If the pump having the performance curve shown is operated at a speed of 1500 rpm, what will be the maximum possible head developed?

Size: px
Start display at page:

Download "If the pump having the performance curve shown is operated at a speed of 1500 rpm, what will be the maximum possible head developed?"

Transcription

1 Spring 00 Problem set # Problem 8.4 A pump has the characteristics given in Fig What discharge and head will be produced at maximum efficiency if the pump size is 50 cm and the angular speed is 30 rps? What power is required when pumping water under these conditions? At maximum efficiency, from Fig. 8-5, C Q = 0.64, C P = 0.60, C H = 0.75 Q = C Q nd s m) 3 =.40 m 3 /s h = C Hn D g = s 1 ) 0.5 m) 9.81 m/s = 17. m. P = C P ρd 5 n 3 = kg/m m) 5 30 s 1 ) 3 = 506 kw. Problem 8.1 If the pump having the performance curve shown is operated at a speed of 1500 rpm, what will be the maximum possible head developed? C H = Hg D n Since C H will be the same for the maximum head condition, then ) 1500 H n or H 1500 = H 1000 = 10 ft.5 = 9.5 ft Problem 8.19 What type of pump should be used to pump water at a rate of 1 cfs and under a head of 5 ft? Assume N = 1500 rpm. 1

2 Spring 00 Problem set # n = 1500 rpm 60 s/min = 5 rps n s = n Q gh) 3 4 = 5 s 1 1 cfs 3. ft/s 5 ft) 3 4 = 0.57 Then from Fig. 8-15, n s < 0.60 so use mixed flow pump. Problem 8.3 You want to pump water at a rate of 1.0 m 3 /s from the lower to the upper reservoir shown in the figure. What type of pump would you use for this operation if the impeller speed is to be 600 rpm? h = z f L ) V D g = 18 m 15 m m ) 1.7 m/s) 1 m 3. m/s = 3.14 m n s = n Q gh) 3 4 = 10 s m 3 /s 9.81 m/s 3.14 m) 3 4 = 0.76 From Fig. 8-15, use axial flow pump. Problem 8.4 The pump used in the system shown has the characteristics given in Fig. 8-6, page 418. What discharge will occur under the conditions shown, and what power is required? D = 35.6 cm = m, n = 11.5 r/s. Writing the energy equation from the reservoir surface to the center of the pipe at the outlet: p 1 γ + V 1 g + z 1 + h p = p γ + V g + z + h L

3 Spring 00 Problem set # or h p = z z 1 = 1 + f L ) D + k Q e + k b 1) ga Assuming L = 6.4 m, f = 0.014, k b = 0.35 and k e = 0.1. C Q = Q nd 3 so we can get C H from Fig h p = C Hn D g Going through this calculations with different values of Q gives us the following: Q C Q C H h p 1) h p ) m 3 /s m m PSfrag replacementsthen plotting the system curve and the pump curve, we obtain the operating conditions: Q = 0. m 3 /s, Power: P = 6.7 kw from Fig. 8-6). 5 ) 4 Pump curve hp [m] 3 1 Operating point Q [m 3 /s] 3

4 Spring 00 Problem set # Problem 8.7 What is the specific speed for the pump operating under the conditions given in Prob. 8-4? Is this a safe operation with respect to the susceptibility to cavitation? n = 690 rpm 60 s/min = 11.5 rps Assume temperature of 10 C, Vapor pressure: p v = 1. kpa so p v γ = 1. kpa 9.81 kn = 0.1 m. Assume atmospheric pressure head of 10.3 m. Neglecting head loss and velocity head, the gauge pressure head on the suction side of the impellor will be approximately 1 m. Then NPSH = 10.3 m + 1 m 0.1 m = 11. m n ss = nq 1 g NPSH) 3 4 = 11.5 s m 3 /s) m/s 11. m) 3 4 = The n ss value of is much less than the critical value of 0.494, therefore, the pump is in the safe operating range. Problem 8.3 Two pumps having the performance curve shown are operated in series in the 18-in. diameter steel pipe. When both are operating, estimate the time to fill the tank from the 150-ft level to to the 00-ft level. Estimate the maximum pressure in the pipe during the filling phase. Where will this maximum pressure occur? What would have been the initial discharge if the pumps had been installed in parallel? First write the energy equation from the lower to upper reservoir: p 1 γ + V 1 g + z 1 + h p = p γ + V g + z + h L 4

5 Spring 00 Problem set # ft + h p = z + K e + K b + K E + f L ) V D g Assuming K e = 0.1, K b = 0., K E = 1.0, k s /D = Fig. 5-5) and f = Fig. 5-4). Then ) 300 ft Q h p = z 95 ft ft ga Q = z 95 ft ft/s π 1.5 ft)4 16 = z 95 ft s /ft 5 Q The performance curve for the two pumps in series is given below. The initial discharge will be obtained by solving the performance curve and the energy equation for z = 150 ft) h p = 55 ft s /ft 5 Q PSfrag replacements Plot this on the same graph and find the intersection Q i = 5.3 cfs Performance Curve hp [ft] System curve Q [cfs] To calculate the time to fill the reservoir consider increments of filling in 5 ft steps. 5

6 Spring 00 Problem set # z z Q V t [ft] [ft] [cfs] [ft 3 ] [s] t = s So the total time will be t = t = s or hours 55 minutes. The discharge Q was obtained by solving the system equation with with the performance curve as done for obtaining Q i. Check f : V i = Q i A 5.3 cfs = = ft/s ft for the initial values and V f = 1.8 ft/s in the final value in our table. So Re i = V id ν = 14.3 ft/s 1.5 ft ft /s = and Re f = For either of this value we find our initial assumption of f = to be valid. 6

7 Spring 00 Problem set # The maximum pressure will occur immediately downstream of the pumps when the 00 foot level is reached in the tank. Write the energy equation from the maximum pressure point to the water surface in the reservoir. or p max γ + V g + z p = p r γ + V r g + z r + h L p max γ + Q ga + z p = z r + K E + f p max = γ z r z p f = 6.4 lbs/ft 3 = 75 lbs/ft ) 80 ft Q D ga ) ) 80 ft Q D ga 00 ft 90 ft ) 1 ft = 50.4 psi 1 in 80 ft 1.5 ft ).7 ft 3 /s) 3. ft/s ft ) PSfrag replacements Consider parallel pump installation. The performance curve for the two pumps would be as shown below. Solving the initial system equation with this performance curve yields Q i = 36.4 cfs. 150 Performance Curve hp [ft] System curve Q [cfs] 7

8 Spring 00 Problem set # Problem 8.33 The pump of Prob. 8-1 is used to pump water from reservoir A to reservoir B. The pump is installed in a -mi long, 1-in pipe joining the two reservoirs. There are two bends in the pipe r/d = 1.0), and two gate valves are open when pumping. When the water surface elevation in reservoir B is 30 ft above the water surface in reservoir A at what rate will water be pumped? Write the energy equation from the water surface of reservoir A to the water surface in reservoir B: p 1 γ + V 1 g + z 1 + h p = p γ + V g + z + h L h p = ft + K e + K E + K b + K V + f L ) V D g where K e = 0.5, K E = 1.0, K b = 0.35 and K V = 0.0 Table 5-3). Also k s /D = Fig. 5-5), assume f = ) mi 580 ft/mi V h p = 30 ft ft g = 30 ft Q ga = 30 ft Q 3. ft/s π 1 ft)4 16 = 30 ft s /ft 5 Q 3.5 s /ft 5 = 30 ft gpm/cfs) Q = 30 ft ft/gpm) Q Plotting the above equation system curve) on the performance curve for problem 8-1 yields a discharge of 1500 gpm or 3.34 cfs V = Q A = 3.34 ft3 /s = 4.6 ft/s ft Re = VD ν 4.6 ft/s 1 ft = ft /s = giving f = With this larger f the system equation becomes h p = 30 ft ft/gpm) Q. 8

9 Spring 00 Problem set # Plotting this new system curve, etc. yields Q = 1450 gpm = 3.3 cfs. Problem 8.34 Work Prob but have two pumps like that of Prob. 8-1 operating in parallel. Assume same system curve as for the solution to Prob. 8-33: h p = 30 ft ft/gpm) Q. PSfrag replacements The parallel pump performance curve is given below: Plotting the system curve on the performance curve yields a solution of Q = 1650 gpm or 3.67 cfs System curve, 1 pipe Performance Curve hp [ft] System curve, 18 pipe Q [gpm] 9

10 Spring 00 Problem set # Problem 8.35 Work Prob but have two pumps like that of Prob. 8-1 operating in parallel and have an 18-in pipe instead of a 1-in pipe. For this pipe k s /D = , assume f = Then the energy equation reduces to h p = ) mi 580 ft/mi Q 30 ft ft 3. ft/s π 1.5 ft)4 16 = 30 ft s /ft 5 Q = 30 ft ft/gpm) Q Plotting the above equation on the graph of solution for problem 8-34 yields Q = 3300 gpm or 7.35 cfs. 10

Practice Problems on Pumps. Answer(s): Q 2 = 1850 gpm H 2 = 41.7 ft W = 24.1 hp. C. Wassgren, Purdue University Page 1 of 16 Last Updated: 2010 Oct 29

Practice Problems on Pumps. Answer(s): Q 2 = 1850 gpm H 2 = 41.7 ft W = 24.1 hp. C. Wassgren, Purdue University Page 1 of 16 Last Updated: 2010 Oct 29 _02 A centrifugal with a 12 in. diameter impeller requires a power input of 60 hp when the flowrate is 3200 gpm against a 60 ft head. The impeller is changed to one with a 10 in. diameter. Determine the

More information

Pumps: Convert mechanical energy (often developed from electrical source) into hydraulic energy (position, pressure and kinetic energy).

Pumps: Convert mechanical energy (often developed from electrical source) into hydraulic energy (position, pressure and kinetic energy). HYDRAULIC MACHINES Used to convert between hydraulic and mechanical energies. Pumps: Convert mechanical energy (often developed from electrical source) into hydraulic energy (position, pressure and kinetic

More information

= water horsepower WHP brake horsepower QH WHP = (222) ( 33,000 ft-lbs/min-hp)( 7.481 gal/ft ) 1 HP=0.746 kw

= water horsepower WHP brake horsepower QH WHP = (222) ( 33,000 ft-lbs/min-hp)( 7.481 gal/ft ) 1 HP=0.746 kw Lecture 11 Pumps & System Curves I. Pump Efficiency and Power Pump efficiency, E pump E pump = water horsepower WHP brake horsepower = BHP (221) where brake horsepower refers to the input power needed

More information

Module 9: Basics of Pumps and Hydraulics Instructor Guide

Module 9: Basics of Pumps and Hydraulics Instructor Guide Module 9: Basics of Pumps and Hydraulics Instructor Guide Activities for Unit 1 Basic Hydraulics Activity 1.1: Convert 45 psi to feet of head. 45 psis x 1 ft. = 103.8 ft 0.433 psi Activity 1.2: Determine

More information

2. Parallel pump system Q(pump) = 300 gpm, h p = 270 ft for each of the two pumps

2. Parallel pump system Q(pump) = 300 gpm, h p = 270 ft for each of the two pumps Pumping Systems: Parallel and Series Configurations For some piping system designs, it may be desirable to consider a multiple pump system to meet the design requirements. Two typical options include parallel

More information

CENTRIFUGAL PUMP OVERVIEW Presented by Matt Prosoli Of Pumps Plus Inc.

CENTRIFUGAL PUMP OVERVIEW Presented by Matt Prosoli Of Pumps Plus Inc. CENTRIFUGAL PUMP OVERVIEW Presented by Matt Prosoli Of Pumps Plus Inc. 1 Centrifugal Pump- Definition Centrifugal Pump can be defined as a mechanical device used to transfer liquid of various types. As

More information

Pump Formulas Imperial and SI Units

Pump Formulas Imperial and SI Units Pump Formulas Imperial and Pressure to Head H = head, ft P = pressure, psi H = head, m P = pressure, bar Mass Flow to Volumetric Flow ṁ = mass flow, lbm/h ρ = fluid density, lbm/ft 3 ṁ = mass flow, kg/h

More information

Centrifugal Fans and Pumps are sized to meet the maximum

Centrifugal Fans and Pumps are sized to meet the maximum Fans and Pumps are sized to meet the maximum flow rate required by the system. System conditions frequently require reducing the flow rate. Throttling and bypass devices dampers and valves are installed

More information

CENTRIFUGAL PUMP SELECTION, SIZING, AND INTERPRETATION OF PERFORMANCE CURVES

CENTRIFUGAL PUMP SELECTION, SIZING, AND INTERPRETATION OF PERFORMANCE CURVES CENTRIFUGAL PUMP SELECTION, SIZING, AND INTERPRETATION OF PERFORMANCE CURVES 4.0 PUMP CLASSES Pumps may be classified in two general types, dynamic and positive displacement. Positive displacement pumps

More information

oe4625 Dredge Pumps and Slurry Transport Vaclav Matousek October 13, 2004

oe4625 Dredge Pumps and Slurry Transport Vaclav Matousek October 13, 2004 oe4625 Vaclav Matousek October 13, 2004 1 Dredge Vermelding Pumps onderdeel and Slurry organisatie Transport 8. OPERATION LIMITS OF PUMP-PIPELINE SYSTEM REQUIRED MANOMETRIC PRESSURE MAXIMUM VELOCITY INITIAL

More information

Goulds Water Technology

Goulds Water Technology APPLICATIONS Specifically designed for: Homes Farms Cottages Booster service SPECIFICATIONS Pump: Pipe connections: 1¼" NPT suction, 1" NPT discharge, 1" NPT drive (pressure) Pressure switch: AS4 preset

More information

Pipe Flow Expert. Verification of Calculation Results

Pipe Flow Expert. Verification of Calculation Results http://www.pipeflow.com Pipe Flow Expert Fluid Flow and Pressure Loss Calculations Software Verification of Calculation Results Table of Contents Results Data: Systems Solved by Pipe Flow Expert Introduction...

More information

A BRIEF INTRODUCTION TO CENTRIFUGAL PUMPS

A BRIEF INTRODUCTION TO CENTRIFUGAL PUMPS A BRIEF INTRODUCTION TO CENTRIFUGAL PUMPS figure below is a cross section of a centrifugal pump and shows the two basic parts. Joe Evans, Ph.D IMPELLER This publication is based upon an introductory, half

More information

WATER MEASUREMENT USING TWO INCH (50 mm) DRAIN TESTS

WATER MEASUREMENT USING TWO INCH (50 mm) DRAIN TESTS GAP.14.1.2.2 A Publication of Global Asset Protection Services LLC WATER MEASUREMENT USING TWO INCH (50 mm) DRAIN TESTS INTRODUCTION A hydrant or other large-volume flow test is necessary for proper water

More information

TOPIC: 191004 KNOWLEDGE: K1.01 [3.3/3.5] Which one of the following contains indications of cavitation in an operating centrifugal pump?

TOPIC: 191004 KNOWLEDGE: K1.01 [3.3/3.5] Which one of the following contains indications of cavitation in an operating centrifugal pump? KNOWLEDGE: K1.01 [3.3/3.5] P21 Which one of the following contains indications of cavitation in an operating centrifugal pump? A. Low flow rate with low discharge pressure. B. Low flow rate with high discharge

More information

Pump Selection and Sizing (ENGINEERING DESIGN GUIDELINE)

Pump Selection and Sizing (ENGINEERING DESIGN GUIDELINE) Guidelines for Processing Plant Page : 1 of 51 Rev 01 Feb 2007 Rev 02 Feb 2009 Rev 03 KLM Technology #03-12 Block Aronia, Jalan Sri Perkasa 2 Taman Tampoi Utama 81200 Johor Bahru. (ENGINEERING DESIGN GUIDELINE)

More information

Equivalents & Conversion Factors 406 Capacity Formulas for Steam Loads 407 Formulas for Control Valve Sizing 408-409

Equivalents & Conversion Factors 406 Capacity Formulas for Steam Loads 407 Formulas for Control Valve Sizing 408-409 Engineering Data Table of Contents Page No. I II Formulas, Conversions & Guidelines Equivalents & Conversion Factors 406 Capacity Formulas for Steam Loads 407 Formulas for Control Sizing 408-409 Steam

More information

BOWL ASSEMBLY SELECTION Select impeller in exactly the same manner as for lineshaft type pump. Note comments under WELL SIZE.

BOWL ASSEMBLY SELECTION Select impeller in exactly the same manner as for lineshaft type pump. Note comments under WELL SIZE. SUBMERSIBLE PUMP selection A submersible pump consists of the following basic elements: < Bowl Assembly < Motor < Cable < Drop Pipe < Surface Plate (with)(without) discharge elbow DATA REQUIRED FOR SELECTION

More information

Pressure Limiting Driver (PLD)

Pressure Limiting Driver (PLD) Pressure Limiting Driver (PLD) Discharge Pressure Control Suction Pressure Control June 9 2009 Mark Evans Clarke Fire Protection Products Justin Strousse Clarke Fire Protection Products Overview Discharge

More information

Minor losses include head losses through/past hydrants, couplers, valves,

Minor losses include head losses through/past hydrants, couplers, valves, Lecture 10 Minor Losses & Pressure Requirements I. Minor Losses Minor (or fitting, or local ) hydraulic losses along pipes can often be estimated as a function of the velocity head of the water within

More information

pressure inside the valve just before the final release of air. in pipeline systems resulting from 2p 1 p a m C D A o

pressure inside the valve just before the final release of air. in pipeline systems resulting from 2p 1 p a m C D A o BY SRINIVASA LINGIREDDY, DON J. WOOD, AND NAFTALI ZLOZOWER It is a common practice to locate air valves at high elevations along water transmission mains. Improper sizing of an air valve could lead to

More information

VAL-MATIC VALVE AND MANUFACTURING CORP. 905 RIVERSIDE DRIVE, ELMHURST, IL 60126 TEL. (630) 941-7600 FAX.

VAL-MATIC VALVE AND MANUFACTURING CORP. 905 RIVERSIDE DRIVE, ELMHURST, IL 60126 TEL. (630) 941-7600 FAX. Cavitation in Valves VAL-MATIC VALVE AND MANUFACTURING CORP. 905 RIVERSIDE DRIVE, ELMHURST, IL 60126 TEL. (630) 941-7600 FAX. (630) 941-8042 www.valmatic.com CAVITATION IN VALVES INTRODUCTION Cavitation

More information

Pacific Pump and Power

Pacific Pump and Power Pacific Pump and Power 91-503 Nukuawa Street Kapolei, Hawaii 96707 Phone: (808) 672-8198 or (800) 975-5112 Fax: (866) 424-0953 Email: sales@pacificpumpandpower.com Web: www.pacificpumpandpower.com Pumps

More information

Multistage high-pressure multistage centrifugal pumps

Multistage high-pressure multistage centrifugal pumps Series description Wilo-Helix V 2 4 6 8 Wilo-Helix V 19-27 7 6 6 Hz - North America 22 2 18 5 16 14 4 12 3 1 V 1 V 19 V 27 8 2 6 1 5 1 15 2 25 3 4 2 35Q[US gpm] H[ft] H[m] Design Vertical multi-stage,

More information

C. starting positive displacement pumps with the discharge valve closed.

C. starting positive displacement pumps with the discharge valve closed. KNOWLEDGE: K1.04 [3.4/3.6] P78 The possibility of water hammer in a liquid system is minimized by... A. maintaining temperature above the saturation temperature. B. starting centrifugal pumps with the

More information

EJECTOR AIR REMOVAL SYSTEMS ENGINEERING DATA BULLETIN # PVS-80025201-ARS PAGE 1 OF 5

EJECTOR AIR REMOVAL SYSTEMS ENGINEERING DATA BULLETIN # PVS-80025201-ARS PAGE 1 OF 5 BULLETIN # PVS-80050-ARS PAGE OF 5 GENERAL Air Removal Systems generally consist of dual 00% (twin-element) ejecrs, single 00% surface-type inter- & aftercondensers, suction & discharge isolation valves

More information

In-Line Air Separators

In-Line Air Separators Air Elimination & Control In-Line Air Separators The AC models of air separators deliver all the quality and performance you expect from Taco products. They are built to last with shell, heads and ANSI

More information

Lecture 22 Example Culvert Design Much of the following is based on the USBR technical publication Design of Small Canal Structures (1978)

Lecture 22 Example Culvert Design Much of the following is based on the USBR technical publication Design of Small Canal Structures (1978) Lecture 22 Example Culvert Design Much of the following is based on the USBR technical publication Design of Small Canal Structures (1978) I. An Example Culvert Design Design a concrete culvert using the

More information

Chapter 15. FLUIDS. 15.1. What volume does 0.4 kg of alcohol occupy? What is the weight of this volume? m m 0.4 kg. ρ = = ; ρ = 5.

Chapter 15. FLUIDS. 15.1. What volume does 0.4 kg of alcohol occupy? What is the weight of this volume? m m 0.4 kg. ρ = = ; ρ = 5. Chapter 15. FLUIDS Density 15.1. What volume does 0.4 kg of alcohol occupy? What is the weight of this volume? m m 0.4 kg ρ = ; = = ; = 5.06 x 10-4 m ρ 790 kg/m W = D = ρg = 790 kg/m )(9.8 m/s )(5.06 x

More information

Nozzle Loads, Piping Stresses, and the Effect of Piping on Equipment

Nozzle Loads, Piping Stresses, and the Effect of Piping on Equipment Nozzle Loads, Piping Stresses, and the Effect of Piping on Equipment By Patty Brown & Mark van Ginhoven November 13, 2009 1 CA 2009 Fluor Corporation. All Rights Reserved. Topics Covered Introduction Nozzle

More information

MATHEMATICS FOR WATER OPERATORS

MATHEMATICS FOR WATER OPERATORS MATHEMATICS FOR WATER OPERATORS Chapter 16: Mathematics The understanding of the mathematics of water hydraulics (flows, pressures, volumes, horsepower, velocities) and water treatment (detention time,

More information

Pressure Reducing Valve Calculation Example

Pressure Reducing Valve Calculation Example Pressure Reducing Valve Calculation Example Procedure to Calculate the Pressure Values required to factory set a Pressure Reducing Valve. 1) First calculate the maximum static pressure available on the

More information

Selection Of Centrifugal Pumping Equipment 1

Selection Of Centrifugal Pumping Equipment 1 Circular 1048 Selection Of Centrifugal Pumping Equipment 1 Dorota Z. Haman, Fedro S. Zazueta, Forrest T. Izuno 2 INTRODUCTION The pump is an essential component of an irrigation system. Proper selection

More information

FI Frame-Mounted End Suction Pumps

FI Frame-Mounted End Suction Pumps Water Circulation Pumps & Circulators FI Frame-Mounted End Suction Pumps FI Series Pumps provide the ultimate in reliability and ease of installation for heating, air conditioning, pressure boosting, cooling

More information

JOB or CUSTOMER: ENGINEER: CONTRACTOR: SUBMITTED BY: SPECIFICATION REF: QUANTITY TAG NO. MODEL NO. GPM FEET LEAD LENGTH COMMENTS.

JOB or CUSTOMER: ENGINEER: CONTRACTOR: SUBMITTED BY: SPECIFICATION REF: QUANTITY TAG NO. MODEL NO. GPM FEET LEAD LENGTH COMMENTS. Redi-Flo2, 2 Environmental Submersible Pumps MP1 Submittal Data QUANTITY TAG NO. MODEL NO. GPM FEET LEAD LENGTH COMMENTS Technical Data Motor Type: Water-Filled, variable speed submersible Maximum Fluid

More information

Boiler Feed Pumps in Utility Power Stations. Generate Power Reliably and Economically

Boiler Feed Pumps in Utility Power Stations. Generate Power Reliably and Economically Boiler Feed Pumps in Utility Power Stations Generate Power Reliably and Economically We will make sure 2 KSB Your Pump and Valve Specialist Worldwide you achieve the maximum yield Through targeted investments

More information

The conditions below apply to the curves shown on the following pages.

The conditions below apply to the curves shown on the following pages. GENERAL INFORMATION STAINLESS STEEL, SILVERLINE, EVERGREEN & GOLDLINE SERIES PERFORMANCE CURVE CONDITIONS The conditions below apply to the curves shown on the following pages. a. The Performance curves

More information

CO 2 41.2 MPa (abs) 20 C

CO 2 41.2 MPa (abs) 20 C comp_02 A CO 2 cartridge is used to propel a small rocket cart. Compressed CO 2, stored at a pressure of 41.2 MPa (abs) and a temperature of 20 C, is expanded through a smoothly contoured converging nozzle

More information

Pipe Flow-Friction Factor Calculations with Excel

Pipe Flow-Friction Factor Calculations with Excel Pipe Flow-Friction Factor Calculations with Excel Course No: C03-022 Credit: 3 PDH Harlan H. Bengtson, PhD, P.E. Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 10980

More information

TRAINING BULLETIN Fire Apparatus Pump Test

TRAINING BULLETIN Fire Apparatus Pump Test TOPIC: TRAINING BULLETIN Fire Apparatus Pump Test EFFECTIVE DATE: 05/06 DOC NO: TB081 CROSS REF: INTRODUCTION District Fire Apparatus Pump Testing is completed on an annual basis. Currently, pump testing

More information

FIXED DISPLACEMENT HYDRAULIC VANE PUMPS BQ SERIES

FIXED DISPLACEMENT HYDRAULIC VANE PUMPS BQ SERIES BQ FIXED DISPLACEMENT HYDRAULIC VANE PUMPS BQ SERIES Versatility, power, compactness and low running costs are the main characteristics of B&C vane pumps. All the components subject to wear are contained

More information

FLUID MECHANICS. TUTORIAL No.7 FLUID FORCES. When you have completed this tutorial you should be able to. Solve forces due to pressure difference.

FLUID MECHANICS. TUTORIAL No.7 FLUID FORCES. When you have completed this tutorial you should be able to. Solve forces due to pressure difference. FLUID MECHANICS TUTORIAL No.7 FLUID FORCES When you have completed this tutorial you should be able to Solve forces due to pressure difference. Solve problems due to momentum changes. Solve problems involving

More information

300 Series PA Pump and Cooler Assemblies

300 Series PA Pump and Cooler Assemblies Type 300 Series PA Sizes 300 thru 370 (Page 1 of 9) 300 Series PA Pump and Cooler Assemblies Pump and Cooler Assemblies with Air/Oil Heat Exchanger When compact gear drives require assistance to dissipate

More information

Fire Pump Plan Review March 2010

Fire Pump Plan Review March 2010 Fire Pump Plan Review March 2010 Date of Review: / / Permit Number: Business/Building Name: Address of Project: Designer Name: Designer s Phone: Contractor: Contractor s Phone: Occupancy Classification:

More information

cmn_lecture.2 CAD OF DOUBLE PIPE HEAT EXCHANGERS

cmn_lecture.2 CAD OF DOUBLE PIPE HEAT EXCHANGERS cmn_lecture.2 CAD OF DOUBLE PIPE HEAT EXCHANGERS A double pipe heat exchanger, in essence, consists of two concentric pipes, one fluid flowing through the inner pipe and the outer fluid flowing countercurrently

More information

1. A belt pulley is 3 ft. in diameter and rotates at 250 rpm. The belt which is 5 ins. wide makes an angle of contact of 190 over the pulley.

1. A belt pulley is 3 ft. in diameter and rotates at 250 rpm. The belt which is 5 ins. wide makes an angle of contact of 190 over the pulley. Sample Questions REVISED FIRST CLASS PARTS A1, A2, AND A3 (NOTE: these questions are intended as representations of the style of questions that may appear on examinations. They are not intended as study

More information

SJT / SJM / SJP Large Vertical Pumps

SJT / SJM / SJP Large Vertical Pumps SJT / SJM / SJP Large Vertical Pumps The Heart of Your Process SJT, SJM, SJP Large Vertical Pumps Product Overview SJT Turbine Ns 1800 < 5000 nq 35 < 110 SJM Mixed Flow Ns 5800 < 8300 nq 113 < 161 SJP

More information

PEERLESS PUMP COMPANY SYSTEM ANALYSIS FOR PUMPING EQUIPMENT SELECTION

PEERLESS PUMP COMPANY SYSTEM ANALYSIS FOR PUMPING EQUIPMENT SELECTION PEERLESS PUMP COMPANY SYSTEM ANALYSIS FOR PUMPING EQUIPMENT SELECTION Peerless Pump Company 005 Dr. Martin Luther King Jr. Street P.O. Box 706 Indianapolis, Indiana 4607-706 Phone: (317) 95-9661 Fax: (317)

More information

OUR PRODUCTS TRH-TRS-TRM-TRV. LIQUID RING VACUUM PUMPS AND COMPRESSORS Capacity up to 2100 ACFM Vacuum to 29 Hg. Our Other Products.

OUR PRODUCTS TRH-TRS-TRM-TRV. LIQUID RING VACUUM PUMPS AND COMPRESSORS Capacity up to 2100 ACFM Vacuum to 29 Hg. Our Other Products. Our Other Products OUR PRODUCTS Liquid Ring & Rotary Vane Vacuum Pumps and Systems Liquid Ring Vacuum Pumps: 3 CFM to,000 CFM Liquid Ring Compressors up to 1 psig Heat Transfer Pumps for hot thermal oils

More information

OUTCOME 1 STATIC FLUID SYSTEMS TUTORIAL 1 - HYDROSTATICS

OUTCOME 1 STATIC FLUID SYSTEMS TUTORIAL 1 - HYDROSTATICS Unit 41: Fluid Mechanics Unit code: T/601/1445 QCF Level: 4 Credit value: 15 OUTCOME 1 STATIC FLUID SYSTEMS TUTORIAL 1 - HYDROSTATICS 1. Be able to determine the behavioural characteristics and parameters

More information

Centrifugal Pump Handbook

Centrifugal Pump Handbook Centrifugal Pump Handbook Centrifugal Pump Handbook Third edition Sulzer Pumps Ltd Winterthur, Switzerland AMSTERDAM. BOSTON. HEIDELBERG. LONDON NEW YORK. OXFORD. PARIS. SAN DIEGO SAN FRANCISCO. SINGAPORE.

More information

MOBILE FIRE - RESCUE DEPARTMENT FIRE CODE ADMINISTRATION

MOBILE FIRE - RESCUE DEPARTMENT FIRE CODE ADMINISTRATION MOBILE FIRE - RESCUE DEPARTMENT FIRE CODE ADMINISTRATION Fire Pump Plan Review 2009 International Fire Code and NFPA 20 Date of Review / / BLD201 - Project Address: Project Name: Contractor s Business

More information

Air Eliminators and Combination Air Eliminators Strainers

Air Eliminators and Combination Air Eliminators Strainers Description Air Eliminators and Combination Air Eliminator Strainers are designed to provide separation, elimination and prevention of air in piping systems for a variety of installations and conditions.

More information

BSM MOTOR DRIVEN CENTRIFUGAL PUMPS

BSM MOTOR DRIVEN CENTRIFUGAL PUMPS PRINCIPLE OF OPERATION A hydraulically and dynamically balanced impeller with raised vane sections discharges liquid as a result of the centrifugal force developed in rotation. The head developed is entirely

More information

VARIABLE DISPLACEMENT AXIAL PISTON PUMPS. For truck applications

VARIABLE DISPLACEMENT AXIAL PISTON PUMPS. For truck applications VARIABLE DISPLACEMENT AXIAL PISTON PUMPS For truck applications TVP FEATURES Variable displacement axial piston pumps swash plate design ideally suited for open circuit truck applications. The compact

More information

Vertical selfpriming Side-Channel Pumps Type WPV

Vertical selfpriming Side-Channel Pumps Type WPV Vertical selfpriming Side-Channel Pumps Type WPV FIELD OF APPLICATION The side-channel pumps are selfpriming and operate more economically (better efficiency) than normal centrifugal pumps when handling

More information

Anti-Cavitation Trim. Eliminates cavitation damage Reduces noise Preserves valve and surrounding pipe systems. singervalve.com

Anti-Cavitation Trim. Eliminates cavitation damage Reduces noise Preserves valve and surrounding pipe systems. singervalve.com Anti-Cavitation Trim Eliminates cavitation damage Reduces noise Preserves valve and surrounding pipe systems Say Goodbye to Cavitation Damage! Cavitation, a common problem in pumps and control valves,

More information

DATA COLLECTION AND PUMP ENERGY SAVING OPPORTUNITIES. Presented By: Rick Rumsey, P.E.

DATA COLLECTION AND PUMP ENERGY SAVING OPPORTUNITIES. Presented By: Rick Rumsey, P.E. DATA COLLECTION AND PUMP ENERGY SAVING OPPORTUNITIES Presented By: Rick Rumsey, P.E. Data Collection Customer Information Pump Motor Information Pump Information Irrigation System Information Historic

More information

Design of Sewage Pumping Stations by John Zoeller, PE, CEO/President

Design of Sewage Pumping Stations by John Zoeller, PE, CEO/President Design of Sewage Pumping Stations by John Zoeller, PE, CEO/President This article provides guidelines for designing municipal pumping systems. There are three types of sewage handling systems: 1. Municipal

More information

Sta-Rite Industries Basic Training Manual

Sta-Rite Industries Basic Training Manual LOW SPEED BOOSTER PUMP HIGH SPEED FILTER PUMP AUX 1 AUX 2 1915 0895 Sta-Rite Industries Basic Training Manual THIRD EDITION Hydraulics Pumps Motors Filtration Heaters 2668 0397NF 2003 Sta-Rite Industries,

More information

TECHNICAL BROCHURE BAQUABII. * Available up to 100 GPM systems. Aquavar ABII VARIABLE SPEED CONSTANT PRESSURE SYSTEMS

TECHNICAL BROCHURE BAQUABII. * Available up to 100 GPM systems. Aquavar ABII VARIABLE SPEED CONSTANT PRESSURE SYSTEMS TECHNICAL BROCHURE BAQUABII * Available up to 1 GPM systems Aquavar ABII VARIABLE SPEED CONSTANT PRESSURE SYSTEMS FEATURES The AB2 variable speed pump controller and complete booster package kits, provide

More information

TECHNICAL BROCHURE B5-33GB 5GB, 7GB, 10GB, 18GB, 25GB, 33GB HIGH PRESSURE MULTI-STAGE BOOSTER PUMP

TECHNICAL BROCHURE B5-33GB 5GB, 7GB, 10GB, 18GB, 25GB, 33GB HIGH PRESSURE MULTI-STAGE BOOSTER PUMP TECHNICAL BROCHURE B-33GB GB, 7GB, 1GB, 18GB, 2GB, 33GB HIGH PRESSURE MULTI-STAGE BOOSTER PUMP FEATURES Multi-stage Design: Provides steady, quiet, vibration free, operation. Optional Stainless Steel Construction:

More information

Pump Maintenance - Repair

Pump Maintenance - Repair Pump Maintenance - Repair Brian Trombly Mo Droppers Cummins Bridgeway, Gaylord, Mi The basic centrifugal pump consists of two main elements: 1. The rotating element which includes an impeller and a shaft.

More information

Twin Screw Technology. General Overview and Multiphase Boosting 11/2013. Calgary Pump Symposium 2013

Twin Screw Technology. General Overview and Multiphase Boosting 11/2013. Calgary Pump Symposium 2013 Twin Screw Technology General Overview and Multiphase Boosting 11/2013 Axel Jäschke Technical Director - ITT Bornemann USA Office: Mobile: +1 832 320 2500 +49 170 576 4115 +1 832 293 7935 1 Bio Axel Jäschke

More information

What is the most obvious difference between pipe flow and open channel flow????????????? (in terms of flow conditions and energy situation)

What is the most obvious difference between pipe flow and open channel flow????????????? (in terms of flow conditions and energy situation) OPEN CHANNEL FLOW 1 3 Question What is the most obvious difference between pipe flow and open channel flow????????????? (in terms of flow conditions and energy situation) Typical open channel shapes Figure

More information

Chapter 3.5: Fans and Blowers

Chapter 3.5: Fans and Blowers Part I: Objective type questions and answers Chapter 3.5: Fans and Blowers 1. The parameter used by ASME to define fans, blowers and compressors is a) Fan ration b) Specific ratio c) Blade ratio d) Twist

More information

SPRINKLER SYSTEM PLANS AND CALCULATIONS CHECK LIST

SPRINKLER SYSTEM PLANS AND CALCULATIONS CHECK LIST SPRINKLER SYSTEM PLANS AND CALCULATIONS CHECK LIST 1. Working plans shall be drawn to an indicated scale, on sheets of uniform size, with a plan of each floor, and shall show those items from the following

More information

PLAN CHECK CORRECTION SHEET FOR PLUMBING SYSTEMS 2014 LAPC

PLAN CHECK CORRECTION SHEET FOR PLUMBING SYSTEMS 2014 LAPC PLAN CHECK CORRECTION SHEET FOR PLUMBING SYSTEMS 2014 LAPC This is intended to provide uniform application of the codes by the plan check staff and to help the public apply the codes correctly. Section:

More information

SIZING OF WATER PIPING SYSTEM

SIZING OF WATER PIPING SYSTEM SIZING OF WATER PIPING SYSTEM SECTION E101 GENERAL E101.1 Scope. E101.1.1 This appendix outlines two procedures for sizing a water piping system (see Sections E103.3 and E201.1). The design procedures

More information

APCO SLOW CLOSING AIR/VACUUM VALVES

APCO SLOW CLOSING AIR/VACUUM VALVES BULLETIN 1 JULY 01 APCO SLOW CLOSING AIR/VACUUM VALVES Series 1900 APCO Slow Closing Air/Vacuum s Maximum Air Flow Velocity in Good Pipeline Design The Air/Vacuum operates in the normal fashion allowing

More information

Welcome to Grindex Pump handbook! With this handbook we want to share some of our wide experience in pumping with submersible pumps.

Welcome to Grindex Pump handbook! With this handbook we want to share some of our wide experience in pumping with submersible pumps. 5 Hz PUMP HANDBOOK Welcome to Grindex Pump handbook! With this handbook we want to share some of our wide experience in pumping with submersible pumps. You will find an overview of all Grindex pumps with

More information

1.0 2.0 3.0 4.0 5.0 6.0 7.0. Q [m 3 /h] Wilo-Star Cast iron body 60 Hz. Star 30 F. Star 21. Star 17 FX. 4 8 12 16 20 24 28 Q [US gpm]

1.0 2.0 3.0 4.0 5.0 6.0 7.0. Q [m 3 /h] Wilo-Star Cast iron body 60 Hz. Star 30 F. Star 21. Star 17 FX. 4 8 12 16 20 24 28 Q [US gpm] Product review: Range: Wilo-Star....... Star F Star Star Star F Star Star FX [m /h] Wilo-Star Cast iron body Hz [US gpm].......... [m /h] Wilo-Star Bronze body 9 Hz [US gpm] Star Star Star Star Star BF

More information

Pumping Fuel & Fuel Oil

Pumping Fuel & Fuel Oil Pumping Fuel & Fuel Oil Fuels & Rotary Pumps Though the handling of fuel oil is not necessarily "challenging," the reliable handling of fuel oils is critical for heating and transportation systems. Rotary

More information

Automatic Sprinkler System Calculations

Automatic Sprinkler System Calculations SECTION FOUR CHAPTER 3 Automatic Sprinkler System Calculations Russell P. Fleming Introduction Applications Where Water Is Appropriate Water is the most commonly used fire extinguishing agent, mainly due

More information

Laddomat 21-60 Charging unit

Laddomat 21-60 Charging unit Laddomat 21-60 Charging unit User and installation instructions NOTE! Diagrams in this brochure only describe connection principles. Each installation must be measured and carried out according to the

More information

ACCUMULATOR INSTALLATION

ACCUMULATOR INSTALLATION 7001-7 ACCUMULATOR INSTALLATION BRAKE ACCUMULATORS I 308L93 Rae 7-59710 Issued 6-93 Printed in U.S.A 7001-8 Removal ACCUMULATOR VALVE 1. Park the machine on a level surface and lower the. loader bucket

More information

Irrigation Pump Variable Frequency Drive (VFD) Energy Savings Calculation Methodology. Public Utility District No. 1 of Chelan County

Irrigation Pump Variable Frequency Drive (VFD) Energy Savings Calculation Methodology. Public Utility District No. 1 of Chelan County Irrigation Pump Variable Frequency Drive (VFD) Energy Savings Calculation Methodology Public Utility District No. 1 of Chelan County This paper describes how to calculate energy saved by installing a variable

More information

Water hammering in fire fighting installation

Water hammering in fire fighting installation Water hammering in fire fighting installation Forward One of major problems raised in the fire fighting network installed at Pioneer company for pharmaceutical industry /Sulaymania was the high water hammering

More information

ELECTRIC/DIESEL FIRE PUMP CHECK LIST

ELECTRIC/DIESEL FIRE PUMP CHECK LIST BUILDING NAME: DESIGNER: SCO REPRESENTATIVE: PUMP MANUF.: LOCATION: INSTALLER: DATE: OWNER NAME: INSTALLATION Certificate for flushing and hydrostatic test furnished Piping been hydrostatically tested

More information

FLUID FLOW Introduction General Description

FLUID FLOW Introduction General Description FLUID FLOW Introduction Fluid flow is an important part of many processes, including transporting materials from one point to another, mixing of materials, and chemical reactions. In this experiment, you

More information

Experiment (13): Flow channel

Experiment (13): Flow channel Introduction: An open channel is a duct in which the liquid flows with a free surface exposed to atmospheric pressure. Along the length of the duct, the pressure at the surface is therefore constant and

More information

Self-contained valve functions as integral check valve, flow sensing element and bypass control valve.

Self-contained valve functions as integral check valve, flow sensing element and bypass control valve. Self-contained valve functions as integral check valve, flow sensing element and bypass control valve. Features Eliminates high cost of installation and maintenance of complex conventional flow control

More information

Sheet 5:Chapter 5 5 1C Name four physical quantities that are conserved and two quantities that are not conserved during a process.

Sheet 5:Chapter 5 5 1C Name four physical quantities that are conserved and two quantities that are not conserved during a process. Thermo 1 (MEP 261) Thermodynamics An Engineering Approach Yunus A. Cengel & Michael A. Boles 7 th Edition, McGraw-Hill Companies, ISBN-978-0-07-352932-5, 2008 Sheet 5:Chapter 5 5 1C Name four physical

More information

Quiz On Information Learned From Chapter 1

Quiz On Information Learned From Chapter 1 Quiz On Information Learned From Chapter 1 1. Most hydraulic circuits are designed by: A. mechanical engineers. B. fluid power engineers. C. fluid power distributor salesmen. 2. Atmospheric pressure at

More information

CHAPTER 3 STORM DRAINAGE SYSTEMS

CHAPTER 3 STORM DRAINAGE SYSTEMS CHAPTER 3 STORM DRAINAGE SYSTEMS 3.7 Storm Drains 3.7.1 Introduction After the tentative locations of inlets, drain pipes, and outfalls with tail-waters have been determined and the inlets sized, the next

More information

APPENDIX A CONTROL VALVE TESTING PROCEDURES AND EQUATIONS FOR LIQUID FLOWS

APPENDIX A CONTROL VALVE TESTING PROCEDURES AND EQUATIONS FOR LIQUID FLOWS APPENDIX A CONTROL VALVE TESTING PROCEDURES AND EQUATIONS FOR LIQUID FLOWS Section A.1. Flow Coefficients Definition The flow coefficient or pressure loss coefficient is used to relate the pressure loss

More information

HYDROSTATIC TEST PUMPS

HYDROSTATIC TEST PUMPS HYDROSTATIC TEST PUMPS MANUAL HYDROSTATIC TEST PUMPS Ideal for testing residential water lines. Also for pressure testing small pressure tanks, sprinkler, boiler and solar systems. Lightweight and easy

More information

Model 362A AURORA. 340A/360A Series SINGLE STAGE END SUCTION PUMPS. www.aurorapump.com

Model 362A AURORA. 340A/360A Series SINGLE STAGE END SUCTION PUMPS. www.aurorapump.com Model 62A MODEL 41A MODEL 44A AURORA 40A/60A Series SINGLE STAGE END PUMPS www.aurorapump.com SINGLE STAGE END PUMPS AURORA 40A/60A Series Single Stage End Suction Pumps Capacities to 4500 G.P.M. (1022

More information

Chapter 8: Flow in Pipes

Chapter 8: Flow in Pipes Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks

More information

Pump Specifications 2448LSG, 2448LSGX Series Omnivore 2HP Simplex Grinder Packages

Pump Specifications 2448LSG, 2448LSGX Series Omnivore 2HP Simplex Grinder Packages Pump Specifications 2448LSG, 2448LSGX Series Omnivore 2HP Simplex Grinder Packages 2448LSG_P1 R4/2/2012 Copyright 2012 Liberty Pumps Inc. All rights reserved. Specifications subject to change without notice.

More information

How To Install A Mazzei Injector

How To Install A Mazzei Injector TECHNICAL BULLETIN No. 4 USE OF MAZZEI INJECTORS IN WATER-WELL / PRESSURE TANK APPLICATIONS The selection, installation and use of Mazzei Injectors in water-well/pressure tank systems is quite straightforward.

More information

BOWIE PUMPS OPERATION - MAINTENANCE

BOWIE PUMPS OPERATION - MAINTENANCE BOWIE PUMPS OPERATION - MAINTENANCE PUMPING PRINCIPLE: The meshing owieeof the gears cause a slight depression, with the resulting enmeshing of the gears causing a vacuum drawing the fluid being pumped

More information

Variable Displacement Pump AA10VSO

Variable Displacement Pump AA10VSO Variable Displacement Pump AA10VSO Series 31, Industrial Model, for Open Circuits Axial piston, swashplate design Brueninghaus Hydromatik Sizes 28...140 Nominal pressure 4000 psi Peak pressure 5100 psi

More information

Method to Determine PERFORMANCE OF INDIRECT-FIRED WATER HEATERS March 2003 Edition

Method to Determine PERFORMANCE OF INDIRECT-FIRED WATER HEATERS March 2003 Edition Supplement to TESTING STANDARD Method to Determine PERFORMANCE OF INDIRECT-FIRED WATER HEATERS March 2003 Edition [NOTE: This supplement incorporates testing and calculations to determine heat source friction

More information

Unit 24: Applications of Pneumatics and Hydraulics

Unit 24: Applications of Pneumatics and Hydraulics Unit 24: Applications of Pneumatics and Hydraulics Unit code: J/601/1496 QCF level: 4 Credit value: 15 OUTCOME 2 TUTORIAL 1 HYDRAULIC PUMPS The material needed for outcome 2 is very extensive so there

More information

Agricultural Pumping Efficiency Improvements

Agricultural Pumping Efficiency Improvements APPLICATION NOTE An In-Depth Examination of an Energy Efficiency Technology Agricultural Pumping Efficiency Improvements Summary...1 How This Technology Saves Energy...2 Types of Energy Efficiency Measures...4

More information

CHAPTER ONE Fluid Fundamentals

CHAPTER ONE Fluid Fundamentals CHPTER ONE Fluid Fundamentals 1.1 FLUID PROPERTIES 1.1.1 Mass and Weight Mass, m, is a property that describes the amount of matter in an object or fluid. Typical units are slugs in U.S. customary units,

More information

Pipe Sizes For Water Distribution System Design

Pipe Sizes For Water Distribution System Design Appendix D Pipe Sizes For Water Distribution System Design D-. This appendix contains information to help determine pipe sizes when designing a water distribution system. Use Table D- and Tables D- through

More information

Hydrant flow testing data provides important

Hydrant flow testing data provides important feat40606.qxd 5/30/06 5:24 PM Page 44 The use of hydrant flow testing data to design automatic sprinkler systems has gotten easier thanks to new computer modeling software. By Dr. Sang H. Wong Hydrant

More information