Random Variables/ Probability Models

Save this PDF as:

Size: px
Start display at page:

Transcription

1 Random Variables/ Probability Models

2 Random Variables A random variable assumes a value based on the outcome of a random event. We use a capital letter, like X, to denote a random variable. A particular value of a random variable will be denoted with the corresponding lower case letter, in this case x.

3 Random Variables There are two types of random variables: Discrete random variables can take one of a countable number of distinct outcomes. Example: No. of Asthma Attacks, No. of Patients with a disease Continuous random variables can take any numeric value within a range of values. Example: Height, Weight, Cholesterol Levels

4 Expected Value: Center A probability model for a random variable consists of: The collection of all possible values of a random variable, and the probabilities that the values occur. Of particular interest is the value we expect a random variable to take on, notated μ (for population mean) or E(X) for expected value.

5 Expected Value: Center The expected value of a (discrete) random variable can be found by summing the products of each possible value by the probability that it occurs: E(X) N i1 Xi P(Xi ) Note: Be sure that every possible outcome is included in the sum and verify that you have a valid probability model to start with.

6 Expected Value Example Population values: 1, 1, 2, 2, 3, 3, 4, 4 E(X) = Mean = ( )/8 = 20/8 = 2.5 E(X) = 1*(0.25) + 2*(0.25) + 3*(0.25) + 4*(0.25) = 2.5 Example: Categorical Data: Smoke: Yes(1), No(0) Population values: 1, 0, 0, 1, 1, 1, 1, 0,0,1 E(X) = Mean = ( )/10 = 6/10 = 0.6 E(X) = 1*(0.6) + 0*(0.4) = 0.6

7 Hypertension Example

8 Hypertension Example

9 First Center, Now Spread For data, we calculated the standard deviation by first computing the deviation from the mean and squaring it. We do that with discrete random variables as well. The variance for a random variable is: σ 2 N i1 [X i E(X)] 2 P(X ) i The standard deviation for a random variable is: σ σ 2 N i1 [X i E(X)] 2 P(X ) i

10 Hypertension Example σ 2 N i1 [X i E(X)] 2 P(X ) i Find the standard deviation for the expected number of patients to be brought under control for every 4 who are treated.

11 More About Means and Variances Expected Value of the sum of two random variables: E(X Y) E(X) E(Y) Variance of the sum of two random variables: Var(X Y) σ 2 XY σ 2 X σ 2 Y 2σ XY Standard deviation of the sum of two random variables: σ XY σ 2 XY

12 More About Means and Variances In general, The mean of the sum of two random variables is the sum of the means. The mean of the difference of two random variables is the difference of the means. E(X ± Y) = E(X) ± E(Y) If the random variables are independent, the variance of their sum or difference is always the sum of the variances. Var(X ± Y) = Var(X) + Var(Y)

13 More About Means and Variances Adding or subtracting a constant from data shifts the mean but doesn t change the variance or standard deviation: E(X ± c) = E(X) ± c Var(X ± c) = Var(X)

14 Continuous Random Variables Good news: nearly everything we ve said about how discrete random variables behave is true of continuous random variables, as well. When two independent continuous random variables have Normal models, so does their sum or difference. This fact will let us apply our knowledge of Normal probabilities to questions about the sum or difference of independent random variables.

15 Text Question

16 Discrete Probability Models Bernoulli Trials We have Bernoulli trials if: there are two possible outcomes (success and failure). the probability of success, p, is constant. the trials are independent.

17 Bernoulli Random Variable Let X take values: 0 and 1, X {0,1} P(X=1)=p P(X=0)=1-p=q We say that X has a Bernoulli distribution with parameter p. X~Bernoulli(p) 17

18 The Geometric Model A single Bernoulli trial is usually not all that interesting. A Geometric probability model tells us the probability for a random variable that counts the number of Bernoulli trials until the first success. Geometric models are completely specified by one parameter, p, the probability of success, and are denoted Geom(p).

19 Example Say 10% of your is spam. How many s do you expect to receive (on average) until you receive an that is spam?

20 The Geometric Model Independent trials, each having a probability p of being a success, are performed until a success occurs. Let X = the number of trials required to get a success S p FS (1-p)p FFS (1-p) 2 p FFFS (1-p) 3 p P(X=x) = q x-1 p Example: If p=.10 E(X) = 1/.10 = P(X=2)?

21 The Geometric Model Geometric probability model for Bernoulli trials: Geom(p) p = probability of success q = 1 p = probability of failure X = number of trials until the first success occurs P(X = x) = q x-1 p E(X) 1 p q p 2

22 Problem P(X=x) = q x-1 p

23 The Binomial Model A Binomial model tells us the probability for a random variable that counts the number of successes in a fixed number of Bernoulli trials. Two parameters define the Binomial model: n, the number of trials; and, p, the probability of success. We denote this Binom(n, p).

24 The Binomial Distribution A fixed number of observations, n e.g., 15 tosses of a coin; 10 selected patients Each observation is categorized as to whether or not the event of interest occurred e.g., head or tail in each toss of a coin; patient has the disease or not Since these two categories are mutually exclusive When the probability of the event of interest is represented as p, then the probability of the event of interest not occurring is 1 p (often written as q)

25 The Binomial Distribution Constant probability for the event of interest occurring (p) for each observation Probability of getting a tail is the same each time we toss the coin Observations are independent The outcome of one observation does not affect the outcome of the other Two sampling methods deliver independence Infinite population without replacement Finite population with replacement

26 Independence One of the important requirements for Bernoulli trials is that the trials be independent. When we don t have an infinite population, the trials are not independent. But, there is a rule that allows us to pretend we have independent trials: The 10% condition: Bernoulli trials must be independent. If that assumption is violated, it is still okay to proceed as long as the sample is smaller than 10% of the population.

27 Example Population: 50 people, 40 Insured - P(Insured) = 0.80 Select 10 people from pool at random w/o replacement P(10 th person insured Ist 9 insured) = 31/41 = 0.75 Population: 500,000 people, 400,000 Insured - P(Insured) = 0.80 Select 10 people from pool at random w/o replacement P(10 th person insured Ist 9 insured) = 399,991/499,991 = 0.80 (approximately)

28 The Binomial Model HTHT TTHH HHHT HHHH They are 16 possible outcomes HHHH THHH HHHT THHT HHTH THTH HHTT THTT HTHH TTHH HTHT TTHT HTTH TTTH HTTT TTTT The probability of getting all heads is 1/16 or (0.5) (0.5) (0.5) (0.5) equal to The probability of getting 50% heads and 50% tails is 6/16 (0.375). Probability Distribution for the number of heads No. of Heads Proportion:

29 The Binomial Distribution In n trials, there are n C x ways to have k successes. n! X! (n X)! Read n C x as n choose x. Note: n! = n (n 1) 2 1, and n! is read as n factorial.

30 The Binomial Distribution Binomial probability model for Bernoulli trials: Binom(n,p) n = number of trials p = probability of success q = 1 p = probability of failure X = # of successes in n trials P(X = x) = n C x p x q n x n C x n! X! (n X)!

31 Example

32 Expected Value and Standard Deviation for a Binomial Random Variable

33 Text Question (Review Exercises)

34 The Normal Model to the Rescue! When dealing with a large number of trials in a Binomial situation, making direct calculations of the probabilities becomes tedious (or outright impossible). Fortunately, the Normal model comes to the rescue

35 The Normal Model to the Rescue As long as the Success/Failure Condition holds, we can use the Normal model to approximate Binomial probabilities. Success/failure condition: A Binomial model is approximately Normal if we expect at least 10 successes and 10 failures: np 10 and nq 10

36 Normal approximation to binomial Condition: np>=10, n(1-p)>=10 Binomial can be closely approximated by a normal distribution with standardized variable Z X np np(1 p) X np npq 36

37 Continuous Random Variables When we use the Normal model to approximate the Binomial model, we are using a continuous random variable to approximate a discrete random variable. So, when we use the Normal model, we no longer calculate the probability that the random variable equals a particular value, but only that it lies between two values.

38 Text Question Condition: np>=10, n(1-p)>=10 Z X np np(1 p) X np npq

39 What Can Go Wrong? Be sure you have Bernoulli trials. You need two outcomes per trial, a constant probability of success, and independence. Remember that the 10% Condition provides a reasonable substitute for independence. Don t confuse Geometric and Binomial models. Don t use the Normal approximation with small n. You need at least 10 successes and 10 failures to use the Normal approximation.

40 What have we learned? Geometric model When we re interested in the number of Bernoulli trials until the next success. Binomial model When we re interested in the number of successes in a certain number of Bernoulli trials. Normal model To approximate a Binomial model when we expect at least 10 successes and 10 failures.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Math 1342 (Elementary Statistics) Test 2 Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Find the indicated probability. 1) If you flip a coin

The Central Limit Theorem Part 1

The Central Limit Theorem Part. Introduction: Let s pose the following question. Imagine you were to flip 400 coins. To each coin flip assign if the outcome is heads and 0 if the outcome is tails. Question:

Math 141. Lecture 3: The Binomial Distribution. Albyn Jones 1. 1 Library 304. jones/courses/141

Math 141 Lecture 3: The Binomial Distribution Albyn Jones 1 1 Library 304 jones@reed.edu www.people.reed.edu/ jones/courses/141 Outline Coin Tossing Coin Tosses Independent Coin Tosses Crucial Features

TRANSFORMATIONS OF RANDOM VARIABLES

TRANSFORMATIONS OF RANDOM VARIABLES 1. INTRODUCTION 1.1. Definition. We are often interested in the probability distributions or densities of functions of one or more random variables. Suppose we have

Chapter 4 - Practice Problems 2

Chapter - Practice Problems 2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the indicated probability. 1) If you flip a coin three times, the

Normal Distribution as an Approximation to the Binomial Distribution

Chapter 1 Student Lecture Notes 1-1 Normal Distribution as an Approximation to the Binomial Distribution : Goals ONE TWO THREE 2 Review Binomial Probability Distribution applies to a discrete random variable

Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. Part 3: Discrete Uniform Distribution Binomial Distribution

Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Part 3: Discrete Uniform Distribution Binomial Distribution Sections 3-5, 3-6 Special discrete random variable distributions we will cover

Chapter 4 Lecture Notes

Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a real-valued function defined on the sample space of some experiment. For instance,

RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. DISCRETE RANDOM VARIABLES.. Definition of a Discrete Random Variable. A random variable X is said to be discrete if it can assume only a finite or countable

3.4 The Binomial Probability Distribution Copyright Cengage Learning. All rights reserved. The Binomial Probability Distribution There are many experiments that conform either exactly or approximately

WHERE DOES THE 10% CONDITION COME FROM?

1 WHERE DOES THE 10% CONDITION COME FROM? The text has mentioned The 10% Condition (at least) twice so far: p. 407 Bernoulli trials must be independent. If that assumption is violated, it is still okay

Sampling Central Limit Theorem Proportions. Outline. 1 Sampling. 2 Central Limit Theorem. 3 Proportions

Outline 1 Sampling 2 Central Limit Theorem 3 Proportions Outline 1 Sampling 2 Central Limit Theorem 3 Proportions Populations and samples When we use statistics, we are trying to find out information about

Section 5 Part 2. Probability Distributions for Discrete Random Variables

Section 5 Part 2 Probability Distributions for Discrete Random Variables Review and Overview So far we ve covered the following probability and probability distribution topics Probability rules Probability

Review the following from Chapter 5

Bluman, Chapter 6 1 Review the following from Chapter 5 A surgical procedure has an 85% chance of success and a doctor performs the procedure on 10 patients, find the following: a) The probability that

2. Discrete random variables

2. Discrete random variables Statistics and probability: 2-1 If the chance outcome of the experiment is a number, it is called a random variable. Discrete random variable: the possible outcomes can be

Random Variable: A function that assigns numerical values to all the outcomes in the sample space.

STAT 509 Section 3.2: Discrete Random Variables Random Variable: A function that assigns numerical values to all the outcomes in the sample space. Notation: Capital letters (like Y) denote a random variable.

Chapter 5. Random variables

Random variables random variable numerical variable whose value is the outcome of some probabilistic experiment; we use uppercase letters, like X, to denote such a variable and lowercase letters, like

Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Part 4: Geometric Distribution Negative Binomial Distribution Hypergeometric Distribution Sections 3-7, 3-8 The remaining discrete random

Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution

Recall: Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution A variable is a characteristic or attribute that can assume different values. o Various letters of the alphabet (e.g.

Combinatorics. Chapter 1. 1.1 Factorials

Chapter 1 Combinatorics Copyright 2009 by David Morin, morin@physics.harvard.edu (Version 4, August 30, 2009) This file contains the first three chapters (plus some appendices) of a potential book on Probability

MATH 251 - Introduction to MATLAB

KINGDOM OF SAUDI ARABIA - AL-IMAM MUHAMMAD BIN SAUD ISLAMIC UNIVERSITY - FACULTY OF SCIENCES - - May 9, 2011 Semester 2, 1431-1432 (2010-20111) MATH 251 - Introduction to MATLAB Exercise sheet 6 Dr. Samy

Math 141. Lecture 7: Variance, Covariance, and Sums. Albyn Jones 1. 1 Library 304. jones/courses/141

Math 141 Lecture 7: Variance, Covariance, and Sums Albyn Jones 1 1 Library 304 jones@reed.edu www.people.reed.edu/ jones/courses/141 Last Time Variance: expected squared deviation from the mean: Standard

Chapter 5. Discrete Probability Distributions

Chapter 5. Discrete Probability Distributions Chapter Problem: Did Mendel s result from plant hybridization experiments contradicts his theory? 1. Mendel s theory says that when there are two inheritable

Sampling Distribution of a Sample Proportion

Sampling Distribution of a Sample Proportion From earlier material remember that if X is the count of successes in a sample of n trials of a binomial random variable then the proportion of success is given

Normal distribution. ) 2 /2σ. 2π σ

Normal distribution The normal distribution is the most widely known and used of all distributions. Because the normal distribution approximates many natural phenomena so well, it has developed into a

Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?

ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the

CONCEPT DEVELOPMENT Mathematics Assessment Project CLASSROOM CHALLENGES A Formative Assessment Lesson Evaluating Statements About Probability Mathematics Assessment Resource Service University of Nottingham

ST 371 (IV): Discrete Random Variables

ST 371 (IV): Discrete Random Variables 1 Random Variables A random variable (rv) is a function that is defined on the sample space of the experiment and that assigns a numerical variable to each possible

Binomial Probability Distribution

Binomial Probability Distribution In a binomial setting, we can compute probabilities of certain outcomes. This used to be done with tables, but with graphing calculator technology, these problems are

3 Multiple Discrete Random Variables

3 Multiple Discrete Random Variables 3.1 Joint densities Suppose we have a probability space (Ω, F,P) and now we have two discrete random variables X and Y on it. They have probability mass functions f

Section 6.1 Discrete Random variables Probability Distribution

Section 6.1 Discrete Random variables Probability Distribution Definitions a) Random variable is a variable whose values are determined by chance. b) Discrete Probability distribution consists of the values

Part II - Random Processes

Part II - Random Processes Goals for this unit: Give overview of concepts from discrete probability Give analogous concepts from continuous probability See how the Monte Carlo method can be viewed as sampling

Combinatorics: The Fine Art of Counting

Combinatorics: The Fine Art of Counting Week 7 Lecture Notes Discrete Probability Continued Note Binomial coefficients are written horizontally. The symbol ~ is used to mean approximately equal. The Bernoulli

PROBABILITIES AND PROBABILITY DISTRIBUTIONS

Published in "Random Walks in Biology", 1983, Princeton University Press PROBABILITIES AND PROBABILITY DISTRIBUTIONS Howard C. Berg Table of Contents PROBABILITIES PROBABILITY DISTRIBUTIONS THE BINOMIAL

Bivariate Distributions

Chapter 4 Bivariate Distributions 4.1 Distributions of Two Random Variables In many practical cases it is desirable to take more than one measurement of a random observation: (brief examples) 1. What is

DETERMINE whether the conditions for a binomial setting are met. COMPUTE and INTERPRET probabilities involving binomial random variables

1 Section 7.B Learning Objectives After this section, you should be able to DETERMINE whether the conditions for a binomial setting are met COMPUTE and INTERPRET probabilities involving binomial random

Unit 4 The Bernoulli and Binomial Distributions

PubHlth 540 4. Bernoulli and Binomial Page 1 of 19 Unit 4 The Bernoulli and Binomial Distributions Topic 1. Review What is a Discrete Probability Distribution... 2. Statistical Expectation.. 3. The Population

Upper primary (some maths ability required) Probability, scientific method, mathematical average, graphing

Lesson Plan 19 Flipping Coins Brief description Flipping a coin one hundred times might sound mundane but it always produces truly astonishing results. You ll astonish your class by correctly identifying

Random variables P(X = 3) = P(X = 3) = 1 8, P(X = 1) = P(X = 1) = 3 8.

Random variables Remark on Notations 1. When X is a number chosen uniformly from a data set, What I call P(X = k) is called Freq[k, X] in the courseware. 2. When X is a random variable, what I call F ()

An Introduction to Basic Statistics and Probability

An Introduction to Basic Statistics and Probability Shenek Heyward NCSU An Introduction to Basic Statistics and Probability p. 1/4 Outline Basic probability concepts Conditional probability Discrete Random

STAT 315: HOW TO CHOOSE A DISTRIBUTION FOR A RANDOM VARIABLE

STAT 315: HOW TO CHOOSE A DISTRIBUTION FOR A RANDOM VARIABLE TROY BUTLER 1. Random variables and distributions We are often presented with descriptions of problems involving some level of uncertainty about

University of California, Los Angeles Department of Statistics. Random variables

University of California, Los Angeles Department of Statistics Statistics Instructor: Nicolas Christou Random variables Discrete random variables. Continuous random variables. Discrete random variables.

Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4)

Summary of Formulas and Concepts Descriptive Statistics (Ch. 1-4) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume

6 PROBABILITY GENERATING FUNCTIONS

6 PROBABILITY GENERATING FUNCTIONS Certain derivations presented in this course have been somewhat heavy on algebra. For example, determining the expectation of the Binomial distribution (page 5.1 turned

4. Introduction to Statistics

Statistics for Engineers 4-1 4. Introduction to Statistics Descriptive Statistics Types of data A variate or random variable is a quantity or attribute whose value may vary from one unit of investigation

Math 370/408, Spring 2008 Prof. A.J. Hildebrand. Actuarial Exam Practice Problem Set 2 Solutions

Math 70/408, Spring 2008 Prof. A.J. Hildebrand Actuarial Exam Practice Problem Set 2 Solutions About this problem set: These are problems from Course /P actuarial exams that I have collected over the years,

Characteristics of Binomial Distributions

Lesson2 Characteristics of Binomial Distributions In the last lesson, you constructed several binomial distributions, observed their shapes, and estimated their means and standard deviations. In Investigation

Chapter 4. Probability and Probability Distributions

Chapter 4. robability and robability Distributions Importance of Knowing robability To know whether a sample is not identical to the population from which it was selected, it is necessary to assess the

Lecture 8. Confidence intervals and the central limit theorem

Lecture 8. Confidence intervals and the central limit theorem Mathematical Statistics and Discrete Mathematics November 25th, 2015 1 / 15 Central limit theorem Let X 1, X 2,... X n be a random sample of

Lecture 3: Continuous distributions, expected value & mean, variance, the normal distribution

Lecture 3: Continuous distributions, expected value & mean, variance, the normal distribution 8 October 2007 In this lecture we ll learn the following: 1. how continuous probability distributions differ

The Binomial Probability Distribution

The Binomial Probability Distribution MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2015 Objectives After this lesson we will be able to: determine whether a probability

6.2. Discrete Probability Distributions

6.2. Discrete Probability Distributions Discrete Uniform distribution (diskreetti tasajakauma) A random variable X follows the dicrete uniform distribution on the interval [a, a+1,..., b], if it may attain

Common probability distributionsi Math 217/218 Probability and Statistics Prof. D. Joyce, 2016

Introduction. ommon probability distributionsi Math 7/8 Probability and Statistics Prof. D. Joyce, 06 I summarize here some of the more common distributions used in probability and statistics. Some are

4.1 4.2 Probability Distribution for Discrete Random Variables

4.1 4.2 Probability Distribution for Discrete Random Variables Key concepts: discrete random variable, probability distribution, expected value, variance, and standard deviation of a discrete random variable.

Chapter 4. iclicker Question 4.4 Pre-lecture. Part 2. Binomial Distribution. J.C. Wang. iclicker Question 4.4 Pre-lecture

Chapter 4 Part 2. Binomial Distribution J.C. Wang iclicker Question 4.4 Pre-lecture iclicker Question 4.4 Pre-lecture Outline Computing Binomial Probabilities Properties of a Binomial Distribution Computing

DISCRETE RANDOM VARIABLES

DISCRETE RANDOM VARIABLES DISCRETE RANDOM VARIABLES Documents prepared for use in course B01.1305, New York University, Stern School of Business Definitions page 3 Discrete random variables are introduced

P (x) 0. Discrete random variables Expected value. The expected value, mean or average of a random variable x is: xp (x) = v i P (v i )

Discrete random variables Probability mass function Given a discrete random variable X taking values in X = {v 1,..., v m }, its probability mass function P : X [0, 1] is defined as: P (v i ) = Pr[X =

Joint Exam 1/P Sample Exam 1

Joint Exam 1/P Sample Exam 1 Take this practice exam under strict exam conditions: Set a timer for 3 hours; Do not stop the timer for restroom breaks; Do not look at your notes. If you believe a question

Random variables, probability distributions, binomial random variable

Week 4 lecture notes. WEEK 4 page 1 Random variables, probability distributions, binomial random variable Eample 1 : Consider the eperiment of flipping a fair coin three times. The number of tails that

Statistics - Written Examination MEC Students - BOVISA

Statistics - Written Examination MEC Students - BOVISA Prof.ssa A. Guglielmi 26.0.2 All rights reserved. Legal action will be taken against infringement. Reproduction is prohibited without prior consent.

Binomial Random Variables

Binomial Random Variables Dr Tom Ilvento Department of Food and Resource Economics Overview A special case of a Discrete Random Variable is the Binomial This happens when the result of the eperiment is

ECE302 Spring 2006 HW3 Solutions February 2, 2006 1

ECE302 Spring 2006 HW3 Solutions February 2, 2006 1 Solutions to HW3 Note: Most of these solutions were generated by R. D. Yates and D. J. Goodman, the authors of our textbook. I have added comments in

SOLUTIONS: 4.1 Probability Distributions and 4.2 Binomial Distributions

SOLUTIONS: 4.1 Probability Distributions and 4.2 Binomial Distributions 1. The following table contains a probability distribution for a random variable X. a. Find the expected value (mean) of X. x 1 2

Topics in Probability Theory and Stochastic Processes Steven R. Dunbar. Binomial Distribution

Steven R. Dunbar Department of Mathematics 203 Avery Hall University of Nebrasa-Lincoln Lincoln, NE 68588-0130 http://www.math.unl.edu Voice: 402-472-3731 Fax: 402-472-8466 Topics in Probability Theory

Topic 8 The Expected Value

Topic 8 The Expected Value Functions of Random Variables 1 / 12 Outline Names for Eg(X ) Variance and Standard Deviation Independence Covariance and Correlation 2 / 12 Names for Eg(X ) If g(x) = x, then

Section 5 3 The Mean and Standard Deviation of a Binomial Distribution

Section 5 3 The Mean and Standard Deviation of a Binomial Distribution Previous sections required that you to find the Mean and Standard Deviation of a Binomial Distribution by using the values from a

Normal approximation to the Binomial

Chapter 5 Normal approximation to the Binomial 5.1 History In 1733, Abraham de Moivre presented an approximation to the Binomial distribution. He later (de Moivre, 1756, page 242 appended the derivation

Without data, all you are is just another person with an opinion.

OCR Statistics Module Revision Sheet The S exam is hour 30 minutes long. You are allowed a graphics calculator. Before you go into the exam make sureyou are fully aware of the contents of theformula booklet

RANDOM VARIABLES MATH CIRCLE (ADVANCED) 3/3/2013. 3 k) ( 52 3 )

RANDOM VARIABLES MATH CIRCLE (ADVANCED) //0 0) a) Suppose you flip a fair coin times. i) What is the probability you get 0 heads? ii) head? iii) heads? iv) heads? For = 0,,,, P ( Heads) = ( ) b) Suppose

UNIT I: RANDOM VARIABLES PART- A -TWO MARKS

UNIT I: RANDOM VARIABLES PART- A -TWO MARKS 1. Given the probability density function of a continuous random variable X as follows f(x) = 6x (1-x) 0

4. Continuous Random Variables, the Pareto and Normal Distributions

4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random

Statistics 100 Binomial and Normal Random Variables

Statistics 100 Binomial and Normal Random Variables Three different random variables with common characteristics: 1. Flip a fair coin 10 times. Let X = number of heads out of 10 flips. 2. Poll a random

Probability: Foundations for Inference

Chapter Number and Title 325 P A R T III Probability: Foundations for Inference 6 7 8 9 Probability: The Study of Randomness Random Variables The Binomial and Geometric Distributions Sampling Distributions

Math 431 An Introduction to Probability. Final Exam Solutions

Math 43 An Introduction to Probability Final Eam Solutions. A continuous random variable X has cdf a for 0, F () = for 0 <

Hypothesis Testing. Learning Objectives. After completing this module, the student will be able to

Hypothesis Testing Learning Objectives After completing this module, the student will be able to carry out a statistical test of significance calculate the acceptance and rejection region calculate and

Exercises with solutions (1)

Exercises with solutions (). Investigate the relationship between independence and correlation. (a) Two random variables X and Y are said to be correlated if and only if their covariance C XY is not equal

Random Variables. Chapter 2. Random Variables 1

Random Variables Chapter 2 Random Variables 1 Roulette and Random Variables A Roulette wheel has 38 pockets. 18 of them are red and 18 are black; these are numbered from 1 to 36. The two remaining pockets

You flip a fair coin four times, what is the probability that you obtain three heads.

Handout 4: Binomial Distribution Reading Assignment: Chapter 5 In the previous handout, we looked at continuous random variables and calculating probabilities and percentiles for those type of variables.

Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density

HW MATH 461/561 Lecture Notes 15 1 Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density and marginal densities f(x, y), (x, y) Λ X,Y f X (x), x Λ X,

Chapter 2: Systems of Linear Equations and Matrices:

At the end of the lesson, you should be able to: Chapter 2: Systems of Linear Equations and Matrices: 2.1: Solutions of Linear Systems by the Echelon Method Define linear systems, unique solution, inconsistent,

Lecture 2 Binomial and Poisson Probability Distributions

Lecture 2 Binomial and Poisson Probability Distributions Binomial Probability Distribution l Consider a situation where there are only two possible outcomes (a Bernoulli trial) H Example: u flipping a

WEEK #23: Statistics for Spread; Binomial Distribution

WEEK #23: Statistics for Spread; Binomial Distribution Goals: Study measures of central spread, such interquartile range, variance, and standard deviation. Introduce standard distributions, including the

Probability distributions

Probability distributions (Notes are heavily adapted from Harnett, Ch. 3; Hayes, sections 2.14-2.19; see also Hayes, Appendix B.) I. Random variables (in general) A. So far we have focused on single events,

P(X = x k ) = 1 = k=1

74 CHAPTER 6. IMPORTANT DISTRIBUTIONS AND DENSITIES 6.2 Problems 5.1.1 Which are modeled with a unifm distribution? (a Yes, P(X k 1/6 f k 1,...,6. (b No, this has a binomial distribution. (c Yes, P(X k

THE MULTINOMIAL DISTRIBUTION. Throwing Dice and the Multinomial Distribution

THE MULTINOMIAL DISTRIBUTION Discrete distribution -- The Outcomes Are Discrete. A generalization of the binomial distribution from only 2 outcomes to k outcomes. Typical Multinomial Outcomes: red A area1

The Binomial Distribution

The Binomial Distribution James H. Steiger November 10, 00 1 Topics for this Module 1. The Binomial Process. The Binomial Random Variable. The Binomial Distribution (a) Computing the Binomial pdf (b) Computing

REPEATED TRIALS. The probability of winning those k chosen times and losing the other times is then p k q n k.

REPEATED TRIALS Suppose you toss a fair coin one time. Let E be the event that the coin lands heads. We know from basic counting that p(e) = 1 since n(e) = 1 and 2 n(s) = 2. Now suppose we play a game

Lecture 6: Discrete & Continuous Probability and Random Variables

Lecture 6: Discrete & Continuous Probability and Random Variables D. Alex Hughes Math Camp September 17, 2015 D. Alex Hughes (Math Camp) Lecture 6: Discrete & Continuous Probability and Random September

The normal approximation to the binomial

The normal approximation to the binomial The binomial probability function is not useful for calculating probabilities when the number of trials n is large, as it involves multiplying a potentially very

Hypothesis Testing COMP 245 STATISTICS. Dr N A Heard. 1 Hypothesis Testing 2 1.1 Introduction... 2 1.2 Error Rates and Power of a Test...

Hypothesis Testing COMP 45 STATISTICS Dr N A Heard Contents 1 Hypothesis Testing 1.1 Introduction........................................ 1. Error Rates and Power of a Test.............................

ACMS 10140 Section 02 Elements of Statistics October 28, 2010 Midterm Examination II Answers

ACMS 10140 Section 02 Elements of Statistics October 28, 2010 Midterm Examination II Answers Name DO NOT remove this answer page. DO turn in the entire exam. Make sure that you have all ten (10) pages

Lecture 10: Depicting Sampling Distributions of a Sample Proportion

Lecture 10: Depicting Sampling Distributions of a Sample Proportion Chapter 5: Probability and Sampling Distributions 2/10/12 Lecture 10 1 Sample Proportion 1 is assigned to population members having a

Sample Questions for Mastery #5

Name: Class: Date: Sample Questions for Mastery #5 Multiple Choice Identify the choice that best completes the statement or answers the question.. For which of the following binomial experiments could

IEOR 6711: Stochastic Models I Fall 2012, Professor Whitt, Tuesday, September 11 Normal Approximations and the Central Limit Theorem

IEOR 6711: Stochastic Models I Fall 2012, Professor Whitt, Tuesday, September 11 Normal Approximations and the Central Limit Theorem Time on my hands: Coin tosses. Problem Formulation: Suppose that I have

For a partition B 1,..., B n, where B i B j = for i. A = (A B 1 ) (A B 2 ),..., (A B n ) and thus. P (A) = P (A B i ) = P (A B i )P (B i )

Probability Review 15.075 Cynthia Rudin A probability space, defined by Kolmogorov (1903-1987) consists of: A set of outcomes S, e.g., for the roll of a die, S = {1, 2, 3, 4, 5, 6}, 1 1 2 1 6 for the roll

Chapter 4. Probability Distributions

Chapter 4 Probability Distributions Lesson 4-1/4-2 Random Variable Probability Distributions This chapter will deal the construction of probability distribution. By combining the methods of descriptive

The sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1].

Probability Theory Probability Spaces and Events Consider a random experiment with several possible outcomes. For example, we might roll a pair of dice, flip a coin three times, or choose a random real

7 Hypothesis testing - one sample tests

7 Hypothesis testing - one sample tests 7.1 Introduction Definition 7.1 A hypothesis is a statement about a population parameter. Example A hypothesis might be that the mean age of students taking MAS113X