Continuous Random Variables

Size: px
Start display at page:

Download "Continuous Random Variables"

Transcription

1 Continuous Random Variables M. George Akritas

2 Definition: The pdf and cdf Finding Probabilities via the Standard Normal Table Finding Percentiles via the Standard Normal Table

3 A random variable X is called continuous if it can take any value within a finite or infinite interval of the real line. Such are measurements of quantitative variables (weight, strength, life time, ph, concentration of contaminants, etc) as well as sample averages and variances of such measurements. Because no measuring device has infinite precision, continuous variables are only the ideal versions of the discretized variables which are measured. The sample space of any continuous random variable has uncountably infinite values.

4 Continuous random variable cannot have a pmf because P(X = x) = 0, for any value x. (See Example 3.1, p. 102, of the book) Definition The probability density function, or pdf, f X, of a continuous random variable X is a nonnegative function with the property that P(a < X < b) equals the area under it and above the interval (a, b). Thus, P(a < X < b) = { area under fx between a and b. = b a f X (x)dx.

5 f(x) P(1.0 < X < 2.0)

6 Common Shapes of PDFs symmetric bimodal positively skewed negatively skewed A positively skewed distribution is also called skewed to the right, and a negatively skewed is also called skewed to the left.

7 Proposition If X has pdf f X (x) and cdf F X (x), then 1. F X (x) = x f X (y)dy, and 2. f X (x) = d dy F X (y) y=x Example (Exponential RV) The life time, T, measured in hours, of a randomly selected component has pdf f T (t) = λ exp( λt) for t S X, with λ = Find: a) F T (t), and b) P(900 < T < 1200).

8 The Uniform Random Variable Consider selecting a number at random from the interval [0, 1] in such a way that any two subintervals of [0, 1] of equal length are equally likely to contain the selected number. For example, the subintervals [0.3, 0.4] and [0.6, 0.7] are equally likely to contain the selected number. If X denotes the outcome of such a selection, then X is said to have the uniform in [0, 1] distribution; this is denoted by X U(0, 1). Since we know the probability with which X takes value in any interval, we know its distribution. What pdf describes it?

9 The Uniform PDF Outline If X U(0, 1), its pdf is: P(0.2 < X < 0.6)

10 The Uniform cdf Outline If X U(0, 1), its cdf is (why?):

11 Definition Outline If X has pdf f (x), its expected value and variance are defined, respectively, by µ X = xf (x)dx, σx 2 = (x µ) 2 f (x)dx = E(X 2 ) µ 2 X, The standard deviation is σ X = Proposition σ 2 X. 1. For a function Y = h(x ) of X, E(h(X )) = h(x)f (x)dx 2. If Y = a + bx, E(a + bx ) = a + be(x ), σ 2 a+bx = b 2 σ 2 X.

12 Example If X U(0, 1), show that µ X = 0.5 and σ 2 X = 1/12. Solution. First, µ X = 1 0 xdx = 0.5, and E(X 2 ) = 1 0 x 2 dx = 1/3. Thus, σx 2 = 1/ = 1/12. Example If Y U(A, B), show that µ Y = B+A 2, σ2 Y = (B A)2 12. Solution. First note that if X U(0, 1), then Y = A + (B A)X U(A, B). Use now the previous proposition to show the result.

13 Proposition If Y is a 0 random variable, then E(Y ) = 0 P(Y > y)dy. Example Use the above proposition to calculate 1. The mean of a X U(0, 1). 2. The mean of X Exp(λ)

14 Example a) If X U(0, 1), find the distribution of Y = X 2. b) If X U( 1, 1), find the distribution of Y = X 2. c) If X U(0, 1), find the distribution of Y = log X. d) See Example 3.26, p.134, of the book. Theorem Let X be continuous with pdf f X, and let g(x) be strictly monotonic and differentiable function. Then Y = g(x ) has pdf f Y (y) = f X (g 1 (y)) d dy g 1 (y) for y in the range of the function g, and zero otherwise.

15 Example 1. (The Probability Transformation) Let X be continuous with cumulative distribution function F X. Then, if g = F X, Y = g(x ) U(0, 1). 2. (The Quantile Transformation) Let X U(0, 1) and F be a cumulative distribution function of a continuous random variable. Then, if g = F 1, Y = g(x ) has F Y = F.

16 Definition The median of a continuous r.v. X, or its distribution, is defined as the number µ X with the property P(X µ X ) = P(X µ X ), F ( µ X ) = P(X µ X ) = 0.5, or, equivalently where F is the cdf of X Proposition (Relationship between µ X and µ X ) In symmetric distributions, µ X = µ X. In positively skewed distributions, µ X > µ X. In negatively skewed distributions, µ X < µ X.

17 Example If X U(A, B), find µ X. Solution: The cdf of X is F (x) = (x A)/(B A), for A x B, for x A, F (x) = 0, and for x B, F (x) = 1. To find µ X we need to solve the equation F ( µ X ) = 0.5 The solution to it is µ X = A (B A).

18 Definition Outline Let α be a number between 0 and 1. The 100(1-α)th percentile (or quantile) of a continuous r.v. X is the number, denoted by x α, with the property F (x α ) = P(X x α ) = 1 α, where F is the cdf of X. Thus, x 0.05, the 95th percentile of X, separates the top 5% of the population units (in terms of their X -value) from the rest. x 0.5 is the median and is also denoted by q 2. x 0.75 is also called the lower quartile, and denoted by q 1. x 0.25 is also called the upper quartile, and denoted by q 3. For any given α, x α can be found by solving the equation F (x α ) = 1 α, for x α.

19 Example Outline Let the cdf F (x) of the r.v. X be such that F (x) = 0 for x 0, F (x) = x 2 4, for x between 0 and 2, and F (x) = 1 for x > 2. Find the three quartiles (the 25th, 50th, and 75th percentiles). Solution: The 100(1 α)th percentile of X is found by solving F (x α ) = 1 α, or x 2 α/4 = 1 α, or x α = 2 1 α. The 25th, 50th, and 75th percentiles correspond to, respectively, to α = 0.75, 0.5, and 0.25, respectively. Thus, q 1 = = 1, q 2 = = 1.41, q 3 = = 1.73.

20 Definition The interquartile range, abbreviated by IQR, is the distance between the 25th and 75th percentile. Thus, Example IQR = q 3 q 1. Let X U(a, b). Find the IQR and compare it with the standard deviation. Solution: The cdf F (x) of X satisfies F (x) = 0, for x a, F (x) = x a b a, for a x b, and F (x) = 1 for x b The solution to the equation

21 Example (Continued) x α a b a = 1 α is x α = a + (b a)(1 α). Thus, q 1 = x 0.75 = a + (b a)0.25, q 3 = x 0.25 = a + (b a)0.75, and IQR X = 0.5(b a). It can be shown that IQR X and σ X change proportionately whenever a r.v. X is multiplied by a constant. For example, for X U(a, b), σ X = (b a)/ 12 = 0.289(b a). Thus the ratio IQR X /σ X remains constant for all values of b, a.

22 X Exp(λ) if f X (x) = λe λx I (x > 0), for some λ > 0. F (x) = P(X x) = 1 e λx E(X n ) = n λ E(X n 1 ), so that E(X ) = 1 λ, Var(X ) = 1 λ 2 Example Suppose that the number of miles a car can run before its battery wears out is exponentially distributed with an average value of 10,000 miles. A person decides to take a 5,000 mile trip having just changed the battery. What is the probability that the trip will be completed without having to replace the battery? Solution: P(X > 5) = e 5/10 =

23 The Memoryless Property of the Exponential RV If X Exp(λ) then for t > s we have Example P(X > t X > s) = P(X > t s) Suppose that the number of miles a car can run before its battery wears out is exponentially distributed with an average value of 10,000 miles. A person decides to take a 5,000 mile. What is the probability that the trip will be completed without having to replace the battery? Solution: By the memoryless property, P(X > 5) = e 5/10 =

24 The Poisson-Exponential Relationship Proposition Let X (t) be a Poisson process with parameter λ, and let T be the time until the first occurrence. Then T Exp(λ)

25 Definition: The pdf and cdf Finding Probabilities via the Standard Normal Table Finding Percentiles via the Standard Normal Table The Normal distribution if the most important distribution in probability and statistics. X N(µ, σ 2 ) if its pdf is f (x; µ, σ 2 ) = 1 (x µ)2 e 2σ 2, < x <. 2πσ 2 The cdf, F (x; µ, σ), does not have a closed form expression. R command for f (x; µ, σ 2 ): dnorm(x,µ,σ). For example, dnorm(0,0,1) gives , which is the value of f (0; µ = 0, σ 2 = 1). R command for F (x; µ, σ 2 ): pnorm(x,µ,σ). For example, pnorm(0,0,1) gives 0.5, which is the value of F (0; µ = 0, σ 2 = 1).

26 Definition: The pdf and cdf Finding Probabilities via the Standard Normal Table Finding Percentiles via the Standard Normal Table The Standard Normal Distribution When µ = 0 and σ = 1, X is said to have the standard normal distribution and is denoted, universally, by Z. The pdf of Z is φ(z) = 1 2π e z2 /2, < z <. The cdf of Z is denoted by Φ. Thus Φ(z) = P(Z z) = z φ(x)dx. Φ(z) has no closed form expression, but is tabulated in Table A.3

27 Definition: The pdf and cdf Finding Probabilities via the Standard Normal Table Finding Percentiles via the Standard Normal Table Plot of φ(z) f(x) mu=0, sigm^2=1 mu

28 Definition: The pdf and cdf Finding Probabilities via the Standard Normal Table Finding Percentiles via the Standard Normal Table Historical Notes It was discovered by Abraham DeMoivre in 1733, for approximating binomial probabilities when n is large. He called it the exponential bell-shaped curve. DeMoivre was the first statistical consultant working out of Slaughter s Coffee House, a betting shop in Long Acres, London. In 1803, Karl Friedrich Gauss used it for predicting the location of astronomical objects. Because of this it became known as the Gaussian distribution. By the late 19th century, statisticians had noted that most data sets would have approximately bell-shaped histograms. It came to be accepted that it was normal for any well-behaved data set to follow this curve. So the Gaussian curve became the normal curve.

29 Definition: The pdf and cdf Finding Probabilities via the Standard Normal Table Finding Percentiles via the Standard Normal Table Proposition If X N(µ, σ 2 ), then 1. E(X ) = µ. 2. Var(X ) = σ For an real numbers a, b Y = a + bx N(a + bµ, b 2 σ 2 ). For example, if X N(4, 9) then Y = 5 + 2X N(13, 36)

30 Definition: The pdf and cdf Finding Probabilities via the Standard Normal Table Finding Percentiles via the Standard Normal Table Corollary 1. If Z N(0, 1), then X = µ + σz N(µ, σ 2 ). 2. If X N(µ, σ 2 ), then Z = X µ σ 3. If X N(µ, σ 2 ), then x α = µ + σz α, N(0, 1). where x α and z α denote the percentiles of X and Z (see figure in next slide). The corollary implies that probabilities and percentiles of any normal random variable can be computed from corresponding probabilities and percentiles of Z.

31 Definition: The pdf and cdf Finding Probabilities via the Standard Normal Table Finding Percentiles via the Standard Normal Table Figure of the Standard Normal Percentile f(x) area=alpha z_alpha Normal percentiles in R: qnorm(p,µ,σ). For example, qnorm(0.95,0,1) gives , which is the value of z 0.05.

32 Definition: The pdf and cdf Finding Probabilities via the Standard Normal Table Finding Percentiles via the Standard Normal Table In Table A.3, z-values are identified from the left column, up to the first decimal, and the top row, for the second decimal. Thus, 1 is identified by 1.0 in the left column and 0.00 in the top row. Example (The % Property.) Let Z N(0, 1). Then 1. P( 1 < Z < 1) = Φ(1) Φ( 1) = = P( 2 < Z < 2) = Φ(2) Φ( 2) = = P( 3 < Z < 3) = Φ(3) Φ( 3) = =.9974.

33 Definition: The pdf and cdf Finding Probabilities via the Standard Normal Table Finding Percentiles via the Standard Normal Table Example Let X N(1.25, ). Find a) P(1 X 1.75), and b) P(X > 2). Solution. Use Z = X 1.25 N(0, 1) to express these 0.46 probabilities in terms of Z. Thus, ( a) P(1 X 1.75) = P X 1.25 ) = P(.54 < Z < 1.09) = Φ(1.09) Φ(.54) = ( b) P(X > 2) = P Z > ) = 1 Φ(1.63) =

34 Definition: The pdf and cdf Finding Probabilities via the Standard Normal Table Finding Percentiles via the Standard Normal Table The % Property The % rule applies for any normal random variable X N(µ, σ 2 ): P(µ 1σ < X < µ + 1σ) = P( 1 < Z < 1) = , P(µ 2σ < X < µ + 2σ) = P( 2 < Z < 2) = , P(µ 3σ < X < µ + 3σ) = P( 3 < Z < 3) =

35 Definition: The pdf and cdf Finding Probabilities via the Standard Normal Table Finding Percentiles via the Standard Normal Table To find z α, one first locates 1 α in the body of Table A.3 and then reads z α from the margins. If the exact value of 1 α does not exist in the main body of the table, then an approximation is used as described in the following. Example Find z 0.05, the 95th percentile of Z. Solution. 1 α = 0.95 does not exist in the body of the table. The entry that is closest to, but larger than 0.95 (i.e ), corresponds to The entry that is closest to, but smaller than 0.95 (which is ), corresponds to We approximate z by averaging these two z-values: z.05 =

36 Definition: The pdf and cdf Finding Probabilities via the Standard Normal Table Finding Percentiles via the Standard Normal Table Example Let X denote the weight of a randomly chosen frozen yogurt cup. Suppose X N(8,.46 2 ). Find the value c that separates the upper 5% of weight values from the lower 95%. Solution. This is another way of asking for the 95-th percentile, x.05, of X. Using the formula x α = µ + σz α, we have x.05 = z.05 = 8 + (.46)(1.645) = 8.76.

37 Definition: The pdf and cdf Finding Probabilities via the Standard Normal Table Finding Percentiles via the Standard Normal Table Example A message consisting of a string of binary (either 0 or 1) signals is transmitted from location A to location B. Due to channel noise, however, when x is sent from A, the B receives y = x + e, where e N(0, 1) represents the noise. To minimize error, location A sends x = 2 for 1 and x = 2 for 0. Location B decodes the received signal y as 1, if y 0.5 and as 0 if y < 0.5. Find the probability of an error in the decoded signal. Solution. Let B = signal is decoded incorrectly. Cannot find P(B) (why?), but can find P(B signal is 1) = P(x + e < 0.5 x = 2) = P(e < 1.5) = , P(B signal is 0) = P(x + e 0.5 x = 2) = P(e 2.5) =

5. Continuous Random Variables

5. Continuous Random Variables 5. Continuous Random Variables Continuous random variables can take any value in an interval. They are used to model physical characteristics such as time, length, position, etc. Examples (i) Let X be

More information

Chapter 4 - Lecture 1 Probability Density Functions and Cumul. Distribution Functions

Chapter 4 - Lecture 1 Probability Density Functions and Cumul. Distribution Functions Chapter 4 - Lecture 1 Probability Density Functions and Cumulative Distribution Functions October 21st, 2009 Review Probability distribution function Useful results Relationship between the pdf and the

More information

Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4)

Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4) Summary of Formulas and Concepts Descriptive Statistics (Ch. 1-4) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume

More information

Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density

Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density HW MATH 461/561 Lecture Notes 15 1 Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density and marginal densities f(x, y), (x, y) Λ X,Y f X (x), x Λ X,

More information

Lecture Notes 1. Brief Review of Basic Probability

Lecture Notes 1. Brief Review of Basic Probability Probability Review Lecture Notes Brief Review of Basic Probability I assume you know basic probability. Chapters -3 are a review. I will assume you have read and understood Chapters -3. Here is a very

More information

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #15 Special Distributions-VI Today, I am going to introduce

More information

Important Probability Distributions OPRE 6301

Important Probability Distributions OPRE 6301 Important Probability Distributions OPRE 6301 Important Distributions... Certain probability distributions occur with such regularity in real-life applications that they have been given their own names.

More information

Introduction to Probability

Introduction to Probability Introduction to Probability EE 179, Lecture 15, Handout #24 Probability theory gives a mathematical characterization for experiments with random outcomes. coin toss life of lightbulb binary data sequence

More information

Lecture 6: Discrete & Continuous Probability and Random Variables

Lecture 6: Discrete & Continuous Probability and Random Variables Lecture 6: Discrete & Continuous Probability and Random Variables D. Alex Hughes Math Camp September 17, 2015 D. Alex Hughes (Math Camp) Lecture 6: Discrete & Continuous Probability and Random September

More information

5/31/2013. 6.1 Normal Distributions. Normal Distributions. Chapter 6. Distribution. The Normal Distribution. Outline. Objectives.

5/31/2013. 6.1 Normal Distributions. Normal Distributions. Chapter 6. Distribution. The Normal Distribution. Outline. Objectives. The Normal Distribution C H 6A P T E R The Normal Distribution Outline 6 1 6 2 Applications of the Normal Distribution 6 3 The Central Limit Theorem 6 4 The Normal Approximation to the Binomial Distribution

More information

BNG 202 Biomechanics Lab. Descriptive statistics and probability distributions I

BNG 202 Biomechanics Lab. Descriptive statistics and probability distributions I BNG 202 Biomechanics Lab Descriptive statistics and probability distributions I Overview The overall goal of this short course in statistics is to provide an introduction to descriptive and inferential

More information

Random Variables. Chapter 2. Random Variables 1

Random Variables. Chapter 2. Random Variables 1 Random Variables Chapter 2 Random Variables 1 Roulette and Random Variables A Roulette wheel has 38 pockets. 18 of them are red and 18 are black; these are numbered from 1 to 36. The two remaining pockets

More information

What is Statistics? Lecture 1. Introduction and probability review. Idea of parametric inference

What is Statistics? Lecture 1. Introduction and probability review. Idea of parametric inference 0. 1. Introduction and probability review 1.1. What is Statistics? What is Statistics? Lecture 1. Introduction and probability review There are many definitions: I will use A set of principle and procedures

More information

MATH 10: Elementary Statistics and Probability Chapter 5: Continuous Random Variables

MATH 10: Elementary Statistics and Probability Chapter 5: Continuous Random Variables MATH 10: Elementary Statistics and Probability Chapter 5: Continuous Random Variables Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of slides,

More information

ECE302 Spring 2006 HW5 Solutions February 21, 2006 1

ECE302 Spring 2006 HW5 Solutions February 21, 2006 1 ECE3 Spring 6 HW5 Solutions February 1, 6 1 Solutions to HW5 Note: Most of these solutions were generated by R. D. Yates and D. J. Goodman, the authors of our textbook. I have added comments in italics

More information

4. Continuous Random Variables, the Pareto and Normal Distributions

4. Continuous Random Variables, the Pareto and Normal Distributions 4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random

More information

Section 5.1 Continuous Random Variables: Introduction

Section 5.1 Continuous Random Variables: Introduction Section 5. Continuous Random Variables: Introduction Not all random variables are discrete. For example:. Waiting times for anything (train, arrival of customer, production of mrna molecule from gene,

More information

STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables

STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random

More information

Notes on Continuous Random Variables

Notes on Continuous Random Variables Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes

More information

Chapter 3 RANDOM VARIATE GENERATION

Chapter 3 RANDOM VARIATE GENERATION Chapter 3 RANDOM VARIATE GENERATION In order to do a Monte Carlo simulation either by hand or by computer, techniques must be developed for generating values of random variables having known distributions.

More information

Lecture 7: Continuous Random Variables

Lecture 7: Continuous Random Variables Lecture 7: Continuous Random Variables 21 September 2005 1 Our First Continuous Random Variable The back of the lecture hall is roughly 10 meters across. Suppose it were exactly 10 meters, and consider

More information

UNIT I: RANDOM VARIABLES PART- A -TWO MARKS

UNIT I: RANDOM VARIABLES PART- A -TWO MARKS UNIT I: RANDOM VARIABLES PART- A -TWO MARKS 1. Given the probability density function of a continuous random variable X as follows f(x) = 6x (1-x) 0

More information

1.1 Introduction, and Review of Probability Theory... 3. 1.1.1 Random Variable, Range, Types of Random Variables... 3. 1.1.2 CDF, PDF, Quantiles...

1.1 Introduction, and Review of Probability Theory... 3. 1.1.1 Random Variable, Range, Types of Random Variables... 3. 1.1.2 CDF, PDF, Quantiles... MATH4427 Notebook 1 Spring 2016 prepared by Professor Jenny Baglivo c Copyright 2009-2016 by Jenny A. Baglivo. All Rights Reserved. Contents 1 MATH4427 Notebook 1 3 1.1 Introduction, and Review of Probability

More information

Math 431 An Introduction to Probability. Final Exam Solutions

Math 431 An Introduction to Probability. Final Exam Solutions Math 43 An Introduction to Probability Final Eam Solutions. A continuous random variable X has cdf a for 0, F () = for 0 <

More information

Random variables, probability distributions, binomial random variable

Random variables, probability distributions, binomial random variable Week 4 lecture notes. WEEK 4 page 1 Random variables, probability distributions, binomial random variable Eample 1 : Consider the eperiment of flipping a fair coin three times. The number of tails that

More information

ST 371 (IV): Discrete Random Variables

ST 371 (IV): Discrete Random Variables ST 371 (IV): Discrete Random Variables 1 Random Variables A random variable (rv) is a function that is defined on the sample space of the experiment and that assigns a numerical variable to each possible

More information

The Normal Distribution. Alan T. Arnholt Department of Mathematical Sciences Appalachian State University

The Normal Distribution. Alan T. Arnholt Department of Mathematical Sciences Appalachian State University The Normal Distribution Alan T. Arnholt Department of Mathematical Sciences Appalachian State University arnholt@math.appstate.edu Spring 2006 R Notes 1 Copyright c 2006 Alan T. Arnholt 2 Continuous Random

More information

Review of Random Variables

Review of Random Variables Chapter 1 Review of Random Variables Updated: January 16, 2015 This chapter reviews basic probability concepts that are necessary for the modeling and statistical analysis of financial data. 1.1 Random

More information

CA200 Quantitative Analysis for Business Decisions. File name: CA200_Section_04A_StatisticsIntroduction

CA200 Quantitative Analysis for Business Decisions. File name: CA200_Section_04A_StatisticsIntroduction CA200 Quantitative Analysis for Business Decisions File name: CA200_Section_04A_StatisticsIntroduction Table of Contents 4. Introduction to Statistics... 1 4.1 Overview... 3 4.2 Discrete or continuous

More information

Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab

Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab Monte Carlo Simulation: IEOR E4703 Fall 2004 c 2004 by Martin Haugh Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab 1 Overview of Monte Carlo Simulation 1.1 Why use simulation?

More information

Joint Exam 1/P Sample Exam 1

Joint Exam 1/P Sample Exam 1 Joint Exam 1/P Sample Exam 1 Take this practice exam under strict exam conditions: Set a timer for 3 hours; Do not stop the timer for restroom breaks; Do not look at your notes. If you believe a question

More information

EXAM #1 (Example) Instructor: Ela Jackiewicz. Relax and good luck!

EXAM #1 (Example) Instructor: Ela Jackiewicz. Relax and good luck! STP 231 EXAM #1 (Example) Instructor: Ela Jackiewicz Honor Statement: I have neither given nor received information regarding this exam, and I will not do so until all exams have been graded and returned.

More information

Data Modeling & Analysis Techniques. Probability & Statistics. Manfred Huber 2011 1

Data Modeling & Analysis Techniques. Probability & Statistics. Manfred Huber 2011 1 Data Modeling & Analysis Techniques Probability & Statistics Manfred Huber 2011 1 Probability and Statistics Probability and statistics are often used interchangeably but are different, related fields

More information

MAS108 Probability I

MAS108 Probability I 1 QUEEN MARY UNIVERSITY OF LONDON 2:30 pm, Thursday 3 May, 2007 Duration: 2 hours MAS108 Probability I Do not start reading the question paper until you are instructed to by the invigilators. The paper

More information

Continuous Random Variables

Continuous Random Variables Chapter 5 Continuous Random Variables 5.1 Continuous Random Variables 1 5.1.1 Student Learning Objectives By the end of this chapter, the student should be able to: Recognize and understand continuous

More information

Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 2-3, Probability and Statistics, March 2015. Due:-March 25, 2015.

Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 2-3, Probability and Statistics, March 2015. Due:-March 25, 2015. Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment -3, Probability and Statistics, March 05. Due:-March 5, 05.. Show that the function 0 for x < x+ F (x) = 4 for x < for x

More information

Math 370, Spring 2008 Prof. A.J. Hildebrand. Practice Test 2 Solutions

Math 370, Spring 2008 Prof. A.J. Hildebrand. Practice Test 2 Solutions Math 370, Spring 008 Prof. A.J. Hildebrand Practice Test Solutions About this test. This is a practice test made up of a random collection of 5 problems from past Course /P actuarial exams. Most of the

More information

You flip a fair coin four times, what is the probability that you obtain three heads.

You flip a fair coin four times, what is the probability that you obtain three heads. Handout 4: Binomial Distribution Reading Assignment: Chapter 5 In the previous handout, we looked at continuous random variables and calculating probabilities and percentiles for those type of variables.

More information

Math 461 Fall 2006 Test 2 Solutions

Math 461 Fall 2006 Test 2 Solutions Math 461 Fall 2006 Test 2 Solutions Total points: 100. Do all questions. Explain all answers. No notes, books, or electronic devices. 1. [105+5 points] Assume X Exponential(λ). Justify the following two

More information

e.g. arrival of a customer to a service station or breakdown of a component in some system.

e.g. arrival of a customer to a service station or breakdown of a component in some system. Poisson process Events occur at random instants of time at an average rate of λ events per second. e.g. arrival of a customer to a service station or breakdown of a component in some system. Let N(t) be

More information

Section 6.1 Joint Distribution Functions

Section 6.1 Joint Distribution Functions Section 6.1 Joint Distribution Functions We often care about more than one random variable at a time. DEFINITION: For any two random variables X and Y the joint cumulative probability distribution function

More information

Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

More information

WEEK #22: PDFs and CDFs, Measures of Center and Spread

WEEK #22: PDFs and CDFs, Measures of Center and Spread WEEK #22: PDFs and CDFs, Measures of Center and Spread Goals: Explore the effect of independent events in probability calculations. Present a number of ways to represent probability distributions. Textbook

More information

Math 370, Actuarial Problemsolving Spring 2008 A.J. Hildebrand. Practice Test, 1/28/2008 (with solutions)

Math 370, Actuarial Problemsolving Spring 2008 A.J. Hildebrand. Practice Test, 1/28/2008 (with solutions) Math 370, Actuarial Problemsolving Spring 008 A.J. Hildebrand Practice Test, 1/8/008 (with solutions) About this test. This is a practice test made up of a random collection of 0 problems from past Course

More information

Density Curve. A density curve is the graph of a continuous probability distribution. It must satisfy the following properties:

Density Curve. A density curve is the graph of a continuous probability distribution. It must satisfy the following properties: Density Curve A density curve is the graph of a continuous probability distribution. It must satisfy the following properties: 1. The total area under the curve must equal 1. 2. Every point on the curve

More information

Probability and Statistics Vocabulary List (Definitions for Middle School Teachers)

Probability and Statistics Vocabulary List (Definitions for Middle School Teachers) Probability and Statistics Vocabulary List (Definitions for Middle School Teachers) B Bar graph a diagram representing the frequency distribution for nominal or discrete data. It consists of a sequence

More information

Stat 704 Data Analysis I Probability Review

Stat 704 Data Analysis I Probability Review 1 / 30 Stat 704 Data Analysis I Probability Review Timothy Hanson Department of Statistics, University of South Carolina Course information 2 / 30 Logistics: Tuesday/Thursday 11:40am to 12:55pm in LeConte

More information

Exploratory Data Analysis

Exploratory Data Analysis Exploratory Data Analysis Johannes Schauer johannes.schauer@tugraz.at Institute of Statistics Graz University of Technology Steyrergasse 17/IV, 8010 Graz www.statistics.tugraz.at February 12, 2008 Introduction

More information

STAT 3502. x 0 < x < 1

STAT 3502. x 0 < x < 1 Solution - Assignment # STAT 350 Total mark=100 1. A large industrial firm purchases several new word processors at the end of each year, the exact number depending on the frequency of repairs in the previous

More information

The sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1].

The sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1]. Probability Theory Probability Spaces and Events Consider a random experiment with several possible outcomes. For example, we might roll a pair of dice, flip a coin three times, or choose a random real

More information

Random variables P(X = 3) = P(X = 3) = 1 8, P(X = 1) = P(X = 1) = 3 8.

Random variables P(X = 3) = P(X = 3) = 1 8, P(X = 1) = P(X = 1) = 3 8. Random variables Remark on Notations 1. When X is a number chosen uniformly from a data set, What I call P(X = k) is called Freq[k, X] in the courseware. 2. When X is a random variable, what I call F ()

More information

Normal distribution. ) 2 /2σ. 2π σ

Normal distribution. ) 2 /2σ. 2π σ Normal distribution The normal distribution is the most widely known and used of all distributions. Because the normal distribution approximates many natural phenomena so well, it has developed into a

More information

Center: Finding the Median. Median. Spread: Home on the Range. Center: Finding the Median (cont.)

Center: Finding the Median. Median. Spread: Home on the Range. Center: Finding the Median (cont.) Center: Finding the Median When we think of a typical value, we usually look for the center of the distribution. For a unimodal, symmetric distribution, it s easy to find the center it s just the center

More information

Chapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs

Chapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs Types of Variables Chapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs Quantitative (numerical)variables: take numerical values for which arithmetic operations make sense (addition/averaging)

More information

Section 1.3 Exercises (Solutions)

Section 1.3 Exercises (Solutions) Section 1.3 Exercises (s) 1.109, 1.110, 1.111, 1.114*, 1.115, 1.119*, 1.122, 1.125, 1.127*, 1.128*, 1.131*, 1.133*, 1.135*, 1.137*, 1.139*, 1.145*, 1.146-148. 1.109 Sketch some normal curves. (a) Sketch

More information

Probability density function : An arbitrary continuous random variable X is similarly described by its probability density function f x = f X

Probability density function : An arbitrary continuous random variable X is similarly described by its probability density function f x = f X Week 6 notes : Continuous random variables and their probability densities WEEK 6 page 1 uniform, normal, gamma, exponential,chi-squared distributions, normal approx'n to the binomial Uniform [,1] random

More information

A Tutorial on Probability Theory

A Tutorial on Probability Theory Paola Sebastiani Department of Mathematics and Statistics University of Massachusetts at Amherst Corresponding Author: Paola Sebastiani. Department of Mathematics and Statistics, University of Massachusetts,

More information

1. Let A, B and C are three events such that P(A) = 0.45, P(B) = 0.30, P(C) = 0.35,

1. Let A, B and C are three events such that P(A) = 0.45, P(B) = 0.30, P(C) = 0.35, 1. Let A, B and C are three events such that PA =.4, PB =.3, PC =.3, P A B =.6, P A C =.6, P B C =., P A B C =.7. a Compute P A B, P A C, P B C. b Compute P A B C. c Compute the probability that exactly

More information

7 CONTINUOUS PROBABILITY DISTRIBUTIONS

7 CONTINUOUS PROBABILITY DISTRIBUTIONS 7 CONTINUOUS PROBABILITY DISTRIBUTIONS Chapter 7 Continuous Probability Distributions Objectives After studying this chapter you should understand the use of continuous probability distributions and the

More information

Lecture 8: Signal Detection and Noise Assumption

Lecture 8: Signal Detection and Noise Assumption ECE 83 Fall Statistical Signal Processing instructor: R. Nowak, scribe: Feng Ju Lecture 8: Signal Detection and Noise Assumption Signal Detection : X = W H : X = S + W where W N(, σ I n n and S = [s, s,...,

More information

THE BINOMIAL DISTRIBUTION & PROBABILITY

THE BINOMIAL DISTRIBUTION & PROBABILITY REVISION SHEET STATISTICS 1 (MEI) THE BINOMIAL DISTRIBUTION & PROBABILITY The main ideas in this chapter are Probabilities based on selecting or arranging objects Probabilities based on the binomial distribution

More information

CHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is.

CHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is. Some Continuous Probability Distributions CHAPTER 6: Continuous Uniform Distribution: 6. Definition: The density function of the continuous random variable X on the interval [A, B] is B A A x B f(x; A,

More information

Probability. Distribution. Outline

Probability. Distribution. Outline 7 The Normal Probability Distribution Outline 7.1 Properties of the Normal Distribution 7.2 The Standard Normal Distribution 7.3 Applications of the Normal Distribution 7.4 Assessing Normality 7.5 The

More information

Manual for SOA Exam MLC.

Manual for SOA Exam MLC. Chapter 5. Life annuities. Extract from: Arcones Manual for the SOA Exam MLC. Spring 2010 Edition. available at http://www.actexmadriver.com/ 1/114 Whole life annuity A whole life annuity is a series of

More information

Lecture 3: Continuous distributions, expected value & mean, variance, the normal distribution

Lecture 3: Continuous distributions, expected value & mean, variance, the normal distribution Lecture 3: Continuous distributions, expected value & mean, variance, the normal distribution 8 October 2007 In this lecture we ll learn the following: 1. how continuous probability distributions differ

More information

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 18. A Brief Introduction to Continuous Probability

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 18. A Brief Introduction to Continuous Probability CS 7 Discrete Mathematics and Probability Theory Fall 29 Satish Rao, David Tse Note 8 A Brief Introduction to Continuous Probability Up to now we have focused exclusively on discrete probability spaces

More information

An Introduction to Basic Statistics and Probability

An Introduction to Basic Statistics and Probability An Introduction to Basic Statistics and Probability Shenek Heyward NCSU An Introduction to Basic Statistics and Probability p. 1/4 Outline Basic probability concepts Conditional probability Discrete Random

More information

Key Concept. Density Curve

Key Concept. Density Curve MAT 155 Statistical Analysis Dr. Claude Moore Cape Fear Community College Chapter 6 Normal Probability Distributions 6 1 Review and Preview 6 2 The Standard Normal Distribution 6 3 Applications of Normal

More information

VISUALIZATION OF DENSITY FUNCTIONS WITH GEOGEBRA

VISUALIZATION OF DENSITY FUNCTIONS WITH GEOGEBRA VISUALIZATION OF DENSITY FUNCTIONS WITH GEOGEBRA Csilla Csendes University of Miskolc, Hungary Department of Applied Mathematics ICAM 2010 Probability density functions A random variable X has density

More information

Probability Distributions

Probability Distributions Learning Objectives Probability Distributions Section 1: How Can We Summarize Possible Outcomes and Their Probabilities? 1. Random variable 2. Probability distributions for discrete random variables 3.

More information

Introduction to Statistics for Psychology. Quantitative Methods for Human Sciences

Introduction to Statistics for Psychology. Quantitative Methods for Human Sciences Introduction to Statistics for Psychology and Quantitative Methods for Human Sciences Jonathan Marchini Course Information There is website devoted to the course at http://www.stats.ox.ac.uk/ marchini/phs.html

More information

For a partition B 1,..., B n, where B i B j = for i. A = (A B 1 ) (A B 2 ),..., (A B n ) and thus. P (A) = P (A B i ) = P (A B i )P (B i )

For a partition B 1,..., B n, where B i B j = for i. A = (A B 1 ) (A B 2 ),..., (A B n ) and thus. P (A) = P (A B i ) = P (A B i )P (B i ) Probability Review 15.075 Cynthia Rudin A probability space, defined by Kolmogorov (1903-1987) consists of: A set of outcomes S, e.g., for the roll of a die, S = {1, 2, 3, 4, 5, 6}, 1 1 2 1 6 for the roll

More information

Statistics I for QBIC. Contents and Objectives. Chapters 1 7. Revised: August 2013

Statistics I for QBIC. Contents and Objectives. Chapters 1 7. Revised: August 2013 Statistics I for QBIC Text Book: Biostatistics, 10 th edition, by Daniel & Cross Contents and Objectives Chapters 1 7 Revised: August 2013 Chapter 1: Nature of Statistics (sections 1.1-1.6) Objectives

More information

6.4 Normal Distribution

6.4 Normal Distribution Contents 6.4 Normal Distribution....................... 381 6.4.1 Characteristics of the Normal Distribution....... 381 6.4.2 The Standardized Normal Distribution......... 385 6.4.3 Meaning of Areas under

More information

0 x = 0.30 x = 1.10 x = 3.05 x = 4.15 x = 6 0.4 x = 12. f(x) =

0 x = 0.30 x = 1.10 x = 3.05 x = 4.15 x = 6 0.4 x = 12. f(x) = . A mail-order computer business has si telephone lines. Let X denote the number of lines in use at a specified time. Suppose the pmf of X is as given in the accompanying table. 0 2 3 4 5 6 p(.0.5.20.25.20.06.04

More information

Chapter 4. Probability and Probability Distributions

Chapter 4. Probability and Probability Distributions Chapter 4. robability and robability Distributions Importance of Knowing robability To know whether a sample is not identical to the population from which it was selected, it is necessary to assess the

More information

MULTIVARIATE PROBABILITY DISTRIBUTIONS

MULTIVARIATE PROBABILITY DISTRIBUTIONS MULTIVARIATE PROBABILITY DISTRIBUTIONS. PRELIMINARIES.. Example. Consider an experiment that consists of tossing a die and a coin at the same time. We can consider a number of random variables defined

More information

3.4. The Binomial Probability Distribution. Copyright Cengage Learning. All rights reserved.

3.4. The Binomial Probability Distribution. Copyright Cengage Learning. All rights reserved. 3.4 The Binomial Probability Distribution Copyright Cengage Learning. All rights reserved. The Binomial Probability Distribution There are many experiments that conform either exactly or approximately

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES Contents 1. Random variables and measurable functions 2. Cumulative distribution functions 3. Discrete

More information

Math 370/408, Spring 2008 Prof. A.J. Hildebrand. Actuarial Exam Practice Problem Set 3 Solutions

Math 370/408, Spring 2008 Prof. A.J. Hildebrand. Actuarial Exam Practice Problem Set 3 Solutions Math 37/48, Spring 28 Prof. A.J. Hildebrand Actuarial Exam Practice Problem Set 3 Solutions About this problem set: These are problems from Course /P actuarial exams that I have collected over the years,

More information

Binomial Distribution n = 20, p = 0.3

Binomial Distribution n = 20, p = 0.3 This document will describe how to use R to calculate probabilities associated with common distributions as well as to graph probability distributions. R has a number of built in functions for calculations

More information

Probability Generating Functions

Probability Generating Functions page 39 Chapter 3 Probability Generating Functions 3 Preamble: Generating Functions Generating functions are widely used in mathematics, and play an important role in probability theory Consider a sequence

More information

6 3 The Standard Normal Distribution

6 3 The Standard Normal Distribution 290 Chapter 6 The Normal Distribution Figure 6 5 Areas Under a Normal Distribution Curve 34.13% 34.13% 2.28% 13.59% 13.59% 2.28% 3 2 1 + 1 + 2 + 3 About 68% About 95% About 99.7% 6 3 The Distribution Since

More information

PSTAT 120B Probability and Statistics

PSTAT 120B Probability and Statistics - Week University of California, Santa Barbara April 10, 013 Discussion section for 10B Information about TA: Fang-I CHU Office: South Hall 5431 T Office hour: TBA email: chu@pstat.ucsb.edu Slides will

More information

Exploratory data analysis (Chapter 2) Fall 2011

Exploratory data analysis (Chapter 2) Fall 2011 Exploratory data analysis (Chapter 2) Fall 2011 Data Examples Example 1: Survey Data 1 Data collected from a Stat 371 class in Fall 2005 2 They answered questions about their: gender, major, year in school,

More information

TEST 2 STUDY GUIDE. 1. Consider the data shown below.

TEST 2 STUDY GUIDE. 1. Consider the data shown below. 2006 by The Arizona Board of Regents for The University of Arizona All rights reserved Business Mathematics I TEST 2 STUDY GUIDE 1 Consider the data shown below (a) Fill in the Frequency and Relative Frequency

More information

7. Normal Distributions

7. Normal Distributions 7. Normal Distributions A. Introduction B. History C. Areas of Normal Distributions D. Standard Normal E. Exercises Most of the statistical analyses presented in this book are based on the bell-shaped

More information

The right edge of the box is the third quartile, Q 3, which is the median of the data values above the median. Maximum Median

The right edge of the box is the third quartile, Q 3, which is the median of the data values above the median. Maximum Median CONDENSED LESSON 2.1 Box Plots In this lesson you will create and interpret box plots for sets of data use the interquartile range (IQR) to identify potential outliers and graph them on a modified box

More information

Chapter 5. Random variables

Chapter 5. Random variables Random variables random variable numerical variable whose value is the outcome of some probabilistic experiment; we use uppercase letters, like X, to denote such a variable and lowercase letters, like

More information

8. THE NORMAL DISTRIBUTION

8. THE NORMAL DISTRIBUTION 8. THE NORMAL DISTRIBUTION The normal distribution with mean μ and variance σ 2 has the following density function: The normal distribution is sometimes called a Gaussian Distribution, after its inventor,

More information

Mean = (sum of the values / the number of the value) if probabilities are equal

Mean = (sum of the values / the number of the value) if probabilities are equal Population Mean Mean = (sum of the values / the number of the value) if probabilities are equal Compute the population mean Population/Sample mean: 1. Collect the data 2. sum all the values in the population/sample.

More information

CHAPTER 7 SECTION 5: RANDOM VARIABLES AND DISCRETE PROBABILITY DISTRIBUTIONS

CHAPTER 7 SECTION 5: RANDOM VARIABLES AND DISCRETE PROBABILITY DISTRIBUTIONS CHAPTER 7 SECTION 5: RANDOM VARIABLES AND DISCRETE PROBABILITY DISTRIBUTIONS TRUE/FALSE 235. The Poisson probability distribution is a continuous probability distribution. F 236. In a Poisson distribution,

More information

M2S1 Lecture Notes. G. A. Young http://www2.imperial.ac.uk/ ayoung

M2S1 Lecture Notes. G. A. Young http://www2.imperial.ac.uk/ ayoung M2S1 Lecture Notes G. A. Young http://www2.imperial.ac.uk/ ayoung September 2011 ii Contents 1 DEFINITIONS, TERMINOLOGY, NOTATION 1 1.1 EVENTS AND THE SAMPLE SPACE......................... 1 1.1.1 OPERATIONS

More information

Math 370, Spring 2008 Prof. A.J. Hildebrand. Practice Test 1 Solutions

Math 370, Spring 2008 Prof. A.J. Hildebrand. Practice Test 1 Solutions Math 70, Spring 008 Prof. A.J. Hildebrand Practice Test Solutions About this test. This is a practice test made up of a random collection of 5 problems from past Course /P actuarial exams. Most of the

More information

Week 3&4: Z tables and the Sampling Distribution of X

Week 3&4: Z tables and the Sampling Distribution of X Week 3&4: Z tables and the Sampling Distribution of X 2 / 36 The Standard Normal Distribution, or Z Distribution, is the distribution of a random variable, Z N(0, 1 2 ). The distribution of any other normal

More information

TImath.com. F Distributions. Statistics

TImath.com. F Distributions. Statistics F Distributions ID: 9780 Time required 30 minutes Activity Overview In this activity, students study the characteristics of the F distribution and discuss why the distribution is not symmetric (skewed

More information

Example: 1. You have observed that the number of hits to your web site follow a Poisson distribution at a rate of 2 per day.

Example: 1. You have observed that the number of hits to your web site follow a Poisson distribution at a rate of 2 per day. 16 The Exponential Distribution Example: 1. You have observed that the number of hits to your web site follow a Poisson distribution at a rate of 2 per day. Let T be the time (in days) between hits. 2.

More information

Variables. Exploratory Data Analysis

Variables. Exploratory Data Analysis Exploratory Data Analysis Exploratory Data Analysis involves both graphical displays of data and numerical summaries of data. A common situation is for a data set to be represented as a matrix. There is

More information

Microeconomic Theory: Basic Math Concepts

Microeconomic Theory: Basic Math Concepts Microeconomic Theory: Basic Math Concepts Matt Van Essen University of Alabama Van Essen (U of A) Basic Math Concepts 1 / 66 Basic Math Concepts In this lecture we will review some basic mathematical concepts

More information

MAS131: Introduction to Probability and Statistics Semester 1: Introduction to Probability Lecturer: Dr D J Wilkinson

MAS131: Introduction to Probability and Statistics Semester 1: Introduction to Probability Lecturer: Dr D J Wilkinson MAS131: Introduction to Probability and Statistics Semester 1: Introduction to Probability Lecturer: Dr D J Wilkinson Statistics is concerned with making inferences about the way the world is, based upon

More information