# 7.1: Discrete and Continuous Random Variables

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 7.1: Discrete and Continuous Random Variables RANDOM VARIABLE A random variable is a variable whose value is a numerical outcome of a random phenomenon. DISCRETE RANDOM VARIABLE A discrete random variable X has a countable number of possible values. The probability distribution of X lists the values and their probabilities. Value of X x 1 x 2 x 3 x k Probability p 1 p 2 p 3 p k The probabilities p i must satisfy two requirements: 1. Every probability p i is a number between 0 and p 1 + p p k = 1 Find the probability of any event by adding the probabilities p i of the particular values x i that make up the event. CONTINUOUS RANDOM VARIABLE A continuous random variable X takes all values in an interval of numbers. The probability distribution of X is described by a density curve. The probability of any event is the area under the density curve and above the values of X that make up the event. 1. Patients receiving artificial knees often experience pain after surgery. The pain is measured on a subjective scale with possible values of 1 to 5. Assume that X is a random variable representing the pain score for a randomly selected patient. The following table gives part of the probability distribution for X. X P(X) ? (a) Find P(X = 5). (b) Find the probability that the pain score is less than 3. (c) Find the probability that the pain score is greater than 1. (d) Find the probability that the pain score is either 2 or 4.

2 7.2: Means and Variances of Random Variables MEAN OF A DISCRETE RANDOM VARIABLE Suppose that X is a discrete random variable whose distribution is Value of X x 1 x 2 x 3 x k Probability p 1 p 2 p 3 p k To find the mean of X, multiply each possible value by its probability, then add all the products: μ x = x 1 p 1 + x 2 p x k p k STANDARD DEVIATION OF A DISCRETE RANDOM VARIABLE Suppose that X is a discrete random variable whose distribution is Value of X x 1 x 2 x 3 x k Probability p 1 p 2 p 3 p k and μ is the mean of X. The variance of X is σ x 2 = (x 1 - μ x ) 2 p 1 + (x 2 μ x ) 2 p (x k μ x ) 2 p k and the standard deviation is the square root of the previous result. LAW OF LARGE NUMBERS Draw independent observations at random from any population with finite mean μ. As the number of observations drawn increases, the mean of the observed values eventually approaches the mean μ. 2. Patients receiving artificial knees often experience pain after surgery. The pain is measured on a subjective scale with possible values of 1 to 5. Assume that X is a random variable representing the pain score for a randomly selected patient. The following table gives part of the probability distribution for X. X P(X) (a) Find the mean µ for this distribution (b) Find the standard deviation for this distribution.

3 8.1: The Binomial Distributions THE BINOMIAL SETTING 1. Each observation falls into one of just two categories, which for convenience we call success and failure. 2. There is a fixed number n of observations 3. The n observations are independent. That is, knowing the result of one observation tells you nothing about the other observations. 4. The probability of success, call it p, is the same for each observation. BINOMIAL DISTRIBUTION The distribution of the count X of successes in the binomial setting is the binomial distribution with parameters n and p. The parameter n is the number of observations, and p is the probability of success on any one observation. The possible values of X are the whole numbers from 0 to n. As an abbreviation we say that X is B(n, p). BINOMIAL PROBABILITY If X has the binomial distribution with n observations, and probability p of success on each observation, the possible values of X are 0, 1, 2, n. If k is any one of these values, MEAN AND STD. DEVIATION OF A BINOMIAL RANDOM VARIABLE If a count X has the binomial distribution with n observations, and probability of success p, the mean (m) and standard deviation (s) of X are: 3. Would most wives marry the same man again, if given the chance? According to a 1988 survey conducted by Ladies Home Journal, 80% of women would in fact marry their husband again. To test this claim, you randomly select 6 married women and ask them whether they would marry their husband again. Define X as the number in the sample that respond yes. (a) What is the probability that exactly that 4 of the women say yes? (b) What is the probability that fewer than 3 of the women say yes? (c) What is the probability that more than 3 of the women say yes?

4 8.2: The Geometric Distributions THE GEOMETRIC SETTING 1. Each observation falls into one of just two categories, which for convenience we call success and failure. 2. The probability of success, call it p, is the same for each observation. 3. The observations are all independent. 4. The variable of interest is the number of trials required to obtain the first success. GEOMETRIC PROBABILITY If X has the geometric distribution with probability p of success and (1 p) of failure on each observation, the possible values of X are 1, 2, 3,. If n is any one of these values, the probability that the first success occurs in the nth trial is MEAN OF A GEOMETRIC RANDOM VARIABLE If X is a geometric random variable with probability of success p on each trial, then the mean (m) of X (also called the expected value of X) is: P(X>n) The probability that it takes more than n trials to see the first success in a geometric setting is, 4. Would most wives marry the same man again, if given the chance? According to a 1988 survey conducted by Ladies Home Journal, 80% of women would in fact marry their husband again. To test this claim, you randomly select married women and ask them whether they would marry their husband again. Define X as the number of women you ask until you get a yes answer. (a) What is the probability that the first yes comes from the 3 rd woman you ask? (b) What is the probability that it takes fewer than 3 women to get a yes answer? (c) What is the probability that it takes more than 3 of the women to get a yes answer?

5 AP Statistics Chapter 7-8 Study Guide Solutions Page 1 of 2 1. This problem concerns working with the properties of a discrete probability distribution. The distribution is redisplayed below. X P(X) ? (a) Find P(X = 5). Since the sum of the probabilities of any distribution must be 1, simply add the other probabilities and subtract from 1. So 1 ( ) = =.1 (b) Find the probability that the pain score is less than 3. Less than 3 only includes when x=1 or x=2, so we add together those probabilities: =.3 (c) Find the probability that the pain score is greater than 1. Greater than 1 includes all probabilities for x=2 to x=5, so we add those probabilities: =.9 (d) Find the probability that the pain score is either 2 or 4. Adding those probabilities we get: =.5 2. This problem concerns the same discrete probability distribution from #1 (see above). (a) Find the mean μ for this distribution The formula for the mean of a discrete r.v. is μx = x1 p1 + x2 p2 + + xk pk Applying that formula, we get: 1(.1) + 2(.2) + 3(.3) + 4(.3) + 5(.1) = 3.1 (b) Find the standard deviation for this distribution. The formula for the standard deviation of a discrete random variable is the square root of (x 1 - μ x ) 2 p 1 + (x 2 μ x ) 2 p (x k μ x ) 2 p k Applying that formula, we get: (1-3.1) 2 (.1) + (2-3.1) 2 (.2) + (3-3.1) 2 (.3) + (4-3.1) 2 (.3) + (5-3.1) 2 (.1) = Lastly, we take the square root: 1.29 = 1.136

6 AP Statistics Chapter 7-8 Study Guide Solutions Page 2 of 2 3. We are working with a binomial random variable with n=6 and p=.8. (a) What is the probability that exactly that 4 of the women say yes? P(X=4) = (6 ncr 4)(.8) 4 (.2) 2 = binompdf(6,.8,4) = (b) What is the probability that fewer than 3 of the women say yes? Fewer than 3, means less than 3 so we need P(X<3) which can be found using the binomcdf function as follows: binomcdf(6,.8,2) = (c) What is the probability that more than 3 of the women say yes? More than 3, means we need P(X>3) which can be found using the binomcdf function as follows: 1-binomcdf(6,.8,3) = The formula for the expected value or mean of a binomial random variable is μ = np, so the mean of this variable is μ = (6)(.8) = We are working with a geometric random variable with p=.8. (a) What is the probability that the first yes comes from the 3rd woman you ask? P(X=3) = (.2) 2 (.8) 1 = geometpdf(.8,3) =.032 (b) What is the probability that it takes fewer than 3 women to get a yes answer? Fewer than 3, means less than 3 so we need P(X<3) which can be found using the geometcdf function as follows: geometcdf(.8,2) =.96 (c) What is the probability that it takes more than 3 of the women to get a yes answer? More than 3, means we need P(X>3) which can be found using the geometcdf function as follows: 1-geometcdf(.8,3) =.008. Alternatively, we can solve the problem using the formula (.2) 3 =.008. The formula for the expected value or mean of a geometric random variable is μ = 1/p, so the mean of this variable is μ = 1 /.8 = 1.25.

### Probability Distributions

CHAPTER 6 Probability Distributions Calculator Note 6A: Computing Expected Value, Variance, and Standard Deviation from a Probability Distribution Table Using Lists to Compute Expected Value, Variance,

### Review the following from Chapter 5

Bluman, Chapter 6 1 Review the following from Chapter 5 A surgical procedure has an 85% chance of success and a doctor performs the procedure on 10 patients, find the following: a) The probability that

### Sampling Distribution of a Sample Proportion

Sampling Distribution of a Sample Proportion From earlier material remember that if X is the count of successes in a sample of n trials of a binomial random variable then the proportion of success is given

Using Your TI-NSpire Calculator: Binomial Probability Distributions Dr. Laura Schultz Statistics I This handout describes how to use the binompdf and binomcdf commands to work with binomial probability

### Normal Distribution as an Approximation to the Binomial Distribution

Chapter 1 Student Lecture Notes 1-1 Normal Distribution as an Approximation to the Binomial Distribution : Goals ONE TWO THREE 2 Review Binomial Probability Distribution applies to a discrete random variable

### Stats on the TI 83 and TI 84 Calculator

Stats on the TI 83 and TI 84 Calculator Entering the sample values STAT button Left bracket { Right bracket } Store (STO) List L1 Comma Enter Example: Sample data are {5, 10, 15, 20} 1. Press 2 ND and

### Section 5 Part 2. Probability Distributions for Discrete Random Variables

Section 5 Part 2 Probability Distributions for Discrete Random Variables Review and Overview So far we ve covered the following probability and probability distribution topics Probability rules Probability

### An Introduction to Basic Statistics and Probability

An Introduction to Basic Statistics and Probability Shenek Heyward NCSU An Introduction to Basic Statistics and Probability p. 1/4 Outline Basic probability concepts Conditional probability Discrete Random

### Section 6.1 Discrete Random variables Probability Distribution

Section 6.1 Discrete Random variables Probability Distribution Definitions a) Random variable is a variable whose values are determined by chance. b) Discrete Probability distribution consists of the values

### AP STATISTICS REVIEW (YMS Chapters 1-8)

AP STATISTICS REVIEW (YMS Chapters 1-8) Exploring Data (Chapter 1) Categorical Data nominal scale, names e.g. male/female or eye color or breeds of dogs Quantitative Data rational scale (can +,,, with

### Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. Part 3: Discrete Uniform Distribution Binomial Distribution

Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Part 3: Discrete Uniform Distribution Binomial Distribution Sections 3-5, 3-6 Special discrete random variable distributions we will cover

### You flip a fair coin four times, what is the probability that you obtain three heads.

Handout 4: Binomial Distribution Reading Assignment: Chapter 5 In the previous handout, we looked at continuous random variables and calculating probabilities and percentiles for those type of variables.

### Unit 21: Binomial Distributions

Unit 21: Binomial Distributions Summary of Video In Unit 20, we learned that in the world of random phenomena, probability models provide us with a list of all possible outcomes and probabilities for how

### WHERE DOES THE 10% CONDITION COME FROM?

1 WHERE DOES THE 10% CONDITION COME FROM? The text has mentioned The 10% Condition (at least) twice so far: p. 407 Bernoulli trials must be independent. If that assumption is violated, it is still okay

### Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Part 4: Geometric Distribution Negative Binomial Distribution Hypergeometric Distribution Sections 3-7, 3-8 The remaining discrete random

### Random Variable: A function that assigns numerical values to all the outcomes in the sample space.

STAT 509 Section 3.2: Discrete Random Variables Random Variable: A function that assigns numerical values to all the outcomes in the sample space. Notation: Capital letters (like Y) denote a random variable.

### The normal approximation to the binomial

The normal approximation to the binomial The binomial probability function is not useful for calculating probabilities when the number of trials n is large, as it involves multiplying a potentially very

### The Binomial Probability Distribution

The Binomial Probability Distribution MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2015 Objectives After this lesson we will be able to: determine whether a probability

### Chapter 4. Probability Distributions

Chapter 4 Probability Distributions Lesson 4-1/4-2 Random Variable Probability Distributions This chapter will deal the construction of probability distribution. By combining the methods of descriptive

### Chapter 5. Random variables

Random variables random variable numerical variable whose value is the outcome of some probabilistic experiment; we use uppercase letters, like X, to denote such a variable and lowercase letters, like

### Chapter 5 - Practice Problems 1

Chapter 5 - Practice Problems 1 Identify the given random variable as being discrete or continuous. 1) The number of oil spills occurring off the Alaskan coast 1) A) Continuous B) Discrete 2) The ph level

### SOLUTIONS: 4.1 Probability Distributions and 4.2 Binomial Distributions

SOLUTIONS: 4.1 Probability Distributions and 4.2 Binomial Distributions 1. The following table contains a probability distribution for a random variable X. a. Find the expected value (mean) of X. x 1 2

### Sampling Central Limit Theorem Proportions. Outline. 1 Sampling. 2 Central Limit Theorem. 3 Proportions

Outline 1 Sampling 2 Central Limit Theorem 3 Proportions Outline 1 Sampling 2 Central Limit Theorem 3 Proportions Populations and samples When we use statistics, we are trying to find out information about

### Chapter 5: Normal Probability Distributions - Solutions

Chapter 5: Normal Probability Distributions - Solutions Note: All areas and z-scores are approximate. Your answers may vary slightly. 5.2 Normal Distributions: Finding Probabilities If you are given that

### Statistics 100 Binomial and Normal Random Variables

Statistics 100 Binomial and Normal Random Variables Three different random variables with common characteristics: 1. Flip a fair coin 10 times. Let X = number of heads out of 10 flips. 2. Poll a random

### Section 5 3 The Mean and Standard Deviation of a Binomial Distribution

Section 5 3 The Mean and Standard Deviation of a Binomial Distribution Previous sections required that you to find the Mean and Standard Deviation of a Binomial Distribution by using the values from a

### AP STATISTICS 2010 SCORING GUIDELINES

2010 SCORING GUIDELINES Question 4 Intent of Question The primary goals of this question were to (1) assess students ability to calculate an expected value and a standard deviation; (2) recognize the applicability

### Binomial Probability Distribution

Binomial Probability Distribution In a binomial setting, we can compute probabilities of certain outcomes. This used to be done with tables, but with graphing calculator technology, these problems are

### Chapter 4. Probability and Probability Distributions

Chapter 4. robability and robability Distributions Importance of Knowing robability To know whether a sample is not identical to the population from which it was selected, it is necessary to assess the

### X: 0 1 2 3 4 5 6 7 8 9 Probability: 0.061 0.154 0.228 0.229 0.173 0.094 0.041 0.015 0.004 0.001

Tuesday, January 17: 6.1 Discrete Random Variables Read 341 344 What is a random variable? Give some examples. What is a probability distribution? What is a discrete random variable? Give some examples.

### Stats Review Chapters 5-6

Stats Review Chapters 5-6 Created by Teri Johnson Math Coordinator, Mary Stangler Center for Academic Success Examples are taken from Statistics 4 E by Michael Sullivan, III And the corresponding Test

### Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution

Recall: Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution A variable is a characteristic or attribute that can assume different values. o Various letters of the alphabet (e.g.

### MEASURES OF VARIATION

NORMAL DISTRIBTIONS MEASURES OF VARIATION In statistics, it is important to measure the spread of data. A simple way to measure spread is to find the range. But statisticians want to know if the data are

### Normal distribution. ) 2 /2σ. 2π σ

Normal distribution The normal distribution is the most widely known and used of all distributions. Because the normal distribution approximates many natural phenomena so well, it has developed into a

### The normal approximation to the binomial

The normal approximation to the binomial In order for a continuous distribution (like the normal) to be used to approximate a discrete one (like the binomial), a continuity correction should be used. There

### Statistical Inference

Statistical Inference Idea: Estimate parameters of the population distribution using data. How: Use the sampling distribution of sample statistics and methods based on what would happen if we used this

### 4. Introduction to Statistics

Statistics for Engineers 4-1 4. Introduction to Statistics Descriptive Statistics Types of data A variate or random variable is a quantity or attribute whose value may vary from one unit of investigation

### Math 2015 Lesson 21. We discuss the mean and the median, two important statistics about a distribution. p(x)dx = 0.5

ean and edian We discuss the mean and the median, two important statistics about a distribution. The edian The median is the halfway point of a distribution. It is the point where half the population has

### Lecture 14. Chapter 7: Probability. Rule 1: Rule 2: Rule 3: Nancy Pfenning Stats 1000

Lecture 4 Nancy Pfenning Stats 000 Chapter 7: Probability Last time we established some basic definitions and rules of probability: Rule : P (A C ) = P (A). Rule 2: In general, the probability of one event

### 2. Discrete random variables

2. Discrete random variables Statistics and probability: 2-1 If the chance outcome of the experiment is a number, it is called a random variable. Discrete random variable: the possible outcomes can be

### Lecture 5 : The Poisson Distribution

Lecture 5 : The Poisson Distribution Jonathan Marchini November 10, 2008 1 Introduction Many experimental situations occur in which we observe the counts of events within a set unit of time, area, volume,

### 5/31/2013. 6.1 Normal Distributions. Normal Distributions. Chapter 6. Distribution. The Normal Distribution. Outline. Objectives.

The Normal Distribution C H 6A P T E R The Normal Distribution Outline 6 1 6 2 Applications of the Normal Distribution 6 3 The Central Limit Theorem 6 4 The Normal Approximation to the Binomial Distribution

### Random variables, probability distributions, binomial random variable

Week 4 lecture notes. WEEK 4 page 1 Random variables, probability distributions, binomial random variable Eample 1 : Consider the eperiment of flipping a fair coin three times. The number of tails that

### Dangling thread from last time. Lecture 8: Geometric and Binomial distributions. Milgram experiment. Statistics 101

Recap Dangling thread from last time From OpenIntro quiz 2: Lecture 8: Geometric and s Statistics 101 Mine Çetinkaya-Rundel September 22, 2011 P(took not valuable) P(took and not valuable) = P(not valuable)

### MT426 Notebook 3 Fall 2012 prepared by Professor Jenny Baglivo. 3 MT426 Notebook 3 3. 3.1 Definitions... 3. 3.2 Joint Discrete Distributions...

MT426 Notebook 3 Fall 2012 prepared by Professor Jenny Baglivo c Copyright 2004-2012 by Jenny A. Baglivo. All Rights Reserved. Contents 3 MT426 Notebook 3 3 3.1 Definitions............................................

### Bivariate Distributions

Chapter 4 Bivariate Distributions 4.1 Distributions of Two Random Variables In many practical cases it is desirable to take more than one measurement of a random observation: (brief examples) 1. What is

### Point and Interval Estimates

Point and Interval Estimates Suppose we want to estimate a parameter, such as p or µ, based on a finite sample of data. There are two main methods: 1. Point estimate: Summarize the sample by a single number

### Thursday, November 13: 6.1 Discrete Random Variables

Thursday, November 13: 6.1 Discrete Random Variables Read 347 350 What is a random variable? Give some examples. What is a probability distribution? What is a discrete random variable? Give some examples.

### Chapter 14: 1-6, 9, 12; Chapter 15: 8 Solutions When is it appropriate to use the normal approximation to the binomial distribution?

Chapter 14: 1-6, 9, 1; Chapter 15: 8 Solutions 14-1 When is it appropriate to use the normal approximation to the binomial distribution? The usual recommendation is that the approximation is good if np

### DETERMINE whether the conditions for a binomial setting are met. COMPUTE and INTERPRET probabilities involving binomial random variables

1 Section 7.B Learning Objectives After this section, you should be able to DETERMINE whether the conditions for a binomial setting are met COMPUTE and INTERPRET probabilities involving binomial random

### Probability Distributions

Learning Objectives Probability Distributions Section 1: How Can We Summarize Possible Outcomes and Their Probabilities? 1. Random variable 2. Probability distributions for discrete random variables 3.

### Lecture 6: Discrete & Continuous Probability and Random Variables

Lecture 6: Discrete & Continuous Probability and Random Variables D. Alex Hughes Math Camp September 17, 2015 D. Alex Hughes (Math Camp) Lecture 6: Discrete & Continuous Probability and Random September

### Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?

ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the

### STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables

Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random

### 3 Multiple Discrete Random Variables

3 Multiple Discrete Random Variables 3.1 Joint densities Suppose we have a probability space (Ω, F,P) and now we have two discrete random variables X and Y on it. They have probability mass functions f

### Notes on Continuous Random Variables

Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes

### Math 150 Sample Exam #2

Problem 1. (16 points) TRUE or FALSE. a. 3 die are rolled, there are 1 possible outcomes. b. If two events are complementary, then they are mutually exclusive events. c. If A and B are two independent

### Characteristics of Binomial Distributions

Lesson2 Characteristics of Binomial Distributions In the last lesson, you constructed several binomial distributions, observed their shapes, and estimated their means and standard deviations. In Investigation

### Binomial Random Variables

Binomial Random Variables Dr Tom Ilvento Department of Food and Resource Economics Overview A special case of a Discrete Random Variable is the Binomial This happens when the result of the eperiment is

### Exercises - The Normal Curve

Exercises - The Normal Curve 1. Find e following proportions under e Normal curve: a) P(z>2.05) b) P(z>2.5) c) P(-1.25

### Sampling Distribution of a Normal Variable

Ismor Fischer, 5/9/01 5.-1 5. Formal Statement and Examples Comments: Sampling Distribution of a Normal Variable Given a random variable. Suppose that the population distribution of is known to be normal,

### FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL

FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL STATIsTICs 4 IV. RANDOm VECTORs 1. JOINTLY DIsTRIBUTED RANDOm VARIABLEs If are two rom variables defined on the same sample space we define the joint

### Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density

HW MATH 461/561 Lecture Notes 15 1 Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density and marginal densities f(x, y), (x, y) Λ X,Y f X (x), x Λ X,

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Ch. 4 Discrete Probability Distributions 4.1 Probability Distributions 1 Decide if a Random Variable is Discrete or Continuous 1) State whether the variable is discrete or continuous. The number of cups

### Practice Questions Answers for Second Exam 2012

Practice Questions Answers for Second Exam 2012 Formulas for the test This is NOT the formula sheet that will be provided on the exam. The parts in bold will NOT appear on the exam. Mean = np Standard

### Models for Discrete Variables

Probability Models for Discrete Variables Our study of probability begins much as any data analysis does: What is the distribution of the data? Histograms, boxplots, percentiles, means, standard deviations

### M 1313 Review Test 4 1

M 1313 Review Test 4 1 Review for test 4: 1. Let E and F be two events of an experiment, P (E) =. 3 and P (F) =. 2, and P (E F) =.35. Find the following probabilities: a. P(E F) b. P(E c F) c. P (E F)

### Power and Sample Size Determination

Power and Sample Size Determination Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison November 3 8, 2011 Power 1 / 31 Experimental Design To this point in the semester,

### 4. Continuous Random Variables, the Pareto and Normal Distributions

4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random

### Number of observations is fixed. Independent observations --- knowledge of the outcomes of earlier trials does not affect the

Binomial Probability Frequently used in analyzing and setting up surveys Our interest is in a binomial random variable X, which is the count of successes in n trials. The probability distribution of X

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

STATISTICS/GRACEY PRACTICE TEST/EXAM 2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Identify the given random variable as being discrete or continuous.

### 6.4 Normal Distribution

Contents 6.4 Normal Distribution....................... 381 6.4.1 Characteristics of the Normal Distribution....... 381 6.4.2 The Standardized Normal Distribution......... 385 6.4.3 Meaning of Areas under

### Chapter 5 Discrete Probability Distribution. Learning objectives

Chapter 5 Discrete Probability Distribution Slide 1 Learning objectives 1. Understand random variables and probability distributions. 1.1. Distinguish discrete and continuous random variables. 2. Able

### Math 202-0 Quizzes Winter 2009

Quiz : Basic Probability Ten Scrabble tiles are placed in a bag Four of the tiles have the letter printed on them, and there are two tiles each with the letters B, C and D on them (a) Suppose one tile

### CALCULATIONS & STATISTICS

CALCULATIONS & STATISTICS CALCULATION OF SCORES Conversion of 1-5 scale to 0-100 scores When you look at your report, you will notice that the scores are reported on a 0-100 scale, even though respondents

### Probability density function : An arbitrary continuous random variable X is similarly described by its probability density function f x = f X

Week 6 notes : Continuous random variables and their probability densities WEEK 6 page 1 uniform, normal, gamma, exponential,chi-squared distributions, normal approx'n to the binomial Uniform [,1] random

### Important Probability Distributions OPRE 6301

Important Probability Distributions OPRE 6301 Important Distributions... Certain probability distributions occur with such regularity in real-life applications that they have been given their own names.

### STAT 315: HOW TO CHOOSE A DISTRIBUTION FOR A RANDOM VARIABLE

STAT 315: HOW TO CHOOSE A DISTRIBUTION FOR A RANDOM VARIABLE TROY BUTLER 1. Random variables and distributions We are often presented with descriptions of problems involving some level of uncertainty about

### Fairfield Public Schools

Mathematics Fairfield Public Schools AP Statistics AP Statistics BOE Approved 04/08/2014 1 AP STATISTICS Critical Areas of Focus AP Statistics is a rigorous course that offers advanced students an opportunity

### 6.1. Construct and Interpret Binomial Distributions. p Study probability distributions. Goal VOCABULARY. Your Notes.

6.1 Georgia Performance Standard(s) MM3D1 Your Notes Construct and Interpret Binomial Distributions Goal p Study probability distributions. VOCABULARY Random variable Discrete random variable Continuous

### m (t) = e nt m Y ( t) = e nt (pe t + q) n = (pe t e t + qe t ) n = (qe t + p) n

1. For a discrete random variable Y, prove that E[aY + b] = ae[y] + b and V(aY + b) = a 2 V(Y). Solution: E[aY + b] = E[aY] + E[b] = ae[y] + b where each step follows from a theorem on expected value from

### 5. Continuous Random Variables

5. Continuous Random Variables Continuous random variables can take any value in an interval. They are used to model physical characteristics such as time, length, position, etc. Examples (i) Let X be

### ST 371 (IV): Discrete Random Variables

ST 371 (IV): Discrete Random Variables 1 Random Variables A random variable (rv) is a function that is defined on the sample space of the experiment and that assigns a numerical variable to each possible

### 16. THE NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION

6. THE NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION It is sometimes difficult to directly compute probabilities for a binomial (n, p) random variable, X. We need a different table for each value of

### 10-3 Measures of Central Tendency and Variation

10-3 Measures of Central Tendency and Variation So far, we have discussed some graphical methods of data description. Now, we will investigate how statements of central tendency and variation can be used.

### Chapter 5: Discrete Probability Distributions

Chapter 5: Discrete Probability Distributions Section 5.1: Basics of Probability Distributions As a reminder, a variable or what will be called the random variable from now on, is represented by the letter

Expectations Expectations. (See also Hays, Appendix B; Harnett, ch. 3). A. The expected value of a random variable is the arithmetic mean of that variable, i.e. E() = µ. As Hays notes, the idea of the

### Example 1: Dear Abby. Stat Camp for the Full-time MBA Program

Stat Camp for the Full-time MBA Program Daniel Solow Lecture 4 The Normal Distribution and the Central Limit Theorem 188 Example 1: Dear Abby You wrote that a woman is pregnant for 266 days. Who said so?

### Week 4: Standard Error and Confidence Intervals

Health Sciences M.Sc. Programme Applied Biostatistics Week 4: Standard Error and Confidence Intervals Sampling Most research data come from subjects we think of as samples drawn from a larger population.

### The sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1].

Probability Theory Probability Spaces and Events Consider a random experiment with several possible outcomes. For example, we might roll a pair of dice, flip a coin three times, or choose a random real

### given that among year old boys, carbohydrate intake is normally distributed, with a mean of 124 and a standard deviation of 20...

Probability - Chapter 5 given that among 12-14 year old boys, carbohydrate intake is normally distributed, with a mean of 124 and a standard deviation of 20... 5.6 What percentage of boys in this age range

### PROBABILITIES AND PROBABILITY DISTRIBUTIONS

Published in "Random Walks in Biology", 1983, Princeton University Press PROBABILITIES AND PROBABILITY DISTRIBUTIONS Howard C. Berg Table of Contents PROBABILITIES PROBABILITY DISTRIBUTIONS THE BINOMIAL

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. A) 0.4987 B) 0.9987 C) 0.0010 D) 0.

Ch. 5 Normal Probability Distributions 5.1 Introduction to Normal Distributions and the Standard Normal Distribution 1 Find Areas Under the Standard Normal Curve 1) Find the area under the standard normal

### Hypothesis Testing. Bluman Chapter 8

CHAPTER 8 Learning Objectives C H A P T E R E I G H T Hypothesis Testing 1 Outline 8-1 Steps in Traditional Method 8-2 z Test for a Mean 8-3 t Test for a Mean 8-4 z Test for a Proportion 8-5 2 Test for

### Discrete Random Variables and their Probability Distributions

CHAPTER 5 Discrete Random Variables and their Probability Distributions CHAPTER OUTLINE 5.1 Probability Distribution of a Discrete Random Variable 5.2 Mean and Standard Deviation of a Discrete Random Variable

### Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4)

Summary of Formulas and Concepts Descriptive Statistics (Ch. 1-4) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume

### Practice Problems #4

Practice Problems #4 PRACTICE PROBLEMS FOR HOMEWORK 4 (1) Read section 2.5 of the text. (2) Solve the practice problems below. (3) Open Homework Assignment #4, solve the problems, and submit multiple-choice

### 3. What is the difference between variance and standard deviation? 5. If I add 2 to all my observations, how variance and mean will vary?

Variance, Standard deviation Exercises: 1. What does variance measure? 2. How do we compute a variance? 3. What is the difference between variance and standard deviation? 4. What is the meaning of the