EE247 Lecture 19. EECS 247 Lecture 19: Data Converters 2004 H.K. Page 1. ADC Architectures

Size: px
Start display at page:

Download "EE247 Lecture 19. EECS 247 Lecture 19: Data Converters 2004 H.K. Page 1. ADC Architectures"

Transcription

1 EE247 Lecture 9 ADC Converters - ADC architectures - Comparator architectures High gain amplifier with differential analog input & single-ended large swing output Latched comparators; in response to a strobe, input stage disabled & digital output stored in a latch till next strobe Sample-data comparators Offset cancellation EECS 247 Lecture 9: Data Converters 24 H.K. Page ADC Architectures Slope Converters Successive approximation Flash Folding Time-interleaved / parallel converter Residue type ADCs Two-step Pipeline Algorithmic Oversampled ADCs EECS 247 Lecture 9: Data Converters 24 H.K. Page 2

2 Residue Type ADC Partial Digital Output V IN coarse ADC (... 6 Bit) DAC Error S/H & Gain (optional) Quantization error output ( residuum ) enables cascading for higher resolution Great flexibility for stages: flash, oversampling ADC, Optional S/H enables parallelism (pipelining) Fast: one clock per conversion (with S/H), latency EECS 247 Lecture 9: Data Converters 24 H.K. Page 3 Pipelined ADC V IN Stage B Bits Stage 2 B 2 Bits Stage K B k Bits Digital Correction Logic Digital output up to (B + B B k ) Bits Approaches speed of flash, but much lower complexity One clock per conversion, but K clocks latency Efficient digital calibration possible Versatile: from 6Bits / MS/s to 4Bits / MS/s EECS 247 Lecture 9: Data Converters 24 H.K. Page 4

3 Algorithmic ADC Digital Output start of conversion Shift Register & Correction Logic V IN coarse ADC (... 6 Bit) DAC Error 2 B S/H Essentially same as pipeline, but a single stage is used for all partial conversions K clocks per conversion EECS 247 Lecture 9: Data Converters 24 H.K. Page 5 Oversampled ADC f s f s /M V IN H(z) Digital Decimation Filter Digital Output DAC Hard to comprehend easy to build Input is oversampled (M times faster than output rate) Reduces Anti-Aliasing filter requirements and capacitor size Accuracy independent of component matching Very high resolution achievable (> 2 Bits) EECS 247 Lecture 9: Data Converters 24 H.K. Page 6

4 Throughput Rate Comparison Resolution [Bit] Flash, Pipeline~ to 2 Successive Approximation~B 2 nd Order -Bit Oversampled ~2 (.4B+) Serial ~2 B Clock Cycles per Conversion EECS 247 Lecture 9: Data Converters 24 H.K. Page 7 Speed-Resolution Map [ EECS 247 Lecture 9: Data Converters 24 H.K. Page 8

5 High-Speed A/D Converters Flash Converter Comparator design considerations Binary Encoder Interpolation Folding Pipelined ADCs EECS 247 Lecture 9: Data Converters 24 H.K. Page 9 Flash Converter Very fast: only clock cycle per conversion R/2 V REF R V IN High complexity: 2 B - comparators R Encoder Digital Output R High input capacitance R R/2 EECS 247 Lecture 9: Data Converters 24 H.K. Page

6 Voltage Comparators + V in V out ( Digital Output) Function: compare the instantaneous value of two analog signals Important features: Maximum clock rate f s settling time, slew rate, small signal bandwidth Resolution gain, offset Overdrive recovery Input capacitance (and linearity!) Power dissipation Common-mode rejection Kickback noise Ref: Prof. B. Wooley, Course notes EE35 Stanford University EECS 247 Lecture 9: Data Converters 24 H.K. Page Voltage Comparator Architectures Comparator architectures High gain amplifier with differential analog input & single-ended large swing output Output swing compatible with driving digital logic circuits Open-loop amplification no frequency compensation required Precise gain not required Latched comparators; in response to a strobe, input stage disabled & digital output stored in a latch till next strobe Two options for implementation : High-gain amplifier + simple digital latch Low-gain amplifier + a high-sensitivity latch Sample-data comparators S/H input Offset cancellation Pipelined stages EECS 247 Lecture 9: Data Converters 24 H.K. Page 2

7 Comparators w/ High-Gain Amplification Amplify V in (min) to V DD V in (min) determined by ADC resolution Example: 2-bit res. & full-scale input 2V LSB=.5mV For 2.5V output: 2.5V Av = =,.25mV V os < LSB EECS 247 Lecture 9: Data Converters 24 H.K. Page 3 Comparators w/ High-Gain Amplification f u =-MHz f =unity gain frequency, f = 3 db frequency f u fu GHz = = = khz A, V τ = =.6µ sec 2π f Too slow! Cascade of lower gain stages to broadband response EECS 247 Lecture 9: Data Converters 24 H.K. Page 4

8 Open Loop Cascade of Amplifiers The stages identical small-signal model for the cascades: For -stage only: EECS 247 Lecture 9: Data Converters 24 H.K. Page 5 Open Loop Cascade of Amplifiers For Cascade of N-stages: EECS 247 Lecture 9: Data Converters 24 H.K. Page 6

9 Open Loop Cascade of Amplifiers For A T (DC) =, Example : N = 3, f =GHz, A () = f N /3 N u (,) N T GHz /3 = 2 = 24MHz τ N = = 7nsec (.6µ s for -stage) 2π f 5τ = 35nsec Cascade of 3-stage speed 236 higher compared to -stage (constant overall gain & f u ) EECS 247 Lecture 9: Data Converters 24 H.K. Page 7 Open Loop Cascade of Amplifiers Offset Voltage Cascade of amplifiers Input-referred offset increases Choice of # of stages important Speed vs offset tradeoff Example: For 3-stage case with gain/stage ~22 Increase in offset ~ 4.5% EECS 247 Lecture 9: Data Converters 24 H.K. Page 8

10 Open Loop Cascade of Amplifiers Step Response Assuming linear behavior t EECS 247 Lecture 9: Data Converters 24 H.K. Page 9 Open Loop Cascade of Amplifiers Step Response Assuming linear behavior EECS 247 Lecture 9: Data Converters 24 H.K. Page 2

11 Open Loop Cascade of Amplifiers Delay/(C/g m ) Minimum total delay broad function of N Relationship between # of stages that minimize delay (N op ) and gain (V out /V in ) approximately: Delay/(C/g m ) N op =.xln(v out /V in ) +.79 for gain < Or gain of db (sqrt) per stage results in near optimum delay Ref: J.T. Wu, et al., A -MHz pipelined CMOS comparator IEEE Journal of Solid-State Circuits, vol. 23, pp , December 988. EECS 247 Lecture 9: Data Converters 24 H.K. Page 2 Offset Cancellation Disadvantage of using cascade of amplifiers: Increased overall input-referred offset Sampled-data cascade of amplifiers V os can be cancelled Store on ac-coupling capacitors in series with amplifier stages Offset associated with a specific amplifier can be cancelled by storing it in series with either the input or the output of that stage EECS 247 Lecture 9: Data Converters 24 H.K. Page 22

12 Offset Cancellation Output Series Cancellation Amp modeled as ideal + V os (input referred) Store offset: S, S4 open S2, S3 closed V C =AxV OS EECS 247 Lecture 9: Data Converters 24 H.K. Page 23 Offset Cancellation Output Series Cancellation Amplify: S, S4 closed S2, S3 open V C =AxV OS Circuit requirements: Amp not saturate during offset storage High-impedance (C) load C c not discharged C c >> C L to avoid attenuation C c >> C switch offset due to charge injection EECS 247 Lecture 9: Data Converters 24 H.K. Page 24

13 Offset Cancellation Cascaded Output Series Cancellation Note: Extra offset cancellation phase required Overall speed compromised EECS 247 Lecture 9: Data Converters 24 H.K. Page 25 Offset Cancellation Cascaded Output Series Cancellation - S open, S2,3,4,5 closed V C =A xv os V C2 =A 2 xv os2 V C3 =A 3 xv os3 EECS 247 Lecture 9: Data Converters 24 H.K. Page 26

14 Offset Cancellation Cascaded Output Series Cancellation 2- S3 open Feedthrough from S3 offset on X Switch offset, ε 2 stored on C Since S4 remains closed, offset associated with ε 2 stored on C2 V X = ε 2 V C =A xv os - ε 2 V C2 =A 2 x(v os2 + ε 2 ) EECS 247 Lecture 9: Data Converters 24 H.K. Page 27 Offset Cancellation Cascaded Output Series Cancellation 3- S4 open Feedthrough from S4 offset on Y Switch offset, ε 3 stored on C2 Since S5 remains closed, offset associated with ε 3 stored on C3 V Y = ε 3 V C2 =A 2 x(v os2 + ε 2 ) - ε 3 V C3 =A 3 x(v os3 + ε 3 ) EECS 247 Lecture 9: Data Converters 24 H.K. Page 28

15 Offset Cancellation Cascaded Output Series Cancellation 4- S2 open, S closed, S5 open S closed & S2 open since input connected to low impedance source charge injection not of major concern Switch offset, ε 4 introduced due to S5 opening ε 4 not cancelled As shown in the following analysis, ε 4 referred to the input will be attenuated by the overall gain EECS 247 Lecture 9: Data Converters 24 H.K. Page 29 Offset Cancellation Cascaded Output Series Cancellation EECS 247 Lecture 9: Data Converters 24 H.K. Page 3

16 Offset Cancellation Cascaded Output Series Cancellation Example: 3-stage open-loop differential amplifier with offset cancellation + output amplifier (see ref.) A Total (DC) = 2x 6 = 2dB Input-referred offset < 5µV Input-referred offset drift <.5µV Ref: :R. Poujois and J. Borel, "A low drift fully integrated MOSFET operational amplifier," IEEE Journal of Solid- State Circuits, vol. 3, pp , August 978. EECS 247 Lecture 9: Data Converters 24 H.K. Page 3 Offset Cancellation Input Series Cancellation EECS 247 Lecture 9: Data Converters 24 H.K. Page 32

17 Offset Cancellation Input Series Cancellation Store offset + -V C /A - Note: Amplifier has to be compensated for unity gain stability EECS 247 Lecture 9: Data Converters 24 H.K. Page 33 Amplify S2, S3 open S closed Offset Cancellation Input Series Cancellation EECS 247 Lecture 9: Data Converters 24 H.K. Page 34

18 Offset Cancellation Cascaded Input Series Cancellation ε 2 opening of S4 charge injection Amplifier A offset fully cancelled Amplifier A2 offset attenuated by /A.A2 Error associated with opening of S4 charge injection attenuated by /A EECS 247 Lecture 9: Data Converters 24 H.K. Page 35 CMOS Comparators Cascade of Gain Stages Fully differential gain stages st order cancellation of switch feedthrough & charge injection offsets -Output series offset cancellation 2- Input series offset cancellation EECS 247 Lecture 9: Data Converters 24 H.K. Page 36

19 CMOS Comparators Cascade of Gain Stages 3-Combined input & output series offset cancellation EECS 247 Lecture 9: Data Converters 24 H.K. Page 37 CMOS Latched Comparators Comparator amplification need not be linear can use a latch regeneration Amplification + positive feedback EECS 247 Lecture 9: Data Converters 24 H.K. Page 38

20 CMOS Latched Comparators Latch can be modeled as a single-pole amp + positive feedback EECS 247 Lecture 9: Data Converters 24 H.K. Page 39 CMOS Latched Comparators Delay Normalized Latch Delay τ D (3-state amp)= 8.2(C/g m ) Compared to a 3-stage open-loop cascade of amps for equal gain of Latch faster by about x3 Only drawback high latch offset (typically - mv) Use preamp w/gain =- to reduce input-referred latch offset Or use offset cancellation EECS 247 Lecture 9: Data Converters 24 H.K. Page 4

21 Latched Comparator f s V i+ A v Latch D o+ V i- D o- Preamp Clock rate f s Resolution Overload recovery Input capacitance (and linearity!) Power dissipation Common-mode rejection Kickback noise EECS 247 Lecture 9: Data Converters 24 H.K. Page 4 Comparators Overdrive Recovery Linear model for a single-pole amplifier: U amplification after time t a During reset amplifier settles exponentially to its zero input condition with τ =RC Assume Vm maximum input normalized to /2lsb (=) Example: Worst case input/output waveforms Limit output voltage swing by. Passive clamp 2. Active restore 3. Low gain/stage EECS 247 Lecture 9: Data Converters 24 H.K. Page 42

22 Comparators Overdrive Recovery Limiting Output Clamp Adds parasitic capacitance Active Restore After outputs are latched Activate φ R & equalize output nodes EECS 247 Lecture 9: Data Converters 24 H.K. Page 43 CMOS Comparator Example Flash ADC: 8bits, +-/2LSB fs=5mhz (Vref=3.8V) No offset cancellation A. Yukawa, A CMOS 8-Bit High-Speed A/D Converter IC, JSSC June 985, pp EECS 247 Lecture 9: Data Converters 24 H.K. Page 44

23 Comparator with Auto-Zero I. Mehr and L. Singer, A 5-Msample/s, 6-Bit Nyquist-Rate ADC for Disk-Drive Read-Channel Applications, JSSC July 999, pp EECS 247 Lecture 9: Data Converters 24 H.K. Page 45 Auto-Zero Implementation Ref:I. Mehr and L. Singer, A 55-mW, -bit, 4-Msample/s Nyquist-Rate CMOS ADC, JSSC March 2, pp EECS 247 Lecture 9: Data Converters 24 H.K. Page 46

24 Comparator Example Variation on Yukawa latch used w/o preamp No dc power when φ high Good for low resolution ADCs M & M2 added to vary comparator threshold To st order, for W=W2 & W=W2 V th latch = W/W x V R where V R =V R+ - V R- Ref: T. B. Cho and P. R. Gray, "A b, 2 Msample/s, 35 mw pipeline A/D converter," IEEE Journal of Solid-State Circuits, vol. 3, pp , March 995. EECS 247 Lecture 9: Data Converters 24 H.K. Page 47 Comparator Example Used in a pipelined ADC with digital correction no offset cancellation Note differential reference M7, M8 operate in triode region Preamp gain ~ Input buffers suppress kick-back Ref: S. Lewis, et al., A Pipelined 5-Msample/s 9-bit Analog-to-Digital Converter IEEE JSSC,NO. 6, Dec. 987 EECS 247 Lecture 9: Data Converters 24 H.K. Page 48

25 Flash Converter Errors V REF R/2 R R R V IN Encoder Digital Output Comparator input: Offset Nonlinear input capacitance Kickback noise (disturbs reference) Signal dependent sampling time R R/2 Comparator output: Sparkle codes ( ) Metastability EECS 247 Lecture 9: Data Converters 24 H.K. Page 49 Typical Flash Output Decoder Binary Output (negative) Thermometer to Binary decoder ROM EECS 247 Lecture 9: Data Converters 24 H.K. Page 5

26 Sparkle Codes Binary Output (negative) Correct Output: Actual Output: Erronous (comparator offset?) EECS 247 Lecture 9: Data Converters 24 H.K. Page 5 Sparkle Tolerant Encoder Binary Output (negative) Protects against a single sparkle. Ref: C. Mangelsdorf et al, A 4-MHz Flash Converter with Error Correction, JSSC February 99, pp EECS 247 Lecture 9: Data Converters 24 H.K. Page 52

27 X Meta Stability Binary Output (negative) Different gates interpret metastable output X differently Correct Output: or Actual Output: Solutions: Latches (high power) Gray encoding Ref: C. Portmann and T. Meng, Power-Efficient Metastability Error Reduction in CMOS Flash A/D Converters, JSSC August 996, pp EECS 247 Lecture 9: Data Converters 24 H.K. Page 53 Gray Encoding Thermometer Code Gray Binary T T 2 T 3 T 4 T 5 T 6 T 7 G 3 G 2 G B 3 B 2 B G = T T + T T G G = T T = T Each T i affects only one G i Avoids disagreement of interpretation by multiple gates Protects also against sparkles Follow Gray encoder by (latch and) binary encoder EECS 247 Lecture 9: Data Converters 24 H.K. Page 54

Digital to Analog Converter. Raghu Tumati

Digital to Analog Converter. Raghu Tumati Digital to Analog Converter Raghu Tumati May 11, 2006 Contents 1) Introduction............................... 3 2) DAC types................................... 4 3) DAC Presented.............................

More information

www.jameco.com 1-800-831-4242

www.jameco.com 1-800-831-4242 Distributed by: www.jameco.com 1-800-831-4242 The content and copyrights of the attached material are the property of its owner. LF411 Low Offset, Low Drift JFET Input Operational Amplifier General Description

More information

NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter

NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter Description: The NTE2053 is a CMOS 8 bit successive approximation Analog to Digital converter in a 20 Lead DIP type package which uses a differential

More information

Section 3. Sensor to ADC Design Example

Section 3. Sensor to ADC Design Example Section 3 Sensor to ADC Design Example 3-1 This section describes the design of a sensor to ADC system. The sensor measures temperature, and the measurement is interfaced into an ADC selected by the systems

More information

b 1 is the most significant bit (MSB) The MSB is the bit that has the most (largest) influence on the analog output

b 1 is the most significant bit (MSB) The MSB is the bit that has the most (largest) influence on the analog output CMOS Analog IC Design - Chapter 10 Page 10.0-5 BLOCK DIAGRAM OF A DIGITAL-ANALOG CONVERTER b 1 is the most significant bit (MSB) The MSB is the bit that has the most (largest) influence on the analog output

More information

Digital to Analog and Analog to Digital Conversion

Digital to Analog and Analog to Digital Conversion Real world (lab) is Computer (binary) is digital Digital to Analog and Analog to Digital Conversion V t V t D/A or DAC and A/D or ADC D/A Conversion Computer DAC A/D Conversion Computer DAC Digital to

More information

DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION

DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION Introduction The outputs from sensors and communications receivers are analogue signals that have continuously varying amplitudes. In many systems

More information

10 BIT s Current Mode Pipelined ADC

10 BIT s Current Mode Pipelined ADC 10 BIT s Current Mode Pipelined ADC K.BHARANI VLSI DEPARTMENT VIT UNIVERSITY VELLORE, INDIA kothareddybharani@yahoo.com P.JAYAKRISHNAN VLSI DEPARTMENT VIT UNIVERSITY VELLORE, INDIA pjayakrishnan@vit.ac.in

More information

CHAPTER 10 OPERATIONAL-AMPLIFIER CIRCUITS

CHAPTER 10 OPERATIONAL-AMPLIFIER CIRCUITS CHAPTER 10 OPERATIONAL-AMPLIFIER CIRCUITS Chapter Outline 10.1 The Two-Stage CMOS Op Amp 10.2 The Folded-Cascode CMOS Op Amp 10.3 The 741 Op-Amp Circuit 10.4 DC Analysis of the 741 10.5 Small-Signal Analysis

More information

AVR127: Understanding ADC Parameters. Introduction. Features. Atmel 8-bit and 32-bit Microcontrollers APPLICATION NOTE

AVR127: Understanding ADC Parameters. Introduction. Features. Atmel 8-bit and 32-bit Microcontrollers APPLICATION NOTE Atmel 8-bit and 32-bit Microcontrollers AVR127: Understanding ADC Parameters APPLICATION NOTE Introduction This application note explains the basic concepts of analog-to-digital converter (ADC) and the

More information

Equalization/Compensation of Transmission Media. Channel (copper or fiber)

Equalization/Compensation of Transmission Media. Channel (copper or fiber) Equalization/Compensation of Transmission Media Channel (copper or fiber) 1 Optical Receiver Block Diagram O E TIA LA EQ CDR DMUX -18 dbm 10 µa 10 mv p-p 400 mv p-p 2 Copper Cable Model Copper Cable 4-foot

More information

Analysis and Design of High gain Low Power Fully Differential Gain- Boosted Folded-Cascode Op-amp with Settling time optimization

Analysis and Design of High gain Low Power Fully Differential Gain- Boosted Folded-Cascode Op-amp with Settling time optimization Analysis and Design of High gain Low Power Fully Differential Gain- Boosted Folded-Cascode Op-amp with Settling time optimization Shubhara Yewale * and R. S. Gamad ** * (Department of Electronics & Instrumentation

More information

Use and Application of Output Limiting Amplifiers (HFA1115, HFA1130, HFA1135)

Use and Application of Output Limiting Amplifiers (HFA1115, HFA1130, HFA1135) Use and Application of Output Limiting Amplifiers (HFA111, HFA110, HFA11) Application Note November 1996 AN96 Introduction Amplifiers with internal voltage clamps, also known as limiting amplifiers, have

More information

A 1-GSPS CMOS Flash A/D Converter for System-on-Chip Applications

A 1-GSPS CMOS Flash A/D Converter for System-on-Chip Applications A -GSPS CMOS Flash A/D Converter for System-on-Chip Applications Jincheol Yoo, Kyusun Choi, and Ali Tangel Department of Computer Science & Department of Computer & Engineering Communications Engineering

More information

Chapter 12: The Operational Amplifier

Chapter 12: The Operational Amplifier Chapter 12: The Operational Amplifier 12.1: Introduction to Operational Amplifier (Op-Amp) Operational amplifiers (op-amps) are very high gain dc coupled amplifiers with differential inputs; they are used

More information

AND9035/D. BELASIGNA 250 and 300 for Low-Bandwidth Applications APPLICATION NOTE

AND9035/D. BELASIGNA 250 and 300 for Low-Bandwidth Applications APPLICATION NOTE BELASIGNA 250 and 300 for Low-Bandwidth Applications APPLICATION NOTE Introduction This application note describes the use of BELASIGNA 250 and BELASIGNA 300 in low bandwidth applications. The intended

More information

Chapter 6: From Digital-to-Analog and Back Again

Chapter 6: From Digital-to-Analog and Back Again Chapter 6: From Digital-to-Analog and Back Again Overview Often the information you want to capture in an experiment originates in the laboratory as an analog voltage or a current. Sometimes you want to

More information

Reading: HH Sections 4.11 4.13, 4.19 4.20 (pgs. 189-212, 222 224)

Reading: HH Sections 4.11 4.13, 4.19 4.20 (pgs. 189-212, 222 224) 6 OP AMPS II 6 Op Amps II In the previous lab, you explored several applications of op amps. In this exercise, you will look at some of their limitations. You will also examine the op amp integrator and

More information

W a d i a D i g i t a l

W a d i a D i g i t a l Wadia Decoding Computer Overview A Definition What is a Decoding Computer? The Wadia Decoding Computer is a small form factor digital-to-analog converter with digital pre-amplifier capabilities. It is

More information

Nyquist data converter fundamentals Tuesday, February 8th, 9:15 11:35

Nyquist data converter fundamentals Tuesday, February 8th, 9:15 11:35 Sampling switches, charge injection, Nyquist data converter fundamentals Tuesday, February 8th, 9:15 11:35 Snorre Aunet (sa@ifi.uio.no) Nanoelectronics group Department of Informatics University of Oslo

More information

Interfacing Analog to Digital Data Converters

Interfacing Analog to Digital Data Converters Converters In most of the cases, the PIO 8255 is used for interfacing the analog to digital converters with microprocessor. We have already studied 8255 interfacing with 8086 as an I/O port, in previous

More information

LM118/LM218/LM318 Operational Amplifiers

LM118/LM218/LM318 Operational Amplifiers LM118/LM218/LM318 Operational Amplifiers General Description The LM118 series are precision high speed operational amplifiers designed for applications requiring wide bandwidth and high slew rate. They

More information

FREQUENCY RESPONSE ANALYZERS

FREQUENCY RESPONSE ANALYZERS FREQUENCY RESPONSE ANALYZERS Dynamic Response Analyzers Servo analyzers When you need to stabilize feedback loops to measure hardware characteristics to measure system response BAFCO, INC. 717 Mearns Road

More information

PIN CONFIGURATION FEATURES ORDERING INFORMATION ABSOLUTE MAXIMUM RATINGS. D, F, N Packages

PIN CONFIGURATION FEATURES ORDERING INFORMATION ABSOLUTE MAXIMUM RATINGS. D, F, N Packages DESCRIPTION The µa71 is a high performance operational amplifier with high open-loop gain, internal compensation, high common mode range and exceptional temperature stability. The µa71 is short-circuit-protected

More information

Systematic Design for a Successive Approximation ADC

Systematic Design for a Successive Approximation ADC Systematic Design for a Successive Approximation ADC Mootaz M. ALLAM M.Sc Cairo University - Egypt Supervisors Prof. Amr Badawi Dr. Mohamed Dessouky 2 Outline Background Principles of Operation System

More information

LF412 Low Offset Low Drift Dual JFET Input Operational Amplifier

LF412 Low Offset Low Drift Dual JFET Input Operational Amplifier LF412 Low Offset Low Drift Dual JFET Input Operational Amplifier General Description These devices are low cost high speed JFET input operational amplifiers with very low input offset voltage and guaranteed

More information

5 Analog-to-Digital Conversion Architectures

5 Analog-to-Digital Conversion Architectures Kosonocky, S. & Xiao, P. Analog-to-Digital Conversion Architectures Digital Signal Processing Handbook Ed. Vijay K. Madisetti and Douglas B. Williams Boca Raton: CRC Press LLC, 1999 c 1999byCRCPressLLC

More information

DAC Digital To Analog Converter

DAC Digital To Analog Converter DAC Digital To Analog Converter DAC Digital To Analog Converter Highlights XMC4000 provides two digital to analog converters. Each can output one analog value. Additional multiple analog waves can be generated

More information

LC 2 MOS Signal Conditioning ADC with RTD Excitation Currents AD7711

LC 2 MOS Signal Conditioning ADC with RTD Excitation Currents AD7711 FEATURES Charge-Balancing ADC 24 Bits, No Missing Codes 0.0015% Nonlinearity 2-Channel Programmable Gain Front End Gains from 1 to 128 1 Differential Input 1 Single-Ended Input Low-Pass Filter with Programmable

More information

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier TL082 Wide Bandwidth Dual JFET Input Operational Amplifier General Description These devices are low cost high speed dual JFET input operational amplifiers with an internally trimmed input offset voltage

More information

Op Amp Circuit Collection

Op Amp Circuit Collection Op Amp Circuit Collection Note: National Semiconductor recommends replacing 2N2920 and 2N3728 matched pairs with LM394 in all application circuits. Section 1 Basic Circuits Inverting Amplifier Difference

More information

Op-Amp Simulation EE/CS 5720/6720. Read Chapter 5 in Johns & Martin before you begin this assignment.

Op-Amp Simulation EE/CS 5720/6720. Read Chapter 5 in Johns & Martin before you begin this assignment. Op-Amp Simulation EE/CS 5720/6720 Read Chapter 5 in Johns & Martin before you begin this assignment. This assignment will take you through the simulation and basic characterization of a simple operational

More information

High Speed, Low Power Monolithic Op Amp AD847

High Speed, Low Power Monolithic Op Amp AD847 a FEATURES Superior Performance High Unity Gain BW: MHz Low Supply Current:.3 ma High Slew Rate: 3 V/ s Excellent Video Specifications.% Differential Gain (NTSC and PAL).9 Differential Phase (NTSC and

More information

Programmable Single-/Dual-/Triple- Tone Gong SAE 800

Programmable Single-/Dual-/Triple- Tone Gong SAE 800 Programmable Single-/Dual-/Triple- Tone Gong Preliminary Data SAE 800 Bipolar IC Features Supply voltage range 2.8 V to 18 V Few external components (no electrolytic capacitor) 1 tone, 2 tones, 3 tones

More information

Analog/Digital Conversion. Analog Signals. Digital Signals. Analog vs. Digital. Interfacing a microprocessor-based system to the real world.

Analog/Digital Conversion. Analog Signals. Digital Signals. Analog vs. Digital. Interfacing a microprocessor-based system to the real world. Analog/Digital Conversion Analog Signals Interacing a microprocessor-based system to the real world. continuous range x(t) Analog and digital signals he bridge: Sampling heorem Conversion concepts Conversion

More information

A PC-BASED TIME INTERVAL COUNTER WITH 200 PS RESOLUTION

A PC-BASED TIME INTERVAL COUNTER WITH 200 PS RESOLUTION 35'th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting San Diego, December 2-4, 2003 A PC-BASED TIME INTERVAL COUNTER WITH 200 PS RESOLUTION Józef Kalisz and Ryszard Szplet

More information

Features. Note Switches shown in digital high state

Features. Note Switches shown in digital high state DAC1020 DAC1021 DAC1022 10-Bit Binary Multiplying D A Converter DAC1220 DAC1222 12-Bit Binary Multiplying D A Converter General Description The DAC1020 and the DAC1220 are respectively 10 and 12-bit binary

More information

Description. 5k (10k) - + 5k (10k)

Description. 5k (10k) - + 5k (10k) THAT Corporation Low Noise, High Performance Microphone Preamplifier IC FEATURES Excellent noise performance through the entire gain range Exceptionally low THD+N over the full audio bandwidth Low power

More information

Continuous-Time Converter Architectures for Integrated Audio Processors: By Brian Trotter, Cirrus Logic, Inc. September 2008

Continuous-Time Converter Architectures for Integrated Audio Processors: By Brian Trotter, Cirrus Logic, Inc. September 2008 Continuous-Time Converter Architectures for Integrated Audio Processors: By Brian Trotter, Cirrus Logic, Inc. September 2008 As consumer electronics devices continue to both decrease in size and increase

More information

MODEL 1211 CURRENT PREAMPLEFIER

MODEL 1211 CURRENT PREAMPLEFIER MODEL 1211 CURRENT PREAMPLEFIER Phone: (607)539-1108 Email: info@dlinstruments.com www.dlinstruments.com The Model 1211 Current Preamplifier was designed to provide all of the features required of a modern

More information

Low Noise, Matched Dual PNP Transistor MAT03

Low Noise, Matched Dual PNP Transistor MAT03 a FEATURES Dual Matched PNP Transistor Low Offset Voltage: 100 V Max Low Noise: 1 nv/ Hz @ 1 khz Max High Gain: 100 Min High Gain Bandwidth: 190 MHz Typ Tight Gain Matching: 3% Max Excellent Logarithmic

More information

A Collection of Differential to Single-Ended Signal Conditioning Circuits for Use with the LTC2400, a 24-Bit No Latency Σ ADC in an SO-8

A Collection of Differential to Single-Ended Signal Conditioning Circuits for Use with the LTC2400, a 24-Bit No Latency Σ ADC in an SO-8 Application Note August 999 A Collection of Differential to Single-Ended Signal Conditioning Circuits for Use with the LTC00, a -Bit No Latency Σ ADC in an SO- By Kevin R. Hoskins and Derek V. Redmayne

More information

TL074 TL074A - TL074B

TL074 TL074A - TL074B A B LOW NOISE JFET QUAD OPERATIONAL AMPLIFIERS WIDE COMMONMODE (UP TO V + CC ) AND DIFFERENTIAL VOLTAGE RANGE LOW INPUT BIAS AND OFFSET CURRENT LOW NOISE e n = 15nV/ Hz (typ) OUTPUT SHORTCIRCUIT PROTECTION

More information

LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors.

LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors. LM 358 Op Amp S k i l l L e v e l : I n t e r m e d i a t e OVERVIEW The LM 358 is a duel single supply operational amplifier. As it is a single supply it eliminates the need for a duel power supply, thus

More information

José A. Cobos, Pedro Alou Centro de Electrónica Industrial (CEI)

José A. Cobos, Pedro Alou Centro de Electrónica Industrial (CEI) José A. Cobos, Pedro Alou Centro de (CEI) Universidad Politécnica de Madrid www.cei.upm.es September 2008 Outline Motivation Cout, Current & voltage steps Optimal time control Analog implementations V

More information

High Speed, Low Power Dual Op Amp AD827

High Speed, Low Power Dual Op Amp AD827 a FEATURES High Speed 50 MHz Unity Gain Stable Operation 300 V/ms Slew Rate 120 ns Settling Time Drives Unlimited Capacitive Loads Excellent Video Performance 0.04% Differential Gain @ 4.4 MHz 0.198 Differential

More information

EECS 240 Topic 7: Current Sources

EECS 240 Topic 7: Current Sources EECS 240 Analog Integrated Circuits Topic 7: Current Sources Bernhard E. Boser,Ali M. Niknejad and S.Gambini Department of Electrical Engineering and Computer Sciences Bias Current Sources Applications

More information

A/D Converter based on Binary Search Algorithm

A/D Converter based on Binary Search Algorithm École Polytechnique Fédérale de Lausanne Politecnico di Torino Institut National Polytechnique de Grenoble Master s degree in Micro and Nano Technologies for Integrated Systems Master s Thesis A/D Converter

More information

LC2 MOS Quad 8-Bit D/A Converter AD7226

LC2 MOS Quad 8-Bit D/A Converter AD7226 a FEATURES Four 8-Bit DACs with Output Amplifiers Skinny 20-Pin DIP, SOIC and 20-Terminal Surface Mount Packages Microprocessor Compatible TTL/CMOS Compatible No User Trims Extended Temperature Range Operation

More information

Technical Note #3. Error Amplifier Design and Applications. Introduction

Technical Note #3. Error Amplifier Design and Applications. Introduction Technical Note #3 Error Amplifier Design and Applications Introduction All regulating power supplies require some sort of closed-loop control to force the output to match the desired value. Both digital

More information

Timing Errors and Jitter

Timing Errors and Jitter Timing Errors and Jitter Background Mike Story In a sampled (digital) system, samples have to be accurate in level and time. The digital system uses the two bits of information the signal was this big

More information

Description. Output Stage. 5k (10k) - + 5k (10k)

Description. Output Stage. 5k (10k) - + 5k (10k) THAT Corporation Low Noise, High Performance Audio Preamplifier IC FEATURES Low Noise: 1 nv/hz input noise (60dB gain) 34 nv/hz input noise (0dB gain) (1512) Low THD+N (full audio bandwidth): 0.0005% 40dB

More information

Analog Signal Conditioning

Analog Signal Conditioning Analog Signal Conditioning Analog and Digital Electronics Electronics Digital Electronics Analog Electronics 2 Analog Electronics Analog Electronics Operational Amplifiers Transistors TRIAC 741 LF351 TL084

More information

LM101A LM201A LM301A Operational Amplifiers

LM101A LM201A LM301A Operational Amplifiers LM101A LM201A LM301A Operational Amplifiers General Description The LM101A series are general purpose operational amplifiers which feature improved performance over industry standards like the LM709 Advanced

More information

How To Calculate The Power Gain Of An Opamp

How To Calculate The Power Gain Of An Opamp A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 8 p. 1/23 EE 42/100 Lecture 8: Op-Amps ELECTRONICS Rev C 2/8/2012 (9:54 AM) Prof. Ali M. Niknejad University of California, Berkeley

More information

MEASUREMENT UNCERTAINTY IN VECTOR NETWORK ANALYZER

MEASUREMENT UNCERTAINTY IN VECTOR NETWORK ANALYZER MEASUREMENT UNCERTAINTY IN VECTOR NETWORK ANALYZER W. Li, J. Vandewege Department of Information Technology (INTEC) University of Gent, St.Pietersnieuwstaat 41, B-9000, Gent, Belgium Abstract: Precision

More information

DRM compatible RF Tuner Unit DRT1

DRM compatible RF Tuner Unit DRT1 FEATURES DRM compatible RF Tuner Unit DRT1 High- Performance RF Tuner Frequency Range: 10 KHz to 30 MHz Input ICP3: +13,5dBm, typ. Noise Figure @ full gain: 14dB, typ. Receiver Factor: -0,5dB, typ. Input

More information

What Does Rail-to-Rail Operation Really Mean?

What Does Rail-to-Rail Operation Really Mean? What Does Rail-to-Rail Operation Really Mean? 2004 Microchip Technology Incorporated. All Rights Reserved. What does Rail-to-Rail Operation really mean? 1 Agenda What does Rail-to-Rail output operation

More information

DATA SHEET. TDA1543 Dual 16-bit DAC (economy version) (I 2 S input format) INTEGRATED CIRCUITS

DATA SHEET. TDA1543 Dual 16-bit DAC (economy version) (I 2 S input format) INTEGRATED CIRCUITS INTEGRATED CIRCUITS DATA SHEET File under Integrated Circuits, IC01 February 1991 FEATURES Low distortion 16-bit dynamic range 4 oversampling possible Single 5 V power supply No external components required

More information

*For stability of the feedback loop, the differential gain must vary as

*For stability of the feedback loop, the differential gain must vary as ECE137a Lab project 3 You will first be designing and building an op-amp. The op-amp will then be configured as a narrow-band amplifier for amplification of voice signals in a public address system. Part

More information

Programmable-Gain Transimpedance Amplifiers Maximize Dynamic Range in Spectroscopy Systems

Programmable-Gain Transimpedance Amplifiers Maximize Dynamic Range in Spectroscopy Systems Programmable-Gain Transimpedance Amplifiers Maximize Dynamic Range in Spectroscopy Systems PHOTODIODE VOLTAGE SHORT-CIRCUIT PHOTODIODE SHORT- CIRCUIT VOLTAGE 0mV DARK ark By Luis Orozco Introduction Precision

More information

STUDY AND ANALYSIS OF DIFFERENT TYPES OF COMPARATORS

STUDY AND ANALYSIS OF DIFFERENT TYPES OF COMPARATORS STUDY AND ANALYSIS OF DIFFERENT TYPES OF COMPARATORS A Thesis submitted in partial fulfillment of the requirements for the degree of Bachelor of Technology In Electronics and Communication Engineering

More information

Buffer Op Amp to ADC Circuit Collection

Buffer Op Amp to ADC Circuit Collection Application Report SLOA098 March 2002 Buffer Op Amp to ADC Circuit Collection Bruce Carter High Performance Linear Products ABSTRACT This document describes various techniques that interface buffer op

More information

24-Bit ANALOG-TO-DIGITAL CONVERTER

24-Bit ANALOG-TO-DIGITAL CONVERTER ADS1211 ADS1211 ADS1211 ADS1210 ADS1210 ADS1210 ADS1211 JANUARY 1996 REVISED SEPTEMBER 2005 24-Bit ANALOG-TO-DIGITAL CONVERTER FEATURES DELTA-SIGMA A/D CONVERTER 23 BITS EFFECTIVE RESOLUTION AT 10Hz AND

More information

High Common-Mode Rejection. Differential Line Receiver SSM2141. Fax: 781/461-3113 FUNCTIONAL BLOCK DIAGRAM FEATURES. High Common-Mode Rejection

High Common-Mode Rejection. Differential Line Receiver SSM2141. Fax: 781/461-3113 FUNCTIONAL BLOCK DIAGRAM FEATURES. High Common-Mode Rejection a FEATURES High Common-Mode Rejection DC: 00 db typ 60 Hz: 00 db typ 20 khz: 70 db typ 40 khz: 62 db typ Low Distortion: 0.00% typ Fast Slew Rate: 9.5 V/ s typ Wide Bandwidth: 3 MHz typ Low Cost Complements

More information

Fully Differential CMOS Amplifier

Fully Differential CMOS Amplifier ECE 511 Analog Electronics Term Project Fully Differential CMOS Amplifier Saket Vora 6 December 2006 Dr. Kevin Gard NC State University 1 Introduction In this project, a fully differential CMOS operational

More information

AP331A XX G - 7. Lead Free G : Green. Packaging (Note 2)

AP331A XX G - 7. Lead Free G : Green. Packaging (Note 2) Features General Description Wide supply Voltage range: 2.0V to 36V Single or dual supplies: ±1.0V to ±18V Very low supply current drain (0.4mA) independent of supply voltage Low input biasing current:

More information

Loop Stability Analysis Differential Opamp Simulation

Loop Stability Analysis Differential Opamp Simulation Department of Electrical and Computer Engineering Loop Stability Analysis Differential Opamp Simulation Vishal Saxena & Zhu Kehan Boise State University (vishalsaxena@boisestate.edu) Vishal Saxena -1-

More information

24-Bit, 96kHz BiCMOS Sign-Magnitude DIGITAL-TO-ANALOG CONVERTER

24-Bit, 96kHz BiCMOS Sign-Magnitude DIGITAL-TO-ANALOG CONVERTER 49% FPO 24-Bit, 96kHz BiCMOS Sign-Magnitude DIGITAL-TO-ANALOG CONVERTER TM FEATURES SAMPLING FREQUEY (f S ): 16kHz to 96kHz 8X OVERSAMPLING AT 96kHz INPUT AUDIO WORD: 20-, 24-Bit HIGH PERFORMAE: Dynamic

More information

PLL frequency synthesizer

PLL frequency synthesizer ANALOG & TELECOMMUNICATION ELECTRONICS LABORATORY EXERCISE 4 Lab 4: PLL frequency synthesizer 1.1 Goal The goals of this lab exercise are: - Verify the behavior of a and of a complete PLL - Find capture

More information

Cancellation of Load-Regulation in Low Drop-Out Regulators

Cancellation of Load-Regulation in Low Drop-Out Regulators Cancellation of Load-Regulation in Low Drop-Out Regulators Rajeev K. Dokania, Student Member, IEE and Gabriel A. Rincόn-Mora, Senior Member, IEEE Georgia Tech Analog Consortium Georgia Institute of Technology

More information

FEATURES DESCRIPTIO APPLICATIO S. LTC1451 LTC1452/LTC1453 12-Bit Rail-to-Rail Micropower DACs in SO-8 TYPICAL APPLICATIO

FEATURES DESCRIPTIO APPLICATIO S. LTC1451 LTC1452/LTC1453 12-Bit Rail-to-Rail Micropower DACs in SO-8 TYPICAL APPLICATIO 12-Bit Rail-to-Rail Micropower DACs in SO-8 FEATRES 12-Bit Resolution Buffered True Rail-to-Rail Voltage Output 3V Operation (LTC1453), I CC : 250µA Typ 5V Operation (), I CC : 400µA Typ 3V to 5V Operation

More information

The front end of the receiver performs the frequency translation, channel selection and amplification of the signal.

The front end of the receiver performs the frequency translation, channel selection and amplification of the signal. Many receivers must be capable of handling a very wide range of signal powers at the input while still producing the correct output. This must be done in the presence of noise and interference which occasionally

More information

Time to upgrade your current sensing technology!

Time to upgrade your current sensing technology! Your Imagination. Our Innovation. Time to upgrade your current sensing technology! Second Edition Avago Technologies Optocoupler Current and Voltage Sensing Leading edge current sensing solutions for industrial

More information

WHY DIFFERENTIAL? instruments connected to the circuit under test and results in V COMMON.

WHY DIFFERENTIAL? instruments connected to the circuit under test and results in V COMMON. WHY DIFFERENTIAL? Voltage, The Difference Whether aware of it or not, a person using an oscilloscope to make any voltage measurement is actually making a differential voltage measurement. By definition,

More information

LTC1390 8-Channel Analog Multiplexer with Serial Interface U DESCRIPTIO

LTC1390 8-Channel Analog Multiplexer with Serial Interface U DESCRIPTIO FEATRES -Wire Serial Digital Interface Data Retransmission Allows Series Connection with Serial A/D Converters Single V to ±V Supply Operation Analog Inputs May Extend to Supply Rails Low Charge Injection

More information

Frequency Response of Filters

Frequency Response of Filters School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 2 Frequency Response of Filters 1 Introduction Objectives To

More information

Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies

Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies Soonwook Hong, Ph. D. Michael Zuercher Martinson Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies 1. Introduction PV inverters use semiconductor devices to transform the

More information

HOW TO GET 23 BITS OF EFFECTIVE RESOLUTION FROM YOUR 24-BIT CONVERTER

HOW TO GET 23 BITS OF EFFECTIVE RESOLUTION FROM YOUR 24-BIT CONVERTER HOW TO GET 23 BITS OF EFFECTIVE RESOLUTION FROM YOUR 24-BIT CONVERTER The ADS20 and ADS2 are precision, wide dynamic range, Σ A/D converters that have 24 bits of no missing code and up to 23 bits rms of

More information

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 956 24-BIT DIFFERENTIAL ADC WITH I2C LTC2485 DESCRIPTION

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 956 24-BIT DIFFERENTIAL ADC WITH I2C LTC2485 DESCRIPTION LTC2485 DESCRIPTION Demonstration circuit 956 features the LTC2485, a 24-Bit high performance Σ analog-to-digital converter (ADC). The LTC2485 features 2ppm linearity, 0.5µV offset, and 600nV RMS noise.

More information

ABCs of ADCs. Analog-to-Digital Converter Basics. Nicholas Gray Data Conversion Systems Staff Applications Engineer

ABCs of ADCs. Analog-to-Digital Converter Basics. Nicholas Gray Data Conversion Systems Staff Applications Engineer ABCs of ADCs Analog-to-Digital Converter Basics Nicholas Gray Data Conversion Systems Staff Applications Engineer November 24, 2003 Corrected August 13, 2004 Additional Corrections June 27, 2006 1 Agenda

More information

A 3 V 12b 100 MS/s CMOS D/A Converter for High- Speed Communication Systems

A 3 V 12b 100 MS/s CMOS D/A Converter for High- Speed Communication Systems JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.3, NO., DECEMBER, 3 A 3 V b MS/s CMOS D/A Converter for High- Speed Communication Systems Min-Jung Kim, Hyuen-Hee Bae, Jin-Sik Yoon, and Seung-Hoon

More information

Application Report. 1 Introduction. 2 Resolution of an A-D Converter. 2.1 Signal-to-Noise Ratio (SNR) Harman Grewal... ABSTRACT

Application Report. 1 Introduction. 2 Resolution of an A-D Converter. 2.1 Signal-to-Noise Ratio (SNR) Harman Grewal... ABSTRACT Application Report SLAA323 JULY 2006 Oversampling the ADC12 for Higher Resolution Harman Grewal... ABSTRACT This application report describes the theory of oversampling to achieve resolutions greater than

More information

Spike-Based Sensing and Processing: What are spikes good for? John G. Harris Electrical and Computer Engineering Dept

Spike-Based Sensing and Processing: What are spikes good for? John G. Harris Electrical and Computer Engineering Dept Spike-Based Sensing and Processing: What are spikes good for? John G. Harris Electrical and Computer Engineering Dept ONR NEURO-SILICON WORKSHOP, AUG 1-2, 2006 Take Home Messages Introduce integrate-and-fire

More information

PCM Encoding and Decoding:

PCM Encoding and Decoding: PCM Encoding and Decoding: Aim: Introduction to PCM encoding and decoding. Introduction: PCM Encoding: The input to the PCM ENCODER module is an analog message. This must be constrained to a defined bandwidth

More information

RF Measurements Using a Modular Digitizer

RF Measurements Using a Modular Digitizer RF Measurements Using a Modular Digitizer Modern modular digitizers, like the Spectrum M4i series PCIe digitizers, offer greater bandwidth and higher resolution at any given bandwidth than ever before.

More information

AP2428.01. A/D Converter. Analog Aspects. C500 and C166 Microcontroller Families. Microcontrollers. Application Note, V 1.

AP2428.01. A/D Converter. Analog Aspects. C500 and C166 Microcontroller Families. Microcontrollers. Application Note, V 1. Application Note, V 1.0, May 2001 AP2428.01 A/D Converter C500 and C166 Microcontroller Families Analog Aspects Microcontrollers Never stop thinking. A/D Converter Revision History: 2001-05 V1.0 Previous

More information

Design of Bidirectional Coupling Circuit for Broadband Power-Line Communications

Design of Bidirectional Coupling Circuit for Broadband Power-Line Communications Journal of Electromagnetic Analysis and Applications, 2012, 4, 162-166 http://dx.doi.org/10.4236/jemaa.2012.44021 Published Online April 2012 (http://www.scirp.org/journal/jemaa) Design of Bidirectional

More information

QAM Demodulation. Performance Conclusion. o o o o o. (Nyquist shaping, Clock & Carrier Recovery, AGC, Adaptive Equaliser) o o. Wireless Communications

QAM Demodulation. Performance Conclusion. o o o o o. (Nyquist shaping, Clock & Carrier Recovery, AGC, Adaptive Equaliser) o o. Wireless Communications 0 QAM Demodulation o o o o o Application area What is QAM? What are QAM Demodulation Functions? General block diagram of QAM demodulator Explanation of the main function (Nyquist shaping, Clock & Carrier

More information

LF442 Dual Low Power JFET Input Operational Amplifier

LF442 Dual Low Power JFET Input Operational Amplifier LF442 Dual Low Power JFET Input Operational Amplifier General Description The LF442 dual low power operational amplifiers provide many of the same AC characteristics as the industry standard LM1458 while

More information

Analog signals are those which are naturally occurring. Any analog signal can be converted to a digital signal.

Analog signals are those which are naturally occurring. Any analog signal can be converted to a digital signal. 3.3 Analog to Digital Conversion (ADC) Analog signals are those which are naturally occurring. Any analog signal can be converted to a digital signal. 1 3.3 Analog to Digital Conversion (ADC) WCB/McGraw-Hill

More information

ADC Architectures IV: Sigma-Delta ADC Advanced Concepts and Applications. by Walt Kester

ADC Architectures IV: Sigma-Delta ADC Advanced Concepts and Applications. by Walt Kester TUTORIAL ADC Architectures IV: Sigma-Delta ADC Advanced Concepts and Applications INTRODUCTION by Walt Kester Tutorial MT-022 discussed the basics of Σ-Δ ADCs. In this tutorial, we will look at some of

More information

12-Bit Serial Daisy-Chain CMOS D/A Converter DAC8143

12-Bit Serial Daisy-Chain CMOS D/A Converter DAC8143 a FEATURES Fast, Flexible, Microprocessor Interfacing in Serially Controlled Systems Buffered Digital Output Pin for Daisy-Chaining Multiple DACs Minimizes Address-Decoding in Multiple DAC Systems Three-Wire

More information

DDX 7000 & 8003. Digital Partial Discharge Detectors FEATURES APPLICATIONS

DDX 7000 & 8003. Digital Partial Discharge Detectors FEATURES APPLICATIONS DDX 7000 & 8003 Digital Partial Discharge Detectors The HAEFELY HIPOTRONICS DDX Digital Partial Discharge Detector offers the high accuracy and flexibility of digital technology, plus the real-time display

More information

Making Accurate Voltage Noise and Current Noise Measurements on Operational Amplifiers Down to 0.1Hz

Making Accurate Voltage Noise and Current Noise Measurements on Operational Amplifiers Down to 0.1Hz Author: Don LaFontaine Making Accurate Voltage Noise and Current Noise Measurements on Operational Amplifiers Down to 0.1Hz Abstract Making accurate voltage and current noise measurements on op amps in

More information

EE 42/100 Lecture 24: Latches and Flip Flops. Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad

EE 42/100 Lecture 24: Latches and Flip Flops. Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 24 p. 1/20 EE 42/100 Lecture 24: Latches and Flip Flops ELECTRONICS Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad University of California,

More information

Content Map For Career & Technology

Content Map For Career & Technology Content Strand: Applied Academics CT-ET1-1 analysis of electronic A. Fractions and decimals B. Powers of 10 and engineering notation C. Formula based problem solutions D. Powers and roots E. Linear equations

More information

AMICSA 2012. Integrated SAR Receiver/Converter for L, C and X bands Markku Åberg VTT Technical Research Centre of Finland

AMICSA 2012. Integrated SAR Receiver/Converter for L, C and X bands Markku Åberg VTT Technical Research Centre of Finland AMICSA 2012 Integrated SAR Receiver/Converter for L, C and X bands Markku Åberg VTT Technical Research Centre of Finland 2 The Team Markku Åberg (1), Jan Holmberg (1), Faizah Abu Bakar (2), Tero Nieminen

More information

Isolated AC Sine Wave Input 3B42 / 3B43 / 3B44 FEATURES APPLICATIONS PRODUCT OVERVIEW FUNCTIONAL BLOCK DIAGRAM

Isolated AC Sine Wave Input 3B42 / 3B43 / 3B44 FEATURES APPLICATIONS PRODUCT OVERVIEW FUNCTIONAL BLOCK DIAGRAM Isolated AC Sine Wave Input 3B42 / 3B43 / 3B44 FEATURES AC averaging technique used to rectify, amplify, and filter 50 Hz to 400 Hz sine-wave signals. Accepts inputs of between 20 mv to 550 V rms to give

More information

LM139/LM239/LM339/LM2901/LM3302 Low Power Low Offset Voltage Quad Comparators

LM139/LM239/LM339/LM2901/LM3302 Low Power Low Offset Voltage Quad Comparators Low Power Low Offset Voltage Quad Comparators General Description The LM139 series consists of four independent precision voltage comparators with an offset voltage specification as low as 2 mv max for

More information