Monocular Vision The Human Eye

Size: px
Start display at page:

Download "Monocular Vision The Human Eye"

Transcription

1 6.0 The Human Eye The human eye operates very much like a modern electronic camera Iris: controls the amount of light energy entering the lens Lens: focus light onto retina (adjustable) refraction also provided by cornea + A.H. Retina: Layer of electronic (ok neural) pixel elements Monocular Vision The lens focuses some of the rays ( emitted in all directions) from points on the pencil (the object) on to individual points (the image) on the retina The electrical impulses are carried by the optic nerve into the brain for processing shapes and colors

2 6.0 The Human Eye Muscles in the eye changes the shape (focal length) of the lens in response to near and far objects depth perception with just one eye This is a skill learned by a baby in the first few days after birth. It is difficult to demonstrate it is so automatic () Cover one eye. Stare at this screen with other eye. Then move a finger into field of view. () Cover one eye. Look down at one finger. Raise your head until this screen comes into field of view relaxed lens tensed lens Binocular Vision (a) Eyeballs rotate to center the object in each eye (conscious but fairly automatic response by the brain) more depth perception () Put one finger from each hand in front of you one at twice the distance of the other. () Alternately focus on one finger the other will be seen in double (b) The slightly different images seen in the two eyes are interpreted by the brain to given even more depth perception 3D glasses!

3 6.0 The Human Eye Relaxed Eye Lens Nearsightedness Distant D Object F (non-standard notation) (myopia) Far Point of nearsighted eye Image formed in front of retina Ideally, the lens of the eye should be able to adjust to objects at any distance. But the nearsighted eye has a lens-retina combination that cannot relax itself enough to focus objects out to infinity. A distant object focus to a real image in front of (but missing) the retina. Usually there is a maximum object distance, called the far point, to which the eye can focus Distant Object Distant Object d o Far Point of nearsighted eye Virtual Image formed by diverging lens Far Point of nearsighted eye Image formed on the retina Diverging Lens D L Corrective Lens The patient is prescribed a diverging lens to compensate for the over-convergence Prescription We want to put the virtual image made by the diverging lens of a distant object (i.e. d o ) at the far point: D F. Remember that the corrective lens is worn at a small distance D L in front of the eye (D L 0 for a contact lens) d i ( D D ) F L f + d o d i + f ( D L ) ( D ) F D F D L 3

4 6.0 The Human Eye With this prescription, objects at finite, but far distances are mapped into virtual images located between the corrective lens (at distance D L from the eye) and the far point (at distance D F from the eye) Example : Eyeglasses for the Nearsighted Person A nearsighted person has a far point located only 5 cm from the eye. Assuming that eyeglasses are to be worn cm in front of the eye, find the focal length needed for the diverging lens of the glasses so the person can see distant objects. 4

5 6.0 The Human Eye Example : Eyeglasses for the Nearsighted Person A nearsighted person has a far point located only 5 cm from the eye. Assuming that eyeglasses are to be worn cm in front of the eye, find the focal length needed for the diverging lens of the glasses so the person can see distant objects. f With this prescription, objects at finite, but far distances are mapped into virtual images located between the corrective lens (at distance D L from the eye) and the far point (at distance D F from the eye) d o + d i D F D L DF D L 5cm cm f 59 cm THE REFRACTIVE POWER OF A LENS THE DIOPTER Optometrists who prescribe correctional lenses and the opticians who make the lenses do not specify the focal length. Instead they use the concept of refractive power. Refractive Power ( RP : in diopters) f ( in meters) RP is not a standard notation, and diopter is not an SI unit. f 59 cm RP 093. m dpt 5

6 6.0 The Human Eye Near Point of nearsighted eye D N Close-by object Tensed Eye Lens (non-standard notation) Sharp image formed behind the retina Farsightedness (hyperopia) Ideally, the lens of the eye should be able to adjust to objects at any distance. But the Farsighted eye has a lens-retina combination that cannot tense itself enough to focus objects close by. A close-by object focus to a sharp, real image behind (but missing) the retina. Usually there is a minimum object distance, called the near point, to which the eye can focus Near Point of nearsighted eye Virtual Image formed by converging lens Near Point of nearsighted eye Close-by object Close-by object Converging Lens Converging Lens D L Sharp image on retina Corrective Lens The patient is prescribed a converging lens to compensate for the underconvergence Prescription Put the virtual image made by the converging lens of the nearest object you want to see (typically at D MIN 5 cm) to the near point: D N. RP f + d o d i ( D MIN D L ) ( D N D L ) 6

7 Example of corrective lens for farsightedness: this is a pathology everyone gets as they get older starting at ~40 yrs of age (nearsightedness improves somewhat in combination with this) Your professor wears reading glasses with refractive power of RP.75 dpt.75 m -. Where is his near point (inside of which he cannot see). Assume the glasses to correct for objects as near as 5 cm, and that the glasses are worn cm from the eyes. 7

8 Example of corrective lens for farsightedness: this is a pathology everyone gets as they get older starting at ~40 yrs of age (nearsightedness improves somewhat in combination with this) Your professor wears reading glasses with refractive power of RP.75 dpt.75 m -. Where is his near point (inside of which he cannot see). Assume the glasses to correct for objects as near as 5 cm, and that the glasses are worn cm from the eyes. RP f + d o d i ( D MIN D L ) ( D N D L ).75 m (0.5 m 0.0 m) ( D N 0.0 m) ( D N 0.0 m) 0.3 m.75 m.60 m D N 0.0 m.60 m 0.38 m D N 0.40 m 8

9 6. Angular Magnification and the Magnifying Glass The eye is basically like a camera The size of the image on the retina determines how large an object appears to be. θ ( in radians) Angular size h d o o 9

10 6. Angular Magnification and the Magnifying Glass Example: A Penny and the Moon Compare the angular size of a penny held at arms length with that of the moon. 0

11 6. Angular Magnification and the Magnifying Glass Example: A Penny and the Moon Compare the angular size of a penny held at arms length with that of the moon. Penny θ h d o o.9 cm 7cm 0.07 rad Moon θ h d o o m m rad

12 6. Angular Magnification and the Magnifying Glass Angular magnification M θ θ Angular magnification of a magnifying glass M f d i N

13 6. The Compound Microscope To increase the angular magnification beyond that possible with a magnifying glass, an additional converging lens can be included to premagnify the object. Angular magnification of a compound microscope M ( L f ) f o f e e N 3

14 Chapter 7 Interference and the Wave Nature of Light 4

15 7. The Principle of Linear Superposition When two or more light waves pass through a given point, their electric (and magnetic) fields combine (interfere) according to the principle of superposition. Special Case Special Case The waves emitted by the sources start out in phase and arrive at point P in phase, leading to constructive interference. m mλ 0,,,3, The waves emitted by the sources start out in phase and arrive at point P in opposite phase, leading to destructive interference. m ( m + ) 0,,,3, If constructive or destructive interference is to continue ocurring at a point, the sources of the waves must be coherent sources. Two sources are coherent if the waves they emit maintain a constant phase relation. 5 λ

16 7. Young s Double Slit Experiment Two independent, coherent light sources are virtually impossible to construct. In Young s experiment (Young also participated in the deciphering of the Rosetta Stone), two slits illuminated by a single source acts as two separate but coherent sources of light. Light waves from these slits interfere both constructively and destructively on the projection screen. For best results, light of a single color (e.g. produced by a laser) is used. The waves coming from the slits interfere constructively or destructively, depending on the difference in distances between the slits and the screen. 6

17 7. Young s Double Slit Experiment In the typical set up, the screen is very far away compared to the separation of the slits. We treat the rays from the slits as if they were parallel Bright fringes from slits sinθ m λ d Bright fringes Dark fringes d sinθ d sinθ mλ d sinθ ( m + ) λ m 0,,,3, Dark fringes from slits Bright fringe Dark fringe λ ( m ) d sin + θ m Bright fringe Dark fringe Bright fringe 7

18 7. Young s Double Slit Experiment Example: Young s Double-Slit Experiment Red light (664 nm) is used in Young s experiment with slits separated by d m. The screen is located a distance.75 m from the slits. Find the distance on the screen between the central bright fringe and the third-order bright fringe. θ m sin m λ sin 3 4 d.0 0 m 0.95 (.75 m) tan( 0.95 ) m y L tan θ Note: Double slit interference also separates out the colors from a white or multi-colored source. The angle of the bright fringes is different for each wavelength the bright fringes for different colors form a rainbow on screen. 8

19 7.3 Thin Film Interference Because of reflection and refraction, (at least) two light waves enter the eye when light shines on a thin film of gasoline floating on a thick layer of water. Because of the extra distance traveled by ray [] relative to ray [], there can be interference between the two waves. For the comparison of the extra path to wavelength, we need to use the wavelength in the medium λ film λ n vacuum film When light travels through a material with a smaller refractive index towards a material with a larger refractive index, (partial) reflection at the boundary occurs along with a phase change that is equivalent to one-half of a wavelength in the film. When light travels from a larger towards a smaller refractive index, there is no phase change upon reflection. 9

20 7.3 Thin Film Interference Example Color of a Thin Film of Gasoline A thin film of gasoline floats on a puddle of water. Sunlight falls perpendicularly on the film and reflects into your eyes. The film has a yellow hue because destructive interference eliminates the color of blue (469 nm) from the reflected light. The refractive indices of the blue light in gasoline and water are.40 and.33. Determine the minimum non-zero thickness of the film. Ray []: reflection at point A from lower to higher index: phase shift equivalent to ½ λ film λfilm A B Ray []: reflection at point B from higher to lower no phase shift ; but roundtrip through film: t Effective path difference between Ray [] and Ray [] (including phase shift for reflection) t λfilm Destructive interference between Ray [] and Ray []: difference of half-integer wavelengths t λfilm, λfilm, 3λfilm... t λ film, 3 λ λ film film, 5 λ film... Minimum non-zero thickness t : t λ 469 nm.40 film 68 nm 0

21 7.3 Thin Film Interference The wedge of air formed between two glass plates causes an interference pattern of alternating dark and bright fringes. Thin-film band-pass optical filter y Dark Fringes λ y ( m + ) λ mλ 0,,,3 Bright Fringes... m As long as the film has the highest refractive index of the three regions, then neither of the two reflections incur a phase shift. t Constructive interference between transmitted ray [] and ray [] occurs for the minimum thickness of t λfilm

Chapter 27 Optical Instruments. 27.1 The Human Eye and the Camera 27.2 Lenses in Combination and Corrective Optics 27.3 The Magnifying Glass

Chapter 27 Optical Instruments. 27.1 The Human Eye and the Camera 27.2 Lenses in Combination and Corrective Optics 27.3 The Magnifying Glass Chapter 27 Optical Instruments 27.1 The Human Eye and the Camera 27.2 Lenses in Combination and Corrective Optics 27.3 The Magnifying Glass Figure 27 1 Basic elements of the human eye! Light enters the

More information

2) A convex lens is known as a diverging lens and a concave lens is known as a converging lens. Answer: FALSE Diff: 1 Var: 1 Page Ref: Sec.

2) A convex lens is known as a diverging lens and a concave lens is known as a converging lens. Answer: FALSE Diff: 1 Var: 1 Page Ref: Sec. Physics for Scientists and Engineers, 4e (Giancoli) Chapter 33 Lenses and Optical Instruments 33.1 Conceptual Questions 1) State how to draw the three rays for finding the image position due to a thin

More information

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light Name: Period: Date: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Reflection,

More information

Solution Derivations for Capa #14

Solution Derivations for Capa #14 Solution Derivations for Capa #4 ) An image of the moon is focused onto a screen using a converging lens of focal length (f = 34.8 cm). The diameter of the moon is 3.48 0 6 m, and its mean distance from

More information

Chapter 17: Light and Image Formation

Chapter 17: Light and Image Formation Chapter 17: Light and Image Formation 1. When light enters a medium with a higher index of refraction it is A. absorbed. B. bent away from the normal. C. bent towards from the normal. D. continues in the

More information

Physics 1230: Light and Color

Physics 1230: Light and Color Physics 1230: Light and Color The Eye: Vision variants and Correction http://www.colorado.edu/physics/phys1230 What does 20/20 vision mean? Visual acuity is usually measured with a Snellen chart Snellen

More information

The light. Light (normally spreads out straight... ... and into all directions. Refraction of light

The light. Light (normally spreads out straight... ... and into all directions. Refraction of light The light Light (normally spreads out straight...... and into all directions. Refraction of light But when a light ray passes from air into glas or water (or another transparent medium), it gets refracted

More information

Rutgers Analytical Physics 750:228, Spring 2016 ( RUPHY228S16 )

Rutgers Analytical Physics 750:228, Spring 2016 ( RUPHY228S16 ) 1 of 13 2/17/2016 5:28 PM Signed in as Weida Wu, Instructor Help Sign Out Rutgers Analytical Physics 750:228, Spring 2016 ( RUPHY228S16 ) My Courses Course Settings University Physics with Modern Physics,

More information

Review Vocabulary spectrum: a range of values or properties

Review Vocabulary spectrum: a range of values or properties Standards 7.3.19: Explain that human eyes respond to a narrow range of wavelengths of the electromagnetic spectrum. 7.3.20: Describe that something can be seen when light waves emitted or reflected by

More information

Revision problem. Chapter 18 problem 37 page 612. Suppose you point a pinhole camera at a 15m tall tree that is 75m away.

Revision problem. Chapter 18 problem 37 page 612. Suppose you point a pinhole camera at a 15m tall tree that is 75m away. Revision problem Chapter 18 problem 37 page 612 Suppose you point a pinhole camera at a 15m tall tree that is 75m away. 1 Optical Instruments Thin lens equation Refractive power Cameras The human eye Combining

More information

Light and its effects

Light and its effects Light and its effects Light and the speed of light Shadows Shadow films Pinhole camera (1) Pinhole camera (2) Reflection of light Image in a plane mirror An image in a plane mirror is: (i) the same size

More information

Vision Correction in Camera Viewfinders

Vision Correction in Camera Viewfinders Vision Correction in Camera Viewfinders Douglas A. Kerr Issue 2 March 23, 2015 ABSTRACT AND INTRODUCTION Many camera viewfinders are equipped with a lever or knob that controls adjustable vision correction,

More information

Study Guide for Exam on Light

Study Guide for Exam on Light Name: Class: Date: Study Guide for Exam on Light Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which portion of the electromagnetic spectrum is used

More information

Physics 116. Nov 4, 2011. Session 22 Review: ray optics. R. J. Wilkes Email: ph116@u.washington.edu

Physics 116. Nov 4, 2011. Session 22 Review: ray optics. R. J. Wilkes Email: ph116@u.washington.edu Physics 116 Session 22 Review: ray optics Nov 4, 2011 R. J. Wilkes Email: ph116@u.washington.edu ! Exam 2 is Monday!! All multiple choice, similar to HW problems, same format as Exam 1!!! Announcements

More information

Interference. Physics 102 Workshop #3. General Instructions

Interference. Physics 102 Workshop #3. General Instructions Interference Physics 102 Workshop #3 Name: Lab Partner(s): Instructor: Time of Workshop: General Instructions Workshop exercises are to be carried out in groups of three. One report per group is due by

More information

TRUSTED LASIK SURGEONS. Eye Conditions Correctable by Refractive Surgical Procedures

TRUSTED LASIK SURGEONS. Eye Conditions Correctable by Refractive Surgical Procedures Eye Conditions Correctable by Refractive Surgical Procedures How does the eye focus? Light rays are focused on to the retina (where the image is relayed to the brain) by the cornea and the lens of the

More information

Lecture 17. Image formation Ray tracing Calculation. Lenses Convex Concave. Mirrors Convex Concave. Optical instruments

Lecture 17. Image formation Ray tracing Calculation. Lenses Convex Concave. Mirrors Convex Concave. Optical instruments Lecture 17. Image formation Ray tracing Calculation Lenses Convex Concave Mirrors Convex Concave Optical instruments Image formation Laws of refraction and reflection can be used to explain how lenses

More information

LIGHT SECTION 6-REFRACTION-BENDING LIGHT From Hands on Science by Linda Poore, 2003.

LIGHT SECTION 6-REFRACTION-BENDING LIGHT From Hands on Science by Linda Poore, 2003. LIGHT SECTION 6-REFRACTION-BENDING LIGHT From Hands on Science by Linda Poore, 2003. STANDARDS: Students know an object is seen when light traveling from an object enters our eye. Students will differentiate

More information

Patient Information Content

Patient Information Content KORNMEHL LASER EYE ASSOCIATES Patient Information Content Near Vision Loss Understanding Near Vision Loss Why is My Near Vision Changing? In our 40 s and 50 s, we begin to experience the naturally frustrating

More information

Physics 10. Lecture 29A. "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton

Physics 10. Lecture 29A. There are two ways of spreading light: to be the candle or the mirror that reflects it. --Edith Wharton Physics 10 Lecture 29A "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton Converging Lenses What if we wanted to use refraction to converge parallel

More information

LASIK. What is LASIK? Eye Words to Know. Who is a good candidate for LASIK?

LASIK. What is LASIK? Eye Words to Know. Who is a good candidate for LASIK? 2014 2015 LASIK What is LASIK? LASIK (laser in situ keratomileusis) is a type of refractive surgery. This kind of surgery uses a laser to treat vision problems caused by refractive errors. You have a refractive

More information

Science In Action 8 Unit C - Light and Optical Systems. 1.1 The Challenge of light

Science In Action 8 Unit C - Light and Optical Systems. 1.1 The Challenge of light 1.1 The Challenge of light 1. Pythagoras' thoughts about light were proven wrong because it was impossible to see A. the light beams B. dark objects C. in the dark D. shiny objects 2. Sir Isaac Newton

More information

waves rays Consider rays of light from an object being reflected by a plane mirror (the rays are diverging): mirror object

waves rays Consider rays of light from an object being reflected by a plane mirror (the rays are diverging): mirror object PHYS1000 Optics 1 Optics Light and its interaction with lenses and mirrors. We assume that we can ignore the wave properties of light. waves rays We represent the light as rays, and ignore diffraction.

More information

6) How wide must a narrow slit be if the first diffraction minimum occurs at ±12 with laser light of 633 nm?

6) How wide must a narrow slit be if the first diffraction minimum occurs at ±12 with laser light of 633 nm? Test IV Name 1) In a single slit diffraction experiment, the width of the slit is 3.1 10-5 m and the distance from the slit to the screen is 2.2 m. If the beam of light of wavelength 600 nm passes through

More information

Binocular Vision and The Perception of Depth

Binocular Vision and The Perception of Depth Binocular Vision and The Perception of Depth Visual Perception How one visually interprets a scene 4 forms of perception to be studied: Depth Color Temporal Motion Depth Perception How does one determine

More information

EXPERIMENT 6 OPTICS: FOCAL LENGTH OF A LENS

EXPERIMENT 6 OPTICS: FOCAL LENGTH OF A LENS EXPERIMENT 6 OPTICS: FOCAL LENGTH OF A LENS The following website should be accessed before coming to class. Text reference: pp189-196 Optics Bench a) For convenience of discussion we assume that the light

More information

Thin Lenses Drawing Ray Diagrams

Thin Lenses Drawing Ray Diagrams Drawing Ray Diagrams Fig. 1a Fig. 1b In this activity we explore how light refracts as it passes through a thin lens. Eyeglasses have been in use since the 13 th century. In 1610 Galileo used two lenses

More information

Basic Optics System OS-8515C

Basic Optics System OS-8515C 40 50 30 60 20 70 10 80 0 90 80 10 20 70 T 30 60 40 50 50 40 60 30 C 70 20 80 10 90 90 0 80 10 70 20 60 50 40 30 Instruction Manual with Experiment Guide and Teachers Notes 012-09900B Basic Optics System

More information

LASIK. Cornea. Iris. Vitreous

LASIK. Cornea. Iris. Vitreous LASIK Introduction LASIK surgery is a procedure that improves vision and can decrease or eliminate the need for eyeglasses or contact lenses. If you and your doctor decide that LASIK surgery is right for

More information

Light and Sound. Pupil Booklet

Light and Sound. Pupil Booklet Duncanrig Secondary School East Kilbride S2 Physics Elective Light and Sound Name: Pupil Booklet Class: SCN 3-11a - By exploring the refraction of light when passed through different materials, lenses

More information

WAVELENGTH OF LIGHT - DIFFRACTION GRATING

WAVELENGTH OF LIGHT - DIFFRACTION GRATING PURPOSE In this experiment we will use the diffraction grating and the spectrometer to measure wavelengths in the mercury spectrum. THEORY A diffraction grating is essentially a series of parallel equidistant

More information

Geometrical Optics - Grade 11

Geometrical Optics - Grade 11 OpenStax-CNX module: m32832 1 Geometrical Optics - Grade 11 Rory Adams Free High School Science Texts Project Mark Horner Heather Williams This work is produced by OpenStax-CNX and licensed under the Creative

More information

Information and consent for patients preparing for refractive surgery LASIK Laser Eye Center Kubati

Information and consent for patients preparing for refractive surgery LASIK Laser Eye Center Kubati 1. General information Not long ago, the WHO - World Health Organization has described ametropy (medical term for diopter) as a category of disability creating a solution to the needs of many with ametropy

More information

THE COMPOUND MICROSCOPE

THE COMPOUND MICROSCOPE THE COMPOUND MICROSCOPE In microbiology, the microscope plays an important role in allowing us to see tiny objects that are normally invisible to the naked eye. It is essential for students to learn how

More information

ReLEx smile Minimally invasive vision correction Information for patients

ReLEx smile Minimally invasive vision correction Information for patients ReLEx smile Minimally invasive vision correction Information for patients Seeing is living Our eyes are our most important sensory organ. The human brain obtains over 80 % of its information via the sense

More information

A concise guide to Safety Glasses, the different standards and the effects of light on the eye. Contents. Links. Year of publication: 2010

A concise guide to Safety Glasses, the different standards and the effects of light on the eye. Contents. Links. Year of publication: 2010 A concise guide to Safety Glasses, the different standards and the effects of light on the eye Year of publication: 2010 Produced by the leading supplier of Safety Glasses in the UK. All Rights Reserved.

More information

Understanding astigmatism Spring 2003

Understanding astigmatism Spring 2003 MAS450/854 Understanding astigmatism Spring 2003 March 9th 2003 Introduction Spherical lens with no astigmatism Crossed cylindrical lenses with astigmatism Horizontal focus Vertical focus Plane of sharpest

More information

First let us consider microscopes. Human eyes are sensitive to radiation having wavelengths between

First let us consider microscopes. Human eyes are sensitive to radiation having wavelengths between Optical Differences Between Telescopes and Microscopes Robert R. Pavlis, Girard, Kansas USA icroscopes and telescopes are optical instruments that are designed to permit observation of objects and details

More information

Diffraction of Laser Light

Diffraction of Laser Light Diffraction of Laser Light No Prelab Introduction The laser is a unique light source because its light is coherent and monochromatic. Coherent light is made up of waves, which are all in phase. Monochromatic

More information

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator. PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the

More information

Convex Mirrors. Ray Diagram for Convex Mirror

Convex Mirrors. Ray Diagram for Convex Mirror Convex Mirrors Center of curvature and focal point both located behind mirror The image for a convex mirror is always virtual and upright compared to the object A convex mirror will reflect a set of parallel

More information

9/16 Optics 1 /11 GEOMETRIC OPTICS

9/16 Optics 1 /11 GEOMETRIC OPTICS 9/6 Optics / GEOMETRIC OPTICS PURPOSE: To review the basics of geometric optics and to observe the function of some simple and compound optical devices. APPARATUS: Optical bench, lenses, mirror, target

More information

Cassie Schroeder Refractive Surgery Coordinator Boozman-Hof Regional Eye Clinic (479) 246-1820 (479) 531-3937

Cassie Schroeder Refractive Surgery Coordinator Boozman-Hof Regional Eye Clinic (479) 246-1820 (479) 531-3937 Thank you for your interest in refractive surgery here at Boozman-Hof Regional Eye Clinic. Enclosed is a bio on Dr. Cole and articles about LASEK. There is also information on our financing company that

More information

EXPERIMENT O-6. Michelson Interferometer. Abstract. References. Pre-Lab

EXPERIMENT O-6. Michelson Interferometer. Abstract. References. Pre-Lab EXPERIMENT O-6 Michelson Interferometer Abstract A Michelson interferometer, constructed by the student, is used to measure the wavelength of He-Ne laser light and the index of refraction of a flat transparent

More information

7.2. Focusing devices: Unit 7.2. context. Lenses and curved mirrors. Lenses. The language of optics

7.2. Focusing devices: Unit 7.2. context. Lenses and curved mirrors. Lenses. The language of optics context 7.2 Unit 7.2 ocusing devices: Lenses and curved mirrors Light rays often need to be controlled and ed to produce s in optical instruments such as microscopes, cameras and binoculars, and to change

More information

THE EYES IN MARFAN SYNDROME

THE EYES IN MARFAN SYNDROME THE EYES IN MARFAN SYNDROME Marfan syndrome and some related disorders can affect the eyes in many ways, causing dislocated lenses and other eye problems that can affect your sight. Except for dislocated

More information

26 VISION AND OPTICAL INSTRUMENTS

26 VISION AND OPTICAL INSTRUMENTS CHAPTER 26 VISION AND OPTICAL INSTRUMENTS 929 26 VISION AND OPTICAL INSTRUMENTS Figure 26.1 A scientist examines minute details on the surface of a disk drive at a magnification of 100,000 times. The image

More information

Intralase SBK Laser Vision Correction. kelownalaservision.com. Safe surgery Quicker recovery Great results. Ask about

Intralase SBK Laser Vision Correction. kelownalaservision.com. Safe surgery Quicker recovery Great results. Ask about I was expecting to be out for two or three days and in fact, with Intralase SBK, I was ready to go the next day. Margaret S. Ask about Intralase SBK Laser Vision Correction Safe surgery Quicker recovery

More information

ATOMIC SPECTRA. Apparatus: Optical spectrometer, spectral tubes, power supply, incandescent lamp, bottles of dyed water, elevating jack or block.

ATOMIC SPECTRA. Apparatus: Optical spectrometer, spectral tubes, power supply, incandescent lamp, bottles of dyed water, elevating jack or block. 1 ATOMIC SPECTRA Objective: To measure the wavelengths of visible light emitted by atomic hydrogen and verify the measured wavelengths against those predicted by quantum theory. To identify an unknown

More information

INTERFERENCE OBJECTIVES PRE-LECTURE. Aims

INTERFERENCE OBJECTIVES PRE-LECTURE. Aims 53 L4 INTERFERENCE Aims OBJECTIVES When you have finished this chapter you should understand how the wave model of light can be used to explain the phenomenon of interference. You should be able to describe

More information

Information for parents and guardians

Information for parents and guardians Oxford University Hospitals NHS Trust Orthoptic and Optometry Services Oxford Eye Hospital Children s glasses Information for parents and guardians page 2 The aim of this leaflet is to explain the types

More information

Excimer Laser Eye Surgery

Excimer Laser Eye Surgery Excimer Laser Eye Surgery This booklet contains general information that is not specific to you. If you have any questions after reading this, ask your own physician or health care worker. They know you

More information

Procedure: Geometrical Optics. Theory Refer to your Lab Manual, pages 291 294. Equipment Needed

Procedure: Geometrical Optics. Theory Refer to your Lab Manual, pages 291 294. Equipment Needed Theory Refer to your Lab Manual, pages 291 294. Geometrical Optics Equipment Needed Light Source Ray Table and Base Three-surface Mirror Convex Lens Ruler Optics Bench Cylindrical Lens Concave Lens Rhombus

More information

Senses 3. The optics of the eye Accommodation of the eye Ammetropias The eyeground Visual field

Senses 3. The optics of the eye Accommodation of the eye Ammetropias The eyeground Visual field Senses 3 The optics of the eye Accommodation of the eye Ammetropias The eyeground Visual field Practical tasks Purkinje s images Keratoscopy Ophthalmoscopy Purkinje s flash figure Determination of the

More information

Chapter 1 Parts C. Robert Bagnell, Jr., Ph.D., 2012

Chapter 1 Parts C. Robert Bagnell, Jr., Ph.D., 2012 Chapter 1 Parts C. Robert Bagnell, Jr., Ph.D., 2012 Figure 1.1 illustrates the parts of an upright compound microscope and indicates the terminology that I use in these notes. Figure 1.1. Parts of a Compound

More information

Experiment 3 Lenses and Images

Experiment 3 Lenses and Images Experiment 3 Lenses and Images Who shall teach thee, unless it be thine own eyes? Euripides (480?-406? BC) OBJECTIVES To examine the nature and location of images formed by es. THEORY Lenses are frequently

More information

Vision Correction Surgery Patient Information

Vision Correction Surgery Patient Information Vision Correction Surgery Patient Information Anatomy of the eye: The eye is a complex organ composed of many parts, and normal vision requires these parts to work together. When a person looks at an object,

More information

LASIK and Refractive Surgery. Laser and Lens Vision Correction Options

LASIK and Refractive Surgery. Laser and Lens Vision Correction Options LASIK and Refractive Surgery Laser and Lens Vision Correction Options For over 30 years, The Eye Institute of Utah has been giving people vision for life... Dr. Andrew Lyle, vision pioneer and founder

More information

LIGHT REFLECTION AND REFRACTION

LIGHT REFLECTION AND REFRACTION QUESTION BANK IN SCIENCE CLASS-X (TERM-II) 10 LIGHT REFLECTION AND REFRACTION CONCEPTS To revise the laws of reflection at plane surface and the characteristics of image formed as well as the uses of reflection

More information

Excimer Laser Refractive Surgery

Excimer Laser Refractive Surgery Excimer Laser Refractive Surgery In the field of ophthalmology has achieved great technological advances and, undoubtedly, the most representative have focused on refractive surgery, which aims to eliminate

More information

FIFTH GRADE TECHNOLOGY

FIFTH GRADE TECHNOLOGY FIFTH GRADE TECHNOLOGY 3 WEEKS LESSON PLANS AND ACTIVITIES SCIENCE AND MATH OVERVIEW OF FIFTH GRADE SCIENCE AND MATH WEEK 1. PRE: Interpreting data from a graph. LAB: Estimating data and comparing results

More information

LASIK & Refractive Surgery

LASIK & Refractive Surgery LASIK & Refractive Surgery LASIK PRK ICL RLE Monovision + + + For over 30 years, The Eye Institute of Utah has been giving people vision for life... The Eye Institute of Utah was the first medical facility

More information

Seeing Beyond the Symptoms

Seeing Beyond the Symptoms Seeing Beyond the Symptoms Cataracts are one of the leading causes of vision impairment in the United States. 1 However, because cataracts form slowly and over a long period of time, many people suffer

More information

C) D) As object AB is moved from its present position toward the left, the size of the image produced A) decreases B) increases C) remains the same

C) D) As object AB is moved from its present position toward the left, the size of the image produced A) decreases B) increases C) remains the same 1. For a plane mirror, compared to the object distance, the image distance is always A) less B) greater C) the same 2. Which graph best represents the relationship between image distance (di) and object

More information

Tucson Eye Care, PC. Informed Consent for Cataract Surgery And/Or Implantation of an Intraocular Lens

Tucson Eye Care, PC. Informed Consent for Cataract Surgery And/Or Implantation of an Intraocular Lens Tucson Eye Care, PC Informed Consent for Cataract Surgery And/Or Implantation of an Intraocular Lens INTRODUCTION This information is provided so that you may make an informed decision about having eye

More information

Laser Vision Correction

Laser Vision Correction How will Laser Vision Correction affect my Lifestyle? Your Guide to Laser Vision Correction The Gift of Better Vision A few things to note after your surgery. As you enjoy your new-and-improved eyesight,

More information

Surgical Solutions for Enhancing Your Vision SURGICAL SOLUTIONS FOR ENHANCING YOUR VISION. www.silversteineyecenters.com 1

Surgical Solutions for Enhancing Your Vision SURGICAL SOLUTIONS FOR ENHANCING YOUR VISION. www.silversteineyecenters.com 1 Surgical Solutions for Enhancing Your Vision SURGICAL SOLUTIONS FOR ENHANCING YOUR VISION www.silversteineyecenters.com 1 Introduction Types and Causes of Vision Impairment Laser Surgery for Refractive

More information

RAY OPTICS II 7.1 INTRODUCTION

RAY OPTICS II 7.1 INTRODUCTION 7 RAY OPTICS II 7.1 INTRODUCTION This chapter presents a discussion of more complicated issues in ray optics that builds on and extends the ideas presented in the last chapter (which you must read first!)

More information

LASER VISION CORRECTION: WHAT YOU SHOULD KNOW.

LASER VISION CORRECTION: WHAT YOU SHOULD KNOW. LASER VISION CORRECTION: WHAT YOU SHOULD KNOW. You and your eyes Why LASIK? Our Treatment Looking Ahead What Next? FAX: +91 22 2280 9000 www.eyecareindia.com www.phirozedastoor.com You and your eyes Light

More information

...You Need to know about

...You Need to know about What......You Need to know about LASIK Our Eyes Eyes are the windows to our world. They are so important to us that for many years we have looked for better ways to fix visual problems and improve our

More information

PHYSICS PAPER 1 (THEORY)

PHYSICS PAPER 1 (THEORY) PHYSICS PAPER 1 (THEORY) (Three hours) (Candidates are allowed additional 15 minutes for only reading the paper. They must NOT start writing during this time.) ---------------------------------------------------------------------------------------------------------------------

More information

Lesson 29: Lenses. Double Concave. Double Convex. Planoconcave. Planoconvex. Convex meniscus. Concave meniscus

Lesson 29: Lenses. Double Concave. Double Convex. Planoconcave. Planoconvex. Convex meniscus. Concave meniscus Lesson 29: Lenses Remembering the basics of mirrors puts you half ways towards fully understanding lenses as well. The same sort of rules apply, just with a few modifications. Keep in mind that for an

More information

Geometric Optics Converging Lenses and Mirrors Physics Lab IV

Geometric Optics Converging Lenses and Mirrors Physics Lab IV Objective Geometric Optics Converging Lenses and Mirrors Physics Lab IV In this set of lab exercises, the basic properties geometric optics concerning converging lenses and mirrors will be explored. The

More information

1. You stand two feet away from a plane mirror. How far is it from you to your image? a. 2.0 ft c. 4.0 ft b. 3.0 ft d. 5.0 ft

1. You stand two feet away from a plane mirror. How far is it from you to your image? a. 2.0 ft c. 4.0 ft b. 3.0 ft d. 5.0 ft Lenses and Mirrors 1. You stand two feet away from a plane mirror. How far is it from you to your image? a. 2.0 ft c. 4.0 ft b. 3.0 ft d. 5.0 ft 2. Which of the following best describes the image from

More information

How To Understand Light And Color

How To Understand Light And Color PRACTICE EXAM IV P202 SPRING 2004 1. In two separate double slit experiments, an interference pattern is observed on a screen. In the first experiment, violet light (λ = 754 nm) is used and a second-order

More information

Applications in Dermatology, Dentistry and LASIK Eye Surgery using LASERs

Applications in Dermatology, Dentistry and LASIK Eye Surgery using LASERs Applications in Dermatology, Dentistry and LASIK Eye Surgery using LASERs http://www.medispainstitute.com/menu_laser_tattoo.html http://www.life123.com/bm.pix/bigstockphoto_close_up_of_eye_surgery_catar_2264267.s600x600.jpg

More information

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Objectives: PS-7.1 Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Illustrate ways that the energy of waves is transferred by interaction with

More information

Optics and Geometry. with Applications to Photography Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles November 15, 2004

Optics and Geometry. with Applications to Photography Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles November 15, 2004 Optics and Geometry with Applications to Photography Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles November 15, 2004 1 Useful approximations This paper can be classified as applied

More information

1 of 9 2/9/2010 3:38 PM

1 of 9 2/9/2010 3:38 PM 1 of 9 2/9/2010 3:38 PM Chapter 23 Homework Due: 8:00am on Monday, February 8, 2010 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]

More information

TLC LASER EYE CENTERS VISION CORRECTION SURGERY INFORMED CONSENT

TLC LASER EYE CENTERS VISION CORRECTION SURGERY INFORMED CONSENT TLC The Laser Center (Northeast) Inc. TLC Laser Eye Centers (Charlotte) TLC LASER EYE CENTERS VISION CORRECTION SURGERY INFORMED CONSENT Informed Consent. The purpose of this Informed Consent is to help

More information

After a wave passes through a medium, how does the position of that medium compare to its original position?

After a wave passes through a medium, how does the position of that medium compare to its original position? Light Waves Test Question Bank Standard/Advanced Name: Question 1 (1 point) The electromagnetic waves with the highest frequencies are called A. radio waves. B. gamma rays. C. X-rays. D. visible light.

More information

Vision Glossary of Terms

Vision Glossary of Terms Vision Glossary of Terms EYE EXAMINATION PROCEDURES Eyeglass Examinations: The standard examination procedure for a patient who wants to wear eyeglasses includes at least the following: Case history; reason

More information

Lesson. Objectives. Compare how plane, convex, and concave. State the law of reflection.

Lesson. Objectives. Compare how plane, convex, and concave. State the law of reflection. KH_BD1_SEG5_U4C12L3_407-415.indd 407 Essential Question How Do Lenses and Mirrors Affect Light? What reflective surfaces do you see in your classroom? What are the different properties of these surfaces

More information

Automatic and Objective Measurement of Residual Stress and Cord in Glass

Automatic and Objective Measurement of Residual Stress and Cord in Glass Automatic and Objective Measurement of Residual Stress and Cord in Glass GlassTrend - ICG TC15/21 Seminar SENSORS AND PROCESS CONTROL 13-14 October 2015, Eindhoven Henning Katte, ilis gmbh copyright ilis

More information

Informed Consent for Cataract Surgery or Clear Lens Extraction with Implantation of an Intraocular Lens

Informed Consent for Cataract Surgery or Clear Lens Extraction with Implantation of an Intraocular Lens Informed Consent for Cataract Surgery or Clear Lens Extraction with Implantation of an Intraocular Lens Please read the following pages carefully, and initial and sign where indicated. Please do not sign

More information

Making Vision a Health Priority. Speaker s Guide

Making Vision a Health Priority. Speaker s Guide Making Vision a Health Priority Speaker s Guide SLIDE 1 Introduction of the speaker. The purpose of this presentation is to provide information about vision changes that can occur with age and to talk

More information

Chapter 6 Telescopes: Portals of Discovery. How does your eye form an image? Refraction. Example: Refraction at Sunset.

Chapter 6 Telescopes: Portals of Discovery. How does your eye form an image? Refraction. Example: Refraction at Sunset. Chapter 6 Telescopes: Portals of Discovery 6.1 Eyes and Cameras: Everyday Light Sensors Our goals for learning:! How does your eye form an image?! How do we record images? How does your eye form an image?

More information

Lecture 12: Cameras and Geometry. CAP 5415 Fall 2010

Lecture 12: Cameras and Geometry. CAP 5415 Fall 2010 Lecture 12: Cameras and Geometry CAP 5415 Fall 2010 The midterm What does the response of a derivative filter tell me about whether there is an edge or not? Things aren't working Did you look at the filters?

More information

Lenses and Telescopes

Lenses and Telescopes A. Using single lenses to form images Lenses and Telescopes The simplest variety of telescope uses a single lens. The image is formed at the focus of the telescope, which is simply the focal plane of the

More information

How To Know If You Can See Without Glasses Or Contact Lense After Lasik

How To Know If You Can See Without Glasses Or Contact Lense After Lasik The LASIK experience I WHO CAN HAVE LASIK? To be eligible for LASIK you should be at least 21 years of age, have healthy eyes and be in good general health. Your vision should not have deteriorated significantly

More information

OPTICAL IMAGES DUE TO LENSES AND MIRRORS *

OPTICAL IMAGES DUE TO LENSES AND MIRRORS * 1 OPTICAL IMAGES DUE TO LENSES AND MIRRORS * Carl E. Mungan U.S. Naval Academy, Annapolis, MD ABSTRACT The properties of real and virtual images formed by lenses and mirrors are reviewed. Key ideas are

More information

Care and Use of the Compound Microscope

Care and Use of the Compound Microscope Revised Fall 2011 Care and Use of the Compound Microscope Objectives After completing this lab students should be able to 1. properly clean and carry a compound and dissecting microscope. 2. focus a specimen

More information

EXPERIMENT #1: MICROSCOPY

EXPERIMENT #1: MICROSCOPY EXPERIMENT #1: MICROSCOPY Brightfield Compound Light Microscope The light microscope is an important tool in the study of microorganisms. The compound light microscope uses visible light to directly illuminate

More information

THE NATURE OF LIGHT AND COLOR

THE NATURE OF LIGHT AND COLOR THE NATURE OF LIGHT AND COLOR THE PHYSICS OF LIGHT Electromagnetic radiation travels through space as electric energy and magnetic energy. At times the energy acts like a wave and at other times it acts

More information

Help maintain homeostasis by capturing stimuli from the external environment and relaying them to the brain for processing.

Help maintain homeostasis by capturing stimuli from the external environment and relaying them to the brain for processing. The Sense Organs... (page 409) Help maintain homeostasis by capturing stimuli from the external environment and relaying them to the brain for processing. Ex. Eye structure - protected by bony ridges and

More information

Size Of the Image Nature Of the Image At Infinity At the Focus Highly Diminished, Point Real and Inverted

Size Of the Image Nature Of the Image At Infinity At the Focus Highly Diminished, Point Real and Inverted CHAPTER-10 LIGHT REFLECTION AND REFRACTION Light rays; are; electromagnetic in nature, and do not need material medium for Propagation Speed of light in vacuum in 3*10 8 m/s When a light ray falls on a

More information

Visual Acuity, Impairments and Vision Insurance Plan Provisions. Stuart West Specialty Sales Manager Virginia CE Forum 2009 Course # 201718

Visual Acuity, Impairments and Vision Insurance Plan Provisions. Stuart West Specialty Sales Manager Virginia CE Forum 2009 Course # 201718 Visual Acuity, Impairments and Vision Insurance Plan Provisions Stuart West Specialty Sales Manager Virginia CE Forum 2009 Course # 201718 How Vision Works Light passes through the cornea & lens Light

More information

Learning Optics using Vision

Learning Optics using Vision Learning Optics using Vision Anjul Maheshwari David R. Williams Biomedical Engineering Center for Visual Science University of Rochester Rochester, NY Center for Adaptive Optics Project #42 2 INTRODUCTION

More information

Information For Consent For Cataract Surgery

Information For Consent For Cataract Surgery Information For Consent For Cataract Surgery Your Ophthalmologist has diagnosed you with a visually significant cataract. The following handout will explain your condition and give you the information

More information

Chapter 22: Mirrors and Lenses

Chapter 22: Mirrors and Lenses Chapter 22: Mirrors and Lenses How do you see sunspots? When you look in a mirror, where is the face you see? What is a burning glass? Make sure you know how to:. Apply the properties of similar triangles;

More information