116 (1999) 33±50 41 Hence, d is a well de ned eometrical characteristic in the O±R diaram. Consider two random variables X and Y in the common O±R diaram (Fi. 5). If X SSD Y, then, is bounded from above by Y, and, by Proposition 5, l X P l Y. For P l Y, Y is bounded from above by d Y l Y (second inequality of P8 in Proposition 2). Hence, by the de nition of SSD, X d X ˆ X l X 6 Y l X 6 d Y l X l Y : This simple analysis of the O±R diaram allows us to derive the followin necessary condition for the second deree stochastic dominance. Proposition 7. If X SSD Y, then l X P l Y and l X d X P l Y d Y, where the second inequality is strict whenever l X > l Y. Proof. Due to the considerations precedin the proposition, we only need to prove that l X d X > l Y d Y whenever X SSD Y and l X > l Y. Note that from the second inequality of P8 ( ˆ l X, 0 ˆ l Y ), in such a case, d X ˆ X l X 6 X l Y l X l Y supff X n j n < l X < d Y l X l Y : Proposition 7 says that the l= d meanrisk model is consistent with the second deree stochastic dominance by the rule (6) with a ˆ 1. Therefore, a l= d comparison leads to uaranteed results in the sense that l X k d X > l Y k d Y for some 0 < k 6 1 ) Y ² SSD X : For problems of choice amon risky alternatives in a iven feasible set, due to Corollary 1, the followin observation can be made. Corollary 4. Except for random variables with identical mean and absolute semideviation, every random variable X 2 Q that is maximal by l X k d X with 0 < k 6 1 is e cient under the SSD rules. The upper bound on the tradeo coe cient k in Corollary 4 cannot be increased for eneral distributions. For any e > 0 there exist random variables X SSD Y such that l X > l Y and l X 1 e d X ˆ l Y 1 e d Y : As an example one may consider two nite random variables: X de ned as PfX ˆ 0 ˆ 1= 1 e, PfX ˆ 1 ˆ e= 1 e ; and Y de ned as PfY ˆ 0 ˆ 1. Konno and Yamazaki (1991) introduced the portfolio selection model based on the l=d meanrisk model. The model is very attractive computationally, since (for discrete random variables) it leads to linear prorammin problems. Therefore, it is recently applied to various nance problems (e.., Zenios and Kan, 1993). Note that the absolute deviation d is a symmetric measure and the absolute semideviation d is its half. Hence, Proposition 7 is also valid (with factor 1/2) for the l=d meanrisk model. Thus, for the l=d model there exists a bound on the tradeo s such Fi. 5. SSD and the absolute semideviations: X SSD Y ) d X 6 d Y l X l Y.
10 42 W. Oryczak, A. Ruszczynski / European Journal of Operational Research 116 (1999) 33±50 that for smaller tradeo s the model is consistent with the SSD rules. Speci cally, due to Corollary 4, the followin observation can be made. Corollary 5. Except for random variables with identical mean and absolute deviation, every random variable X 2 Q that is maximal by l X kd X with 0 < k 6 1=2 is e cient under the SSD rules. The upper bound on the tradeo coe cient k in Corollary 5 can be substantially increased for symmetric distributions. Proposition 8. For symmetric random variables X and Y, X SSD Y ) l X P l Y and l X d X P l Y d Y : Proof. If X SSD Y then, due to Proposition 5, l X P l Y. From the second inequality of P8 in Proposition 2, 1 2 d X ˆ X l X 6 X l Y l X l Y supff X n j n < l X d Y 1 2 l X l Y ; since for symmetric random variables supff X n j n < l X 6 1=2: Hence, l X d X P l Y d Y : For problems of choice amon risky alternatives in a iven feasible set, Propositions 1 and 8 imply the followin result. Corollary 6. Within the class of symmetric random variables, except for random variables with identical mean and absolute deviation, every random variable X 2 Q that is maximal by l X kd X with 0 < k < 1, is e cient under the SSD rules. The bound on the tradeo coe cient k in Corollary 6 cannot be increased. There exist symmetric random variables X SSD Y such that l X > l Y and l X d X ˆ l Y d Y. As an example one may consider two nite random variables: X de ned as PfX ˆ 0 ˆ 0:5, PfX ˆ 4 ˆ 0:5; and Y de ned as PfY ˆ 0 ˆ 0:5, PfY ˆ 2 ˆ 0:5. It follows from Corollary 4 that the optimal solution of the problem maxfl X k d X : X 2 Q; 0 < k 6 1; 19 is e cient under the SSD rules, if it is unique. In the case of multiple optimal solutions, the optimal set of problem (19) contains a solution which is e cient under SSD rules but it may contain also some SSD dominated solutions. Exactly, due to Corollary 4, an optimal solution X 2 Q can be SSD dominated only by another optimal solution Y 2 Q which enerates a l= d tie with X (i.e., l Y ˆ l X and d Y ˆ d X ). A question arises how di erent can the random variables be that enerate a tie (are indi erent) in the l= d meanrisk model. Absolute semideviation is a linear measure of the dispersion space and therefore many di erent distributions may tie in the l= d comparison. Note that two random variables X and Y with the same expected value l X ˆ l Y are l= d indi erent if X l X ˆ Y l X, independently of values of X and Y for all other 6ˆ l X. Consider two nite random variables: X de ned as PfX ˆ 20 ˆ 0:5, PfX ˆ 20 ˆ 0:5; and Y de ned as PfY ˆ 000 ˆ 0:01, PfY ˆ 0 ˆ 0:98, PfY ˆ 1000 ˆ 0:01. They are l= d indi erent, because l X ˆ l Y ˆ 0 and d X ˆ d Y ˆ 10. Nevertheless, X SSD Y and X < Y for all 0 < jj < As an extreme one may consider the case when X < Y for all 2 R except for ˆ l X ˆ l Y, and despite that X and Y are l= d indi erent (Fi. 6). Therefore, the l= d model, althouh consistent with the second deree stochastic dominance for bounded tradeo s, dramatically needs some additional reularization to resolve ties in comparisons. Ties in the l= d model can be resolved with additional comparisons of standard deviations or variances. By its de nition, a tie in the l= d model may occur only in the case of equal means, and this is exactly the case when Proposition 6 applies. We can simply select from X and Y the one that has a smaller standard deviation. It can be for
11 W. Oryczak, A. Ruszczynski / European Journal of Operational Research 116 (1999) 33±50 43 malized as the followin lexicoraphic comparison: l X k d X ; r X P lex l Y k d Y ; r Y () l X k d X > l Y k d Y or l X k d X ˆ l Y k d Y and r X P r Y : The lexicoraphic relation de nes a linear order. Hence, for problems of choice amon risky alternatives in a iven feasible set, the lexicoraphic maximization of l k d; r is well de ned. It has two phases: the maximization of l k d within the feasible set, and the selection of the optimal solution that has the smallest standard deviation r. Owin to Eq. (18), such a selection results in SSD e cient solutions (even in the case of multiple optimal solutions). Corollary 7. Every random variable X 2 Q that is lexicoraphically maximal by l X k d X ; r X with 0 < k 6 1 is e cient under the SSD rules. For the l=d portfolio selection model (Konno and Yamazaki, 1991) the results of our analysis can be summarized as follows. While identifyin the l=d e cient frontier by parametric optimization maxfl X k d X : X 2 Q 20 for tradeo k varyin in the interval 0; 0:5Š the correspondin imae in the l=d space represents SSD e cient solutions. Thus it can be used as the meanrisk map to seek a satisfactory l=d compromise. It does not mean, however, that the solutions enerated durin the parametric optimization (20) are SSD e cient. Therefore, havin decided on some values of l and d one should apply the reularization technique (minimization of standard deviation) to select a speci c portfolio which is SSD e cient. 5. Standard semideviation as risk measure In this section we analyze the meanrisk model with the risk de ned by the standard semideviation r iven by Eq. (2). Recall that the standard semideviation is the square root of the semivariance which equals to the doubled area of the downside dispersion space (Corollary 3). Hence, r is a well de ned eometrical characteristic in the O±R diaram. Consider two random variables X and Y in the common O±R diaram (Fi. 7). If X SSD Y, then, is bounded from above by Y, and, by Proposition 5, l X P l Y. Due to the convexity of X, the downside dispersion space of X is no reater than the downside dispersion space of Y plus the area of the trapezoid with the vertices: l Y ; 0, l X ; 0, l X ; X l X and l Y ; Y l Y. Formally, by the de nition of SSD, X 1 2 r2 X r2 Y 1 2 l X l Y d X d Y : 21 This inequality allows us to derive new necessary conditions for the consistency with SSD of the bicriteria meanrisk model usin standard semideviation as the risk measure. Fi. 7. SSD and the semivariances: X SSD Y ) 1 2 r2 X r2 Y 1 2 l X l Y d X d Y.
Altruism and Voting: A LargeTurnout Result That Does not Rely on Civic Duty or Cooperative Behavior
Centre for Economic and Financial Research at New Economic School April 22 Altruism and Voting: A LargeTurnout Result That Does not Rely on Civic Duty or Cooperative Behavior Özgür Evren Working Paper
More informationDIVERSIFICATION, REBALANCING, AND THE GEOMETRIC MEAN FRONTIER. William J. Bernstein. David Wilkinson
DIVERSIFICATION, REBALANCING, AND THE GEOMETRIC MEAN FRONTIER William J. Bernstein wbern@mail.coos.or.us and David Wilkinson DaveWilk@worldnet.att.net November 24, 1997 Abstract The effective (geometric
More informationEXTENSION RULES OR WHAT WOULD THE SAGE DO? January 23, 2013
EXTENSION RULES OR WHAT WOULD THE SAGE DO? EHUD LEHRER AND ROEE TEPER January 23, 2013 Abstract. Quite often, decision makers face choices that involve new aspects and alternatives never considered before.
More informationThe Capital Asset Pricing Model: Some Empirical Tests
The Capital Asset Pricing Model: Some Empirical Tests Fischer Black* Deceased Michael C. Jensen Harvard Business School MJensen@hbs.edu and Myron Scholes Stanford University  Graduate School of Business
More informationFrom value at risk to stress testing: The extreme value approach
Journal of Banking & Finance 24 (2000) 1097±1130 www.elsevier.com/locate/econbase From value at risk to stress testing: The extreme value approach Francßois M. Longin * Department of Finance, Groupe ESSEC,
More informationSome statistical heresies
The Statistician (1999) 48, Part 1, pp. 1±40 Some statistical heresies J. K. Lindsey Limburgs Universitair Centrum, Diepenbeek, Belgium [Read before The Royal Statistical Society on Wednesday, July 15th,
More informationTHE THEORY OF GOODDEAL PRICING IN FINANCIAL MARKETS A. CERNY, S.D. HODGES
ISSN 17446783 THE THEORY OF GOODDEAL PRICING IN FINANCIAL MARKETS A. CERNY, S.D. HODGES Tanaka Business School Discussion Papers: TBS/DP04/14 London: Tanaka Business School, 2004 The Theory of GoodDeal
More informationConsistent cotrending rank selection when both stochastic and. nonlinear deterministic trends are present
Consistent cotrending rank selection when both stochastic and nonlinear deterministic trends are present ZhengFeng Guo and Mototsugu Shintani y This version: April 2010 Abstract This paper proposes a
More informationPanel Unit Root Tests in the Presence of CrossSectional Dependency and Heterogeneity 1
Panel Unit Root Tests in the Presence of CrossSectional Dependency and Heterogeneity 1 Yoosoon Chang and Wonho Song Department of Economics Rice University Abstract An IV approach, using as instruments
More informationNew Support Vector Algorithms
LETTER Communicated by John Platt New Support Vector Algorithms Bernhard Schölkopf Alex J. Smola GMD FIRST, 12489 Berlin, Germany, and Department of Engineering, Australian National University, Canberra
More informationWhen is time continuous?
Journal of Financial Economics 55 (2000) 173}204 When is time continuous? Dimitris Bertsimas, Leonid Kogan, Andrew W. Lo* MIT Sloan School of Management, 50 Memorial Drive, Cambridge, MA 021421347, USA
More informationHow to Use Expert Advice
NICOLÒ CESABIANCHI Università di Milano, Milan, Italy YOAV FREUND AT&T Labs, Florham Park, New Jersey DAVID HAUSSLER AND DAVID P. HELMBOLD University of California, Santa Cruz, Santa Cruz, California
More informationFocus, Then Compare. Doron Ravid. First Version: June 2011; Current Version: November 2014. Additional Research Paper. Abstract
Focus, Then Compare Doron Ravid First Version: June 2011; Current Version: November 2014 Additional Research Paper Abstract I study the following random choice procedure called Focus, Then Compare. First,
More informationOPRE 6201 : 2. Simplex Method
OPRE 6201 : 2. Simplex Method 1 The Graphical Method: An Example Consider the following linear program: Max 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2
More informationThe Peso Problem Hypothesis and Stock Market Returns
The Peso Problem Hypothesis and Stock Market Returns Pietro Veronesi Graduate School of Business University of Chicago 1101 E. 58th St. Chicago IL 60637 USA ph: (773) 702 6348 email: pietro.veronesi@gsb.uchicago.edu
More informationA direct approach to false discovery rates
J. R. Statist. Soc. B (2002) 64, Part 3, pp. 479 498 A direct approach to false discovery rates John D. Storey Stanford University, USA [Received June 2001. Revised December 2001] Summary. Multiplehypothesis
More informationMarket Efficiency: A Theoretical Distinction and So What? Harry M. Markowitz
Market Efficiency: A Theoretical Distinction So What? Harry M. Markowitz The capital asset pricing model (CAPM) is an elegant theory. With the aid of some simplifying assumptions, it comes to dramatic
More informationHas Monetary Policy Become Less Powerful?
Has Monetary Policy Become Less Powerful? Jean Boivin y Columbia University Marc Giannoni z Federal Reserve Bank First Draft: March 2001 This Version: January 2002 of New York JEL Classi cation: E52, E3,
More informationSubspace Pursuit for Compressive Sensing: Closing the Gap Between Performance and Complexity
Subspace Pursuit for Compressive Sensing: Closing the Gap Between Performance and Complexity Wei Dai and Olgica Milenkovic Department of Electrical and Computer Engineering University of Illinois at UrbanaChampaign
More informationThe effects of Fair Trade when productivity differences matter
NiCE Working Paper 206 September 202 The effects of Fair Trade when productivity differences matter Maarten Breimer Albert de Vaal Nijmegen Center for Economics (NiCE) Institute for Management Research
More informationNot Only What but also When: A Theory of Dynamic Voluntary Disclosure
Not Only What but also When: A Theory of Dynamic Voluntary Disclosure By ILAN GUTTMAN, ILAN KREMER, AND ANDRZEJ SKRZYPACZ We examine a dynamic model of voluntary disclosure of multiple pieces of private
More informationMisunderstandings between experimentalists and observationalists about causal inference
J. R. Statist. Soc. A (2008) 171, Part 2, pp. 481 502 Misunderstandings between experimentalists and observationalists about causal inference Kosuke Imai, Princeton University, USA Gary King Harvard University,
More informationRegret in the OnLine Decision Problem
Games and Economic Behavior 29, 7 35 (1999) Article ID game.1999.0740, available online at http://www.idealibrary.com on Regret in the OnLine Decision Problem Dean P. Foster Department of Statistics,
More informationDimensioning Large Call Centers
OPERATIONS RESEARCH Vol. 52, No. 1, January February 2004, pp. 17 34 issn 0030364X eissn 15265463 04 5201 0017 informs doi 10.1287/opre.1030.0081 2004 INFORMS Dimensioning Large Call Centers Sem Borst
More informationA general equilibrium model of statistical discrimination
Journal of Economic Theory 114 (2004) 1 30 A general equilibrium model of statistical discrimination Andrea Moro a and Peter Norman b, a Department of Economics, University of Minnesota, MN, USA b Department
More informationTHE TWO major steps in applying any heuristic search algorithm
124 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 3, NO. 2, JULY 1999 Parameter Control in Evolutionary Algorithms Ágoston Endre Eiben, Robert Hinterding, and Zbigniew Michalewicz, Senior Member,
More informationHow to Gamble If You Must
How to Gamble If You Must Kyle Siegrist Department of Mathematical Sciences University of Alabama in Huntsville Abstract In red and black, a player bets, at even stakes, on a sequence of independent games
More informationWHICH SCORING RULE MAXIMIZES CONDORCET EFFICIENCY? 1. Introduction
WHICH SCORING RULE MAXIMIZES CONDORCET EFFICIENCY? DAVIDE P. CERVONE, WILLIAM V. GEHRLEIN, AND WILLIAM S. ZWICKER Abstract. Consider an election in which each of the n voters casts a vote consisting of
More informationBasic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011
Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011 A. Miller 1. Introduction. The definitions of metric space and topological space were developed in the early 1900 s, largely
More informationHow To Count Citations If You Must
How To Count Citations If You Must Motty Perry Department of Economics University of Warwick Coventry CV4 7AL Philip J. Reny Department of Economics University of Chicago Chicago, IL, 60637 USA. June 2014
More information