The correct answer is b

Size: px
Start display at page:

Download "The correct answer is b"

Transcription

1 1. Overall similarity of phenotypes may not always reflect evolutionary relationships a. due to convergent evolution b. because of variation in rates of evolutionary change of different kinds of characters c. due to homoplasy d. all of the above A. Answer a is incorrect. Although convergence can obscure our interpretation of evolutionary relatedness, it is not the only source of error. B. Answer b is incorrect. Although differences in rates of evolution of different characters can make interpretation of evolutionary relationships difficult (for example, chimps and humans are more closely related to one another than either is to gorillas), it is not the only source of error C. Answer c is incorrect. Although homoplasy refers to a character that is similar (for example, by the process of convergence) but not homologous, thereby complicating analysis of evolutionary relationships, it is not the only source of error. all of the above D. Answer d is correct. All of the source listed contribute to difficulty in inferring evolutionary relationships from overall similarity. 2. Cladistics a. is based on overall similarity of phenotypes b. requires distinguishing similarity due to inheritance from a common ancestor from other reasons for similarity c. is not affected by homoplasy d. none of the above A. Answer a is incorrect. Cladistics is distinguished from some other methods of phylogenetic inference by virtue of it not being based on comparisons of overall similarity. requires distinguishing similarity due to inheritance from a common ancestor B. Answer b is correct. Cladistic methods start by using only character states that are shared by species due to inheritance from a common ancestor.

2 C. Answer c is incorrect. Homoplasy complicates cladistic analyses because species may share a derived character state without inheriting it from the same ancestral species. D. Answer d is incorrect. One of the answers above is correct, answer b. 3. The principle of parsimony a. helps evolutionary biologists distinguish among competing phylogenetic hypotheses b. does not require that the polarity of traits be determined c. is a way to avoid having to use outgroups in a phylogenetic analysis d. cannot be applied to molecular traits helps evolutionary biologists distinguish among competing phylogenetic hypotheses A. Answer a is correct. Parsimony is an assumption that when there are multiple hypotheses, the one requiring the fewest evolutionary changes is to be favored. B. Answer b is incorrect. Establishing which is the most parsimonious hypothesis depends on polarizing character states. C. Answer c is incorrect. Outgroups are always used as a point of reference in analyzing the evolution of characters because they allow for establishing the polarity of character states. D. Answer d is incorrect. The principle of parsimony does not depend on the kind of traits analyzed; morphological, molecular, and other characters are potentially subject to parsimony. 4. The phylogenetic species concept (PSC) a. depends on whether individuals from different populations can successfully breed b. is indistinguishable from the biological species concept c. does not apply to allopatric populations d. is based on evolutionary independence among populations A. Answer a is incorrect. Successful interbreeding is not a key issue in the PSC; lack of reliance on an interbreeding test is an important way in which the PSC differs from the biological species concept (BSC).

3 B. Answer b is incorrect. The BSC relies on a test of interbreeding, whereas the PSC relies on a judgment of evolutionary independence as gauged by phylogenetic analysis of homologous traits. C. Answer c is incorrect. One advantage of the PSC relative to the BSC is that it does apply to allopatric populations. is based on evolutionary independence among populations D. Answer d is correct. The key aspect of the definition of species in the PSC is whether two groups (populations or species) are on independent evolutionary trajectories, identified by factors such as presence of shared derived characters, etc. 5. Parsimony suggests that parental care in birds, crocodiles, and some dinosaurs a. evolved independently, multiple times by convergent evolution b. evolved once in an ancestor common to all three groups c. is a homoplastic trait d. is not a homologous trait A. Answer a is incorrect. According to parsimony, the independent origins of parental care is less likely, especially since other characters identify a close relationship between crocodilians and birds. evolved once in an ancestor common to all three groups B. Answer b is correct. A phylogeny based mostly on morphological characters already established the close relationships among crocodilians, birds, and one group of dinosaurs, leading to the recognition that parental care is in fact an ancestral trait that was inherited among all three groups. C. Answer c is incorrect. Parental care seen in all three groups is a homologous trait. D. Answer d is incorrect. Parental care seen in all three groups is a homologous trait. 6. The re-evolution of lost traits, especially if they are complex a. can be identified with phylogenetic analyses b. never happens c. is not an example of a reversal d. does not affect interpretation of evolutionary relationships can be identified with phylogenetic analyses A. Answer a is correct. Phylogenetic analyses can reveal when a trait is lost from an ancestor that possessed the trait.

4 B. Answer b is incorrect. It is clear that in some cases reversals of complex traits may have happened, especially given alternative phylogenetic hypotheses that seem even less likely. C. Answer c is incorrect. The re-evolution of a lost trait is one way to get a reversal, albeit an extreme one. D. Answer d is incorrect. Reversals are one very important source of homoplasy, and homoplasy is a major source of error in phylogenetic analysis. 7. The term molecular clock in the context of evolutionary biology and phylogenetics a. refers to a group of proteins that induce endogenous circadian rhythms in animals b. is an undisputed assumption that all biological molecules evolve at a constant rate c. may help provide a way to estimate the absolute timing of historical events in evolution d. applies only to organisms that reproduce sexually A. Answer a is incorrect. The molecular clock has nothing to do with circadian rhythms. B. Answer b is incorrect. Although many think the clock has some value as a timing device, it is widely appreciated that at least under some circumstances, it will provide erroneous estimates. may help provide a way to estimate the absolute timing of historical events in evolution C. Answer c is correct. In some cases, the pace of evolution among different characters or different taxa may be similar and constant over time, providing reasonable estimates of the timing of certain events. D. Answer d is incorrect. When the clock is useful, it would not be limited to sexually or asexually reproducing animals; it might apply to both. 8. A taxonomic group that contains a common ancestor, but leaves out a descendant group is a. paraphyletic

5 b. monophyletic c. polyphyletic d. a good cladistic group paraphyletic A. Answer a is correct. B. Answer b is incorrect. A monophyletic group contains a most recent common ancestor and all of its descendants. C. Answer c is incorrect. A polyphyletic group is one which contains descendants that are derived from more than a single most recent common ancestor. D. Answer d is incorrect. By definition, clades are monophyletic. 9. The forelimb of a bird and the forelimb of a rhinoceros a. are homologous and symplesiomorphic b. are not homologous but are symplesiomorphic c. are homologous and synapomorphic d. are not homologous but are synapomorphic are homologous and symplesiomorphic A. Answer a is correct. As forelimbs, the traits were inherited from a common tetrapod ancestor that had forelimbs. They are also ancestral because as forelimbs, they are not derived and shared in form with that ancestor. B. Answer b is incorrect. If the traits are not homologous, it makes no sense to talk about them as symplesiomorphies. C. Answer c is incorrect. To be recognized as synapomorphies, they would have to be shared and derived traits in birds and rhinos relative to the common ancestor from which the trait evolved. D. Answer d is incorrect. Again, if the traits are not homologous, it makes no sense to talk about them as synapomorphic. 10. In order to determine polarity for different states of a character a. there must be a fossil record of the groups in question b. genetic sequence data must be available c. an appropriate name for the taxonomic group must be selected

6 d. an outgroup must be identified A. Answer a is incorrect. The existence of fossils usually helps make a phylogenetic analysis more complete, but it is not required. In fact, the fossil record preserves so few of the many millions of species that have ever existed that there will be many cases where fossils will never be available. B. Answer b is incorrect. Genetic sequence data is just one set of characters that provide information about evolutionary relationships; it is no more or less required than morphological characters. C. Answer c is incorrect. A name for the taxonomic group is not required to establish polarity. an outgroup must be identified D. Answer d is correct. The method of determining polarity is based on an analysis of the character states in closely related groups that are not in the group under analysis. 11. A paraphyletic group a. includes an ancestor and all of its descendants b. an ancestor and some of its descendants c. descendants of more than one common ancestor d. all of the above Answer a is incorrect. This is the definition for a monophyletic group. an ancestor and some of its descendants B. Answer b is correct. When one or more taxa are left out of a monophyletic group, it is paraphyletic. The example discussed in the chapter is birds as a kind of dinosaur. C. Answer c is incorrect. This is the definition of a polyphyletic group. D. Answer d is incorrect. Some of the answers above are not only incorrect, they are mutually exclusive. 12. Sieve tubes and sieve elements a. are homoplastic because they have different function b. are homologous because they have similar function

7 c. are homoplastic because their common ancestor was single-celled d. are structures involved in transport within animals A. Answer a is incorrect. Homoplastic traits have similar function (usually due to convergence). B. Answer b is incorrect. Similarity of function is not enough. Even though it is true for sieve tubes and elements, the critical feature is independent derivation of the traits. are homoplastic because their common ancestor was singlecelled C. Answer c is correct. The most recent common ancestor did not have the trait. D. Answer d is incorrect. The trait occurs in plants. 13. The phylogeny of dinosaurs leading to birds a. demonstrates that the first function of feathers was flight b. demonstrates that feathers and wings evolved simultaneously c. suggests that complex characters evolve rapidly, in one step d. reveals many transitional forms between modern birds and their ancestors A. Answer a is incorrect. It is clear that feathers appeared first in an animal that did not have forelimbs modified for flight. B. Answer b is incorrect. Feathers and wings arose in different taxa, leading to birds, C. Answer c is incorrect. The evidence (many transitional forms) suggests the opposite. reveals many transitional forms between modern birds and their ancestors D. Answer d is correct. The evolution of birds, and the characteristics that allow flight, involves many transitional forms, gradually accumulating important characteristics. 14. A phylogenetic analysis of HIV suggests a. a single origin of HIV from primates b. multiple origins of HIV from several different primate species c. multiple origins of HIV from a single primate species

8 d. that SIV originated from HIV A. Answer a is incorrect. There is clear evidence of multiple origins of HIV. Furthermore, apparently some HIV strains have not spread rapidly at all. multiple origins of HIV from several different primate species B. Answer b is correct. There are several independent origins including from chimpanzees and the sooty mangabey. C. Answer c is incorrect. There is evidence of transmission from multiple species. D. Answer d is incorrect. HIV is always nested within SIV clades. Challenge Questions 1. List the synapomorphy and the taxa defined by that synapomorphy for the groups pictured in Figure Name each group defined by a set of synapomorphies in a way that might be construed as informative about what kind of characters define the group. Answer Naming of groups can be variable; names provided here are just examples. Jaws shark, salamander, lizard, tiger, gorilla, human (jawed vertebrates); lungs salamander, lizard, tiger, gorilla, human (terrestrial tetrapods); amniotic membrane lizard, tiger, gorilla, human (amniote tetrapods); hair tiger, gorilla, human (mammals); no tail gorilla, human (humanoid primate); bipedal human (human). 2. Identifying outgroups is a central component of cladistic analysis. As described on page 4, a group is chosen that is closely related to, but not a part of the group under study. If one does not know the relationships of members of the group under study, how can one be certain that an appropriate outgroup is chosen? Can you think of any approaches that would minimize the effect of a poor choice of outgroup? Answer It would seem to be somewhat of a conundrum, or potentially circular; choosing a closely related species as an outgroup when we do not even know the relationships of the species of interest. One way of guarding against a poor choice for an outgroup is to choose several species as outgroups and examine how the phylogenetic hypothesis for the group of interest changes as a consequence of using different outgroups. If the choice of outgroup makes little difference, then that might increase one s confidence in the phylogenetic hypotheses for the species of interest. On the other hand, if the choice makes a big difference (different phylogenetic hypotheses result when choosing different outgroups), that might at least lead to the conclusion that one cannot

9 be confident in inferring a robust phylogenetic hypothesis for the group of interest without collecting more data. 3. As noted in your reading, cladistics is a widely utilized method of systematics, and our classification system (taxonomy) is increasingly becoming reflective of our knowledge of evolutionary relationships. Using birds as an example, discuss the advantages and disadvantages of recognizing them as reptiles (cladistics) versus as a group separate and equal to reptiles (traditional). Answer Recognizing that birds are reptiles potentially provides insight to the biology of both birds and reptiles. For example, some characteristics of birds are clearly of reptilian origin, such as feathers (modified scales), nasal salt secreting glands, and strategies of osmoregulation/excretion (excreting nitrogenous waste products as uric acid) representing ancestral traits, that continue to serve birds well in their environments. On the other hand, some differences from other reptiles (again, feathers) seem to have such profound significance biologically, that they overwhelm similarities visible in shared ancestral characteristics. For example, no extant nonavian reptiles can fly, or are endothermic and these two traits have created a fundamental distinction in the minds of many biologists. Indeed, many vertebrate biologists prefer to continue to distinguish birds from reptiles rather than emphasize their similarities even though they recognize the power of cladistic analysis in helping to shape classification. Ultimately, it may be nothing much more substantial than habit which drives the preference of some biologists to traditional classification schemes. 4. Across many species of limpets, loss of larval development and reversal from direct development appears to have occurred multiple times. Under the simple principle of parsimony, are changes in either direction merely counted equally in evaluating the most parsimonious hypothesis? If it is much more likely to lose a larval mode than to re-evolve it from direct development, should that be taken into account? How? Answer In fact, such evolutionary transitions (the loss of the larval mode, and the reevolution of a larval mode from direct development) are treated with equal weight under the simplest form of parsimony. However, if it is known from independent methods (for example, developmental biology) that one kind of change is less likely than another (loss versus a reversal), these should and can be taken into account in various ways. The simplest way might be to assign weights based on likelihoods; two transitions from larval development to direct development is equal to one reversal from direct development back to a larval mode. In fact, there are such methods, and they are similar in spirit to the statistical approaches used to build specific models of evolutionary change rather than rely on simple parsimony (page 6).

Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Chapter 17 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The correct order for the levels of Linnaeus's classification system,

More information

Evidence for evolution factsheet

Evidence for evolution factsheet The theory of evolution by natural selection is supported by a great deal of evidence. Fossils Fossils are formed when organisms become buried in sediments, causing little decomposition of the organism.

More information

1 Phylogenetic History: The Evolution of Marine Mammals

1 Phylogenetic History: The Evolution of Marine Mammals 1 Phylogenetic History: The Evolution of Marine Mammals Think for a moment about marine mammals: seals, walruses, dugongs and whales. Seals and walruses are primarily cold-water species that eat mostly

More information

Quiz #4 Ch. 4 Modern Evolutionary Theory

Quiz #4 Ch. 4 Modern Evolutionary Theory Physical Anthropology Summer 2014 Dr. Leanna Wolfe Quiz #4 Ch. 4 Modern Evolutionary Theory 1. T/F Evolution by natural selection works directly on individuals, transforming populations. 2. T/F A genotypic

More information

Theory of Evolution. A. the beginning of life B. the evolution of eukaryotes C. the evolution of archaebacteria D. the beginning of terrestrial life

Theory of Evolution. A. the beginning of life B. the evolution of eukaryotes C. the evolution of archaebacteria D. the beginning of terrestrial life Theory of Evolution 1. In 1966, American biologist Lynn Margulis proposed the theory of endosymbiosis, or the idea that mitochondria are the descendents of symbiotic, aerobic eubacteria. What does the

More information

1. Over the past century, several scientists around the world have made the following observations:

1. Over the past century, several scientists around the world have made the following observations: Evolution Keystone Review 1. Over the past century, several scientists around the world have made the following observations: New mitochondria and plastids can only be generated by old mitochondria and

More information

Practice Questions 1: Evolution

Practice Questions 1: Evolution Practice Questions 1: Evolution 1. Which concept is best illustrated in the flowchart below? A. natural selection B. genetic manipulation C. dynamic equilibrium D. material cycles 2. The diagram below

More information

How Populations Evolve

How Populations Evolve How Populations Evolve Darwin and the Origin of the Species Charles Darwin published On the Origin of Species by Means of Natural Selection, November 24, 1859. Darwin presented two main concepts: Life

More information

BIOL 1030 TOPIC 1 LECTURE NOTES Topic 1: Classification and the Diversity of Life (Chapters 25, 26.6)

BIOL 1030 TOPIC 1 LECTURE NOTES Topic 1: Classification and the Diversity of Life (Chapters 25, 26.6) Topic 1: Classification and the Diversity of Life (Chapters 25, 26.6) I. Background review (Biology 1020 material) A. Scientific Method 1. observations 2. scientific model explains observations makes testable

More information

The Art of the Tree of Life. Catherine Ibes & Priscilla Spears March 2012

The Art of the Tree of Life. Catherine Ibes & Priscilla Spears March 2012 The Art of the Tree of Life Catherine Ibes & Priscilla Spears March 2012 from so simple a beginning endless forms most beautiful and most wonderful have been, and are being, evolved. Charles Darwin, The

More information

Systematics - BIO 615

Systematics - BIO 615 Outline - and introduction to phylogenetic inference 1. Pre Lamarck, Pre Darwin Classification without phylogeny 2. Lamarck & Darwin to Hennig (et al.) Classification with phylogeny but without a reproducible

More information

Lab 2/Phylogenetics/September 16, 2002 1 PHYLOGENETICS

Lab 2/Phylogenetics/September 16, 2002 1 PHYLOGENETICS Lab 2/Phylogenetics/September 16, 2002 1 Read: Tudge Chapter 2 PHYLOGENETICS Objective of the Lab: To understand how DNA and protein sequence information can be used to make comparisons and assess evolutionary

More information

Name Class Date. binomial nomenclature. MAIN IDEA: Linnaeus developed the scientific naming system still used today.

Name Class Date. binomial nomenclature. MAIN IDEA: Linnaeus developed the scientific naming system still used today. Section 1: The Linnaean System of Classification 17.1 Reading Guide KEY CONCEPT Organisms can be classified based on physical similarities. VOCABULARY taxonomy taxon binomial nomenclature genus MAIN IDEA:

More information

Principles of Evolution - Origin of Species

Principles of Evolution - Origin of Species Theories of Organic Evolution X Multiple Centers of Creation (de Buffon) developed the concept of "centers of creation throughout the world organisms had arisen, which other species had evolved from X

More information

Ch. 13 How Populations Evolve Period. 4. Describe Lamarck s proposed theory of evolution, The Theory of Acquired Traits.

Ch. 13 How Populations Evolve Period. 4. Describe Lamarck s proposed theory of evolution, The Theory of Acquired Traits. Ch. 13 How Populations Evolve Name Period California State Standards covered by this chapter: Evolution 7. The frequency of an allele in a gene pool of a population depends on many factors and may be stable

More information

Building a phylogenetic tree

Building a phylogenetic tree bioscience explained 134567 Wojciech Grajkowski Szkoła Festiwalu Nauki, ul. Ks. Trojdena 4, 02-109 Warszawa Building a phylogenetic tree Aim This activity shows how phylogenetic trees are constructed using

More information

A Correlation of Pearson Miller & Levine Biology 2014 To the Utah Core State Standards for Biology Grades 9-12

A Correlation of Pearson Miller & Levine Biology 2014 To the Utah Core State Standards for Biology Grades 9-12 A Correlation of Pearson To the Utah Core State Standards Resource Title: Publisher: Pearson Education publishing as Prentice Hall ISBN (10 or 13 digit unique identifier is required): SE: 9780133242003

More information

Evolution and Darwin

Evolution and Darwin Evolution and Darwin Evolution The processes that have transformed life on earth from it s earliest forms to the vast diversity that characterizes it today. A change in the genes!!!!!!!! Old Theories of

More information

Section 10.1. KEY CONCEPT There were theories of biological and geologic change before Darwin.

Section 10.1. KEY CONCEPT There were theories of biological and geologic change before Darwin. Section 10.1 KEY CONCEPT There were theories of biological and geologic change before Darwin. Early scientists proposed ideas about evolution. Evolution is the biological change process by which descendants

More information

Name: Date: Problem How do amino acid sequences provide evidence for evolution? Procedure Part A: Comparing Amino Acid Sequences

Name: Date: Problem How do amino acid sequences provide evidence for evolution? Procedure Part A: Comparing Amino Acid Sequences Name: Date: Amino Acid Sequences and Evolutionary Relationships Introduction Homologous structures those structures thought to have a common origin but not necessarily a common function provide some of

More information

Biology 1406 - Notes for exam 5 - Population genetics Ch 13, 14, 15

Biology 1406 - Notes for exam 5 - Population genetics Ch 13, 14, 15 Biology 1406 - Notes for exam 5 - Population genetics Ch 13, 14, 15 Species - group of individuals that are capable of interbreeding and producing fertile offspring; genetically similar 13.7, 14.2 Population

More information

8.2: Sources of Evidence for Evolution pg

8.2: Sources of Evidence for Evolution pg 8.2: Sources of Evidence for Evolution pg. 332-340 Key Terms: fossil record, transitional fossil, vestigial structure, biogeography, homologous structures, analogous structures, embryology. Darwin was

More information

How to Build a Phylogenetic Tree

How to Build a Phylogenetic Tree How to Build a Phylogenetic Tree Phylogenetics tree is a structure in which species are arranged on branches that link them according to their relationship and/or evolutionary descent. A typical rooted

More information

LAB 21 Using Bioinformatics to Investigate Evolutionary Relationships; Have a BLAST!

LAB 21 Using Bioinformatics to Investigate Evolutionary Relationships; Have a BLAST! LAB 21 Using Bioinformatics to Investigate Evolutionary Relationships; Have a BLAST! Introduction: Between 1990-2003, scientists working on an international research project known as the Human Genome Project,

More information

Taxonomy and Classification

Taxonomy and Classification Taxonomy and Classification Taxonomy = the science of naming and describing species Wisdom begins with calling things by their right names -Chinese Proverb museums contain ~ 2 Billion specimens worldwide

More information

4. Why are common names not good to use when classifying organisms? Give an example.

4. Why are common names not good to use when classifying organisms? Give an example. 1. Define taxonomy. Classification of organisms 2. Who was first to classify organisms? Aristotle 3. Explain Aristotle s taxonomy of organisms. Patterns of nature: looked like 4. Why are common names not

More information

Preparation. Educator s Section: pp. 1 3 Unit 1 instructions: pp. 4 5 Unit 2 instructions: pp. 6 7 Masters/worksheets: pp. 8-17

Preparation. Educator s Section: pp. 1 3 Unit 1 instructions: pp. 4 5 Unit 2 instructions: pp. 6 7 Masters/worksheets: pp. 8-17 ActionBioscience.org lesson To accompany the article by Lawrence M. Page, Ph.D.: "Planetary Biodiversity Inventories: A Response to the Taxonomic Crisis" (May 2006) http://www.actionbioscience.org/biodiversity/page.html

More information

Biology 170: Exam 3. Multiple choice (2 pts each). Mark (bubble-in) the correct answer on your scantron.

Biology 170: Exam 3. Multiple choice (2 pts each). Mark (bubble-in) the correct answer on your scantron. Name Biology 170: Exam 3 Multiple choice (2 pts each). Mark (bubble-in) the correct answer on your scantron. 1. All of the following are unique (only found in) mammalian characters, EXCEPT: a. Hair b.

More information

investigation 3 Comparing DNA Sequences to

investigation 3 Comparing DNA Sequences to Big Idea 1 Evolution investigation 3 Comparing DNA Sequences to Understand Evolutionary Relationships with BLAST How can bioinformatics be used as a tool to determine evolutionary relationships and to

More information

Animal Models of Human Behavioral and Social Processes: What is a Good Animal Model? Dario Maestripieri

Animal Models of Human Behavioral and Social Processes: What is a Good Animal Model? Dario Maestripieri Animal Models of Human Behavioral and Social Processes: What is a Good Animal Model? Dario Maestripieri Criteria for assessing the validity of animal models of human behavioral research Face validity:

More information

17.1. The Tree of Life CHAPTER 17. Organisms can be classified based on physical similarities. Linnaean taxonomy. names.

17.1. The Tree of Life CHAPTER 17. Organisms can be classified based on physical similarities. Linnaean taxonomy. names. SECTION 17.1 THE LINNAEAN SYSTEM OF CLASSIFICATION Study Guide KEY CONCEPT Organisms can be classified based on physical similarities. VOCABULARY taxonomy taxon binomial nomenclature genus MAIN IDEA: Linnaeus

More information

Evolution (18%) 11 Items Sample Test Prep Questions

Evolution (18%) 11 Items Sample Test Prep Questions Evolution (18%) 11 Items Sample Test Prep Questions Grade 7 (Evolution) 3.a Students know both genetic variation and environmental factors are causes of evolution and diversity of organisms. (pg. 109 Science

More information

Chapter 1. What is Biology? Worksheets. (Opening image copyright by Kirsty Pargeter, 2010. Used under license from Shutterstock.com.

Chapter 1. What is Biology? Worksheets. (Opening image copyright by Kirsty Pargeter, 2010. Used under license from Shutterstock.com. Chapter 1 What is Biology? Worksheets (Opening image copyright by Kirsty Pargeter, 2010. Used under license from Shutterstock.com.) Lesson 1.1: Science and the Natural World Lesson 1.2: Biology: The Study

More information

This is a series of skulls and front leg fossils of organisms believed to be ancestors of the modern-day horse.

This is a series of skulls and front leg fossils of organisms believed to be ancestors of the modern-day horse. Evidence of Evolution Background When Charles Darwin first proposed the idea that all new species descend from an ancestor, he performed an exhaustive amount of research to provide as much evidence as

More information

Biological kinds and the causal theory of reference

Biological kinds and the causal theory of reference Biological kinds and the causal theory of reference Ingo Brigandt Department of History and Philosophy of Science 1017 Cathedral of Learning University of Pittsburgh Pittsburgh, PA 15260 E-mail: inb1@pitt.edu

More information

Section Review 15-1 1.

Section Review 15-1 1. Section Review 15-1 1. Beagle 2. theory of evolution 3. varied 4. Darwin s curiosity might have led him to make many observations and ask questions about the natural world. His analytical nature may have

More information

Lesson Title: Constructing a Dichotomous Key and Exploring Its Relationship to Evolutionary Patterns

Lesson Title: Constructing a Dichotomous Key and Exploring Its Relationship to Evolutionary Patterns Lesson Title: Constructing a Dichotomous Key and Exploring Its Relationship to Evolutionary Patterns NSF GK-12 Fellow: Tommy Detmer Grade Level: 4 th and 5 th grade Type of Lesson: STEM Objectives: The

More information

Classification and Evolution

Classification and Evolution Classification and Evolution Starter: How many different ways could I split these objects into 2 groups? Classification All living things can also be grouped how do we decide which groups to put them into?

More information

IDENTIFICATION OF ORGANISMS

IDENTIFICATION OF ORGANISMS reflect Take a look at the pictures on the right. Think about what the two organisms have in common. They both need food and water to survive. They both grow and reproduce. They both have similar body

More information

The Clompleat Cladist

The Clompleat Cladist Seminars on Science Sharks and Rays: Myth and Reality THE UNIVERSITY OF KANSAS SPECIAL PUBLICATION MUSEUM OF NATURAL HISTORY No. 19 The Clompleat Cladist A Primer of Phylogenetic Procedures E.O. WILEY

More information

Chapter 25: The History of Life on Earth

Chapter 25: The History of Life on Earth Overview Name Period 1. In the last chapter, you were asked about macroevolution. To begin this chapter, give some examples of macroevolution. Include at least one novel example not in your text. Concept

More information

What two Assumptions did Darwin have to arrive at BEFORE he could form his theories of evolution?

What two Assumptions did Darwin have to arrive at BEFORE he could form his theories of evolution? Influences on Darwin s Thinking: What ideas did each of the listed names below contribute to Darwin s thinking about evolution? (very brief) Georges Buffon: Jean Baptiste Lamarck: Charles Lyell: Thomas

More information

Theories of Evolution: A Brief History (take notes from classmates presentations)

Theories of Evolution: A Brief History (take notes from classmates presentations) Packet Theories of : A Brief History (take notes from classmates presentations) Carl Linnaeus (1707-1778) William Paley (1743-1805) Georges Cuvier (1769-1832) Thomas Malthus (1766-1834) Jean Baptiste Lamarck

More information

AP Biology Essential Knowledge Student Diagnostic

AP Biology Essential Knowledge Student Diagnostic AP Biology Essential Knowledge Student Diagnostic Background The Essential Knowledge statements provided in the AP Biology Curriculum Framework are scientific claims describing phenomenon occurring in

More information

The Story of Human Evolution Part 1: From ape-like ancestors to modern humans

The Story of Human Evolution Part 1: From ape-like ancestors to modern humans The Story of Human Evolution Part 1: From ape-like ancestors to modern humans Slide 1 The Story of Human Evolution This powerpoint presentation tells the story of who we are and where we came from - how

More information

Problem Set 5 BILD10 / Winter 2014 Chapters 8, 10-12

Problem Set 5 BILD10 / Winter 2014 Chapters 8, 10-12 Chapter 8: Evolution and Natural Selection 1) A population is: a) a group of species that shares the same habitat. b) a group of individuals of the same species that lives in the same general location

More information

Evolution Part 1. Unit 10 Miss Wheeler

Evolution Part 1. Unit 10 Miss Wheeler Evolution Part 1 Unit 10 Miss Wheeler Evolution Evolution- The process by which organisms have changed (and will continue changing) over time Charles Darwin- Father of Evolution Traveled for 5 years on

More information

The Compleat Cladist. A Primer of Phylogenetic Procedures INTRODUCTION, TERMS, AND CONCEPTS

The Compleat Cladist. A Primer of Phylogenetic Procedures INTRODUCTION, TERMS, AND CONCEPTS Seminars on Science: Diversity of Fishes THE UNIVERSITY OF KANSAS MUSEUM OF NATURAL HISTORY SPECIAL PUBLICATION No. 19 October 1991 The Compleat Cladist A Primer of Phylogenetic Procedures E. O. WILEY

More information

Macroevolution: Change above the species level NABT 2006 Evolution Symposium

Macroevolution: Change above the species level NABT 2006 Evolution Symposium Introduction Macroevolution: Change above the species level NABT 2006 Evolution Symposium The basic concept of evolution change over time can be examined in two different time frames. The first, which

More information

evolutionary biologists

evolutionary biologists 1 evolution 2 Darwin On November 24, 1859, Charles Darwin published On the Origin of Species by Means of Natural Selection. Darwin made two points in The Origin of Species: Today s organisms descended

More information

KEY CONCEPT Organisms can be classified based on physical similarities. binomial nomenclature

KEY CONCEPT Organisms can be classified based on physical similarities. binomial nomenclature Section 17.1: The Linnaean System of Classification Unit 9 Study Guide KEY CONCEPT Organisms can be classified based on physical similarities. VOCABULARY taxonomy taxon binomial nomenclature genus MAIN

More information

CCR Biology - Chapter 10 Practice Test - Summer 2012

CCR Biology - Chapter 10 Practice Test - Summer 2012 Name: Class: Date: CCR Biology - Chapter 10 Practice Test - Summer 2012 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What is the term for a feature

More information

Summary. 16 1 Genes and Variation. 16 2 Evolution as Genetic Change. Name Class Date

Summary. 16 1 Genes and Variation. 16 2 Evolution as Genetic Change. Name Class Date Chapter 16 Summary Evolution of Populations 16 1 Genes and Variation Darwin s original ideas can now be understood in genetic terms. Beginning with variation, we now know that traits are controlled by

More information

Chordata- vertebrates

Chordata- vertebrates Chordata- vertebrates Animal phylogeny based on sequencing of SSU-rRNA Phylum Chordata Distinguishing Features 1. Pharyngeal gill slits 2. Dorsal hollow nerve cord 3. Notochord 4. Muscular postanal tail

More information

Worksheet - COMPARATIVE MAPPING 1

Worksheet - COMPARATIVE MAPPING 1 Worksheet - COMPARATIVE MAPPING 1 The arrangement of genes and other DNA markers is compared between species in Comparative genome mapping. As early as 1915, the geneticist J.B.S Haldane reported that

More information

Microevolution: The mechanism of evolution

Microevolution: The mechanism of evolution Microevolution: The mechanism of evolution What is it that evolves? Not individual organisms Populations are the smallest units that evolve Population: members of a species (interbreeding individuals and

More information

Feathered Dinosaurs and the Origin of Flight

Feathered Dinosaurs and the Origin of Flight Feathered Dinosaurs and the Origin of Flight Exhibition Organized and Circulated by: The Dinosaur Museum, Utah The Fossil Administration Office, Liaoning, China Beipiao City Paleontological Research Center,

More information

The Origin of Life. The Origin of Life. Reconstructing the history of life: What features define living systems?

The Origin of Life. The Origin of Life. Reconstructing the history of life: What features define living systems? The Origin of Life I. Introduction: What is life? II. The Primitive Earth III. Evidence of Life s Beginning on Earth A. Fossil Record: a point in time B. Requirements for Chemical and Cellular Evolution:

More information

[chime plays] [music plays]

[chime plays] [music plays] [chime plays] [CLARKE (narration):] The animal kingdom is made up of major groups, recognized by key traits. Fish have fins. Some land animals have four legs, others six, and several different groups have

More information

Nature of Genetic Material. Nature of Genetic Material

Nature of Genetic Material. Nature of Genetic Material Core Category Nature of Genetic Material Nature of Genetic Material Core Concepts in Genetics (in bold)/example Learning Objectives How is DNA organized? Describe the types of DNA regions that do not encode

More information

11.1. A population shares a common gene pool. The Evolution of Populations CHAPTER 11. Fill in the concept map below.

11.1. A population shares a common gene pool. The Evolution of Populations CHAPTER 11. Fill in the concept map below. 11.1 GENETIC VARIATION WITHIN POPULATIONS Study Guide KEY CONCEPT A population shares a common gene pool. VOCABULARY gene pool allele frequency MAIN IDEA: Genetic variation in a population increases the

More information

Natural Selection v Evolution

Natural Selection v Evolution Adaptation Natural Selection v Evolution Evolution = observed change in organisms over historic and geologic time Natural selection = one hypothesized mechanism for change Has enormous body of supporting

More information

Algorithms in Computational Biology (236522) spring 2007 Lecture #1

Algorithms in Computational Biology (236522) spring 2007 Lecture #1 Algorithms in Computational Biology (236522) spring 2007 Lecture #1 Lecturer: Shlomo Moran, Taub 639, tel 4363 Office hours: Tuesday 11:00-12:00/by appointment TA: Ilan Gronau, Taub 700, tel 4894 Office

More information

Characteristics and classification of living organisms

Characteristics and classification of living organisms Unit 1 Characteristics and classification of living organisms Welcome to the exciting and amazing world of living things. Go outside and look around you. Look at the sky, the soil, trees, plants, people,

More information

Scientific Practice, Conceptual Change, and the Nature of Concepts

Scientific Practice, Conceptual Change, and the Nature of Concepts Scientific Practice, Conceptual Change, and the Nature of Concepts Ingo Brigandt Department of Philosophy University of Alberta 4-115 Humanities Centre Edmonton, AB T6G 2E5 Canada E-mail: brigandt@ualberta.ca

More information

B2 6 Old and New Species

B2 6 Old and New Species B2 6 Old and New Species 62 minutes 62 marks Page of 22 Q. Fossils give us evidence for the theory of evolution. The diagrams show how a fish became a fossil. (a) In the sentences below, cross out the

More information

Name Class Date WHAT I KNOW. about how organisms have changed. grown in complexity over time.

Name Class Date WHAT I KNOW. about how organisms have changed. grown in complexity over time. History of Life Evolution Q: How do fossils help biologists understand the history of life on Earth? 19.1 How do scientists use fossils to study Earth s history? WHAT I KNOW SAMPLE ANSWER: Fossils give

More information

MAKING AN EVOLUTIONARY TREE

MAKING AN EVOLUTIONARY TREE Student manual MAKING AN EVOLUTIONARY TREE THEORY The relationship between different species can be derived from different information sources. The connection between species may turn out by similarities

More information

LAB : THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics

LAB : THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics Period Date LAB : THE CHI-SQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,

More information

Darwin & His Theories

Darwin & His Theories Darwin & His Theories The Origin of Species In 1859, Darwin publish his ideas in a book, The Origin of Species Stated animals and plants changed gradually over time; still changing. Animals living today

More information

Understanding by Design. Title: BIOLOGY/LAB. Established Goal(s) / Content Standard(s): Essential Question(s) Understanding(s):

Understanding by Design. Title: BIOLOGY/LAB. Established Goal(s) / Content Standard(s): Essential Question(s) Understanding(s): Understanding by Design Title: BIOLOGY/LAB Standard: EVOLUTION and BIODIVERSITY Grade(s):9/10/11/12 Established Goal(s) / Content Standard(s): 5. Evolution and Biodiversity Central Concepts: Evolution

More information

Basic Biological Principles Module A Anchor 1

Basic Biological Principles Module A Anchor 1 Basic Biological Principles Module A Anchor 1 Key Concepts: - Living things are made of units called cells, are based on a universal genetic code, obtain and use materials and energy, grow and develop,

More information

Evolution of Homo and related hominins

Evolution of Homo and related hominins Evolution of Homo and related hominins Subfamily Homininae = monophyletic group consisting of humans, chimpanzees & gorillas and species now extinct within each of these lineages. The fossil record provides

More information

Introduction to Animals

Introduction to Animals Introduction to Animals Unity and Diversity of Life Q: What characteristics and traits define animals? 25.1 What is an animal? WHAT I KNOW SAMPLE ANSWER: Animals are different from other living things

More information

Human Mendelian Disorders. Genetic Technology. What is Genetics? Genes are DNA 9/3/2008. Multifactorial Disorders

Human Mendelian Disorders. Genetic Technology. What is Genetics? Genes are DNA 9/3/2008. Multifactorial Disorders Human genetics: Why? Human Genetics Introduction Determine genotypic basis of variant phenotypes to facilitate: Understanding biological basis of human genetic diversity Prenatal diagnosis Predictive testing

More information

AP Biology 2015 Free-Response Questions

AP Biology 2015 Free-Response Questions AP Biology 2015 Free-Response Questions College Board, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks of the College Board. AP Central is the official online home

More information

Ch.16-17 Review. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Ch.16-17 Review. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Ch.16-17 Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following statements describe what all members of a population

More information

Ohio Plants & Animals

Ohio Plants & Animals Ohio Plants & Animals GOAL: To study and observe local plants and animals in various life stages and habitats. Small Group Procedures Concept: A field experience is enhanced when students are able to focus

More information

Let s get started. So, what is science?

Let s get started. So, what is science? Let s get started So, what is science? Well Science Science is the observation of phenomena and the theoretical explanation of it. Simply, it is the state of knowing. Biology Biology is the study of life.

More information

GEOL 159: Prehistoric Life

GEOL 159: Prehistoric Life GEOL 159: Prehistoric Life Content of the Course Welcome to GEOL 159! This course is an introduction to the history of life on our planet, beginning with the first oceans over 3.5 billion years ago. Because

More information

A CONTENT STANDARD IS NOT MET UNLESS APPLICABLE CHARACTERISTICS OF SCIENCE ARE ALSO ADDRESSED AT THE SAME TIME.

A CONTENT STANDARD IS NOT MET UNLESS APPLICABLE CHARACTERISTICS OF SCIENCE ARE ALSO ADDRESSED AT THE SAME TIME. Biology Curriculum The Georgia Performance Standards are designed to provide students with the knowledge and skills for proficiency in science. The Project 2061 s Benchmarks for Science Literacy is used

More information

BIO 1: Review: Evolution

BIO 1: Review: Evolution Name: Class: Date: ID: A BIO 1: Review: Evolution True/False Indicate whether the statement is true or false. 1. Radiometric dating measures the age of an object by measuring the proportions of radioactive

More information

AP Biology 2011 Scoring Guidelines Form B

AP Biology 2011 Scoring Guidelines Form B AP Biology 2011 Scoring Guidelines Form B The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded

More information

Typology now: Homology and developmental constraints explain evolvability

Typology now: Homology and developmental constraints explain evolvability To appear in Biology and Philosophy 22(5) Springer Typology now: Homology and developmental constraints explain evolvability Ingo Brigandt Department of Philosophy University of Alberta 4-115 Humanities

More information

WJEC AS Biology Biodiversity & Classification (2.1 All Organisms are related through their Evolutionary History)

WJEC AS Biology Biodiversity & Classification (2.1 All Organisms are related through their Evolutionary History) Name:.. Set:. Specification Points: WJEC AS Biology Biodiversity & Classification (2.1 All Organisms are related through their Evolutionary History) (a) Biodiversity is the number of different organisms

More information

2. is a process of nuclear division in which the number of chromosomes in certain cells is halved during gamete formation.

2. is a process of nuclear division in which the number of chromosomes in certain cells is halved during gamete formation. Meiosis 1. P. J. van Beneden proposed that an egg and a sperm, each containing half the complement of chromosomes found in somatic cells, fuse to produce a single cell called a. 2. is a process of nuclear

More information

Genetics Lecture Notes 7.03 2005. Lectures 1 2

Genetics Lecture Notes 7.03 2005. Lectures 1 2 Genetics Lecture Notes 7.03 2005 Lectures 1 2 Lecture 1 We will begin this course with the question: What is a gene? This question will take us four lectures to answer because there are actually several

More information

History of the study of animal behavior

History of the study of animal behavior History of the study of animal behavior 100,000 years B.P. through ~1850 People have been making detailed descriptions of the natural history of animals since the dawn of our species 100,000 years B.P.

More information

Grade Stand Sub-Strand Standard Benchmark GRADE 6

Grade Stand Sub-Strand Standard Benchmark GRADE 6 Grade Stand Sub-Strand Standard Benchmark OF OF OF A. Scientific World View B. Scientific Inquiry C. Scientific Enterprise understand that science is a way of knowing about the world that is characterized

More information

AP: LAB 8: THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics

AP: LAB 8: THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics Ms. Foglia Date AP: LAB 8: THE CHI-SQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,

More information

Assign: Unit 1: Preparation Activity page 4-7. Chapter 1: Classifying Life s Diversity page 8

Assign: Unit 1: Preparation Activity page 4-7. Chapter 1: Classifying Life s Diversity page 8 Assign: Unit 1: Preparation Activity page 4-7 Chapter 1: Classifying Life s Diversity page 8 1.1: Identifying, Naming, and Classifying Species page 10 Key Terms: species, morphology, phylogeny, taxonomy,

More information

Observing Vertebrate Skeletons

Observing Vertebrate Skeletons Name Class Date Chapter 33 Comparing Chordates Observing Vertebrate Skeletons Introduction One characteristic common to all vertebrates is the presence of a skeleton. The endoskeleton provides support,

More information

Cherokee County School District Student Performance Standards Unit Guides - Science: Fifth Grade

Cherokee County School District Student Performance Standards Unit Guides - Science: Fifth Grade Characteristics of Science 1 Cherokee County School District Habits of Mind S5CS1. Students will be aware of the importance of curiosity, honesty, openness, and skepticism in science and will exhibit these

More information

AP Biology 2008 Scoring Guidelines Form B

AP Biology 2008 Scoring Guidelines Form B AP Biology 2008 Scoring Guidelines Form B The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to

More information

Lab #10 Invertebrates 2 and Vertebrates 1 (Exercises 39, 40)

Lab #10 Invertebrates 2 and Vertebrates 1 (Exercises 39, 40) Name Bio 182-General Biology Lab #10 Invertebrates 2 and Vertebrates 1 (Exercises 39, 40) Answer the questions in the space provided. You need to turn this sheet at the end of the lab. In general know

More information

Worksheet: The theory of natural selection

Worksheet: The theory of natural selection Worksheet: The theory of natural selection Senior Phase Grade 7-9 Learning area: Natural Science Strand: Life and living Theme: Biodiversity, change and continuity Specific Aim 1: Acquiring knowledge of

More information

Chapter 16 How Populations Evolve

Chapter 16 How Populations Evolve Title Chapter 16 How Populations Evolve Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Population Genetics A population is all of the members of a single species

More information

Chapter 10. The Theory of Evolution Worksheets. (Opening image copyright Daniel Korzeniewski, Used under license from Shutterstock.com.

Chapter 10. The Theory of Evolution Worksheets. (Opening image copyright Daniel Korzeniewski, Used under license from Shutterstock.com. Chapter 10 The Theory of Evolution Worksheets (Opening image copyright Daniel Korzeniewski, 2010. Used under license from Shutterstock.com.) Lesson 10.1: Darwin and the Theory of Evolution Lesson 10.2:

More information

Unique reproductive strategies have developed to ensure maximum reproductive success.

Unique reproductive strategies have developed to ensure maximum reproductive success. Animal Reproductive Strategies The ultimate goal of each species is to produce the maximum number of surviving offspring using the least amount of energy. This is called the reproductive effort. Asexual

More information

Writing a Dichotomous Key to Wildflowers

Writing a Dichotomous Key to Wildflowers Writing a Dichotomous Key to Wildflowers Objectives: 1. Understand how to use and make dichotomous keys. 2. Understand common terminology of plant morphology. 3. Learn to recognize some fall wildflowers.

More information