Newton s Laws Name: Per: Teacher: What is a force? Newton s First Law (Law of Inertial) What do forces cause?


 Maurice Burns
 1 years ago
 Views:
Transcription
1 Physics B Newton s Laws Name: Per: Teacher: What is a force? Newton s First Law (Law of Inertial) What do forces cause? What is the relationship between mass and inertia? Draw a force diagram on the book. Draw a free body diagram on the book. Sample Problem: A heavy block hangs from a string attached to a rod. An identical string hangs down from the bottom of the block. Which string breaks a) when the lower string is pulled with a slowly increasing force? b) when the lower string is pulled with a quick jerk? Sample problem: Draw a force diagram and a free body diagram for a monkey hanging motionless by one arm from a vine attached to a tree. Newton s Second Law Statement: Equation: Sample problem: Draw a force diagram and a free body diagram for a monkey hanging motionless by two arms from two vines attached to neighboring trees. Units of force (SI unit only): Working 2 nd Law Problems 1. Identify the system being accelerated. 2. Define a coordinate system. 3. Identify forces by drawing a force or free body diagram. 4. Explicitly write ΣF=ma 5. Replace ΣF with the actual forces in your free body diagram. 6. Substitute numeric values, where appropriate, and solve for unknowns. 9/19/ Bertrand/Perkins
2 Sample problem: In a grocery store, you push a 14.5kg cart with a force of 12.0 N. If the cart starts at rest, how far does it move in 3.00 seconds? Newton s Third Law Colloquial Definition: For every action there exists an equal and opposite reaction. Physics Definition: Sample Problem: You rest an empty glass on a table. a) Identify the forces acting on the glass with a free body diagram. Sample problem: A catcher stops a 92 mph pitch in his glove, bringing it to rest in 0.15 m. If the force exerted by the catcher is 803 N, what is the mass of the ball? b) Are these forces equal and opposite? Sample problem: A 747 jetliner lands and begins to slow to a stop as it moves along the runway. Its mass is 3.50 x 10 5 kg, its speed is 27.0 m/s, and the net braking force is 4.30 x 10 5 N a) What is its speed 7.50 s later? c) Are these forces an actionreaction pair? Why or why not? Requirements for Newton s Laws b) How far has it traveled in this time? 1. The 1 st and 2 nd laws require that ONE system be analyzed and that ALL the forces on the system be accounted for. 2. The 3 rd law requires that TWO systems be analyzed and that the forces of interaction between the two be accounted for. 9/19/ Bertrand/Perkins
3 Sample problem: How long will it take a 1.0 kg block initially at rest to slide down a frictionless 20.0 m long ramp that is at a 15 o angle with the horizontal? Sample Problem: A force of magnitude 7.50 N pushes three boxes as shown. Find the acceleration of the system. Sample Problem: A force of magnitude 7.50 N pushes three boxes as shown. Find the force that box 2 exerts on box 3. Sample problem: An object acted on by three forces moves with constant velocity. One force acting on the object is in the positive x direction and has a magnitude of 6.5 N; a second force has a magnitude of 4.4 N and points in the negative y direction. Find the direction and magnitude of the third force acting on the object. Sample problem: Draw a force diagram and a free body diagram for the man pushing the chair across the floor. What is the relationship between mass and inertia? Problem: A skier skis down a slope with an acceleration of 3.50 m/s 2. If friction can be ignored, what is the angle of the slope with respect to the horizontal? What is the relationship between mass and weight (near the earth s surface? 9/19/ Bertrand/Perkins
4 Sample problem: A man weighs 150 pounds on the surface of the earth at sea level. Calculate his a) mass in kg. Sample problem: A 5kg salmon is hanging from a fish scale in an elevator. What is the salmon s apparent weight when the elevator is a) at rest b) weight in Newtons. b) moving downward and slowing at 3.2 m/s 2? Apparent weight Apparent weight is the force which acts on a body in opposition to gravity to prevent the body from going into freefall. Sample problem: An 85kg person is standing on a bathroom scale in an elevator. What is the person s apparent weight a) when the elevator accelerates upward at 2.0 m/s 2? Normal force Definition: b) when the elevator is moving at constant velocity between floors? The normal force is always to a surface. Problem: derive an expression for the normal force of a box on a flat table. c) when the elevator begins to slow at the top floor at 2.0 m/s 2? 9/19/ Bertrand/Perkins
5 Problem: Derive an expression for the normal force of a box sitting on a ramp. Sample problem: A 2.5 kg book rests on a surface inclined at 28 o above the horizontal Find the normal force. θ Problem: derive an expression for the normal force an eraser being pushed up against a whiteboard by a force F. If the angle of the incline is reduced, do you expect the normal force to increase, decrease, or stay the same? Explain your reasoning. Friction Definition: Problem: Derive the normal force for the box in the picture below. The box is sitting on the floor, but is being pulled by the force shown. Ignore friction. What causes friction? How is friction useful? What type of energy does friction often generate? F = 20 N What other force is directly related to the friction force? Why do you think this force causes friction to exist? 6.0 kg 40 o 9/19/ Bertrand/Perkins
6 What are the two main types of friction? Static Friction Defition: Sample problem: A 10kg wooden box rests on a wooden floor. The coefficient of static friction is 0.50, and the coefficient of kinetic friction is What is the friction force between the box and floor if a) no force horizontal force is applied to the box? Equation: Kinetic Friction Defition: b) a 20 N horizontal force is applied to the box? Equation: Problem: A 10kg box rests on a ramp that is laying flat. The coefficient of static friction is 0.50, and the coefficient of kinetic friction is a) What is the maximum horizontal force that can be applied to the box before it begins to slide? c) a 60 N horizontal force is applied to the box? Problem: A 10kg wooden box rests on a wooden ramp. The coefficient of static friction is 0.50, and the coefficient of kinetic friction is What is the friction force between the box and ramp if a) the ramp is at a 25 o angle? b) What force is necessary to keep the box sliding at constant velocity? 9/19/ Bertrand/Perkins
7 b) the ramp is at a 45 o angle? Springs Hooke s Law Definition: Equation: c) what is the acceleration of the box when the ramp is at 45 o? Why is the sign in the Hooke s Law equation negative? Problem: A 1.50 kg object hangs motionless from a spring with a force constant of k = 250 N/m. How far is the spring stretched from its equilibrium length? Tension Define tension: Sample problem: A 1,500 kg crate hangs from a crane cable. a) What is the tension in the cable when the crate is motionless? Ignore the mass of the cable. Problem: A 1.80 kg object is connected to a spring of force constant 120 N/m. How far is the spring stretched if it is used to drag the object across a floor at constant velocity? Assume the coefficient of kinetic friction is b) Suppose the crane accelerates the crate upward at 1.2 m/s 2. What is the tension in the cable now? 9/19/ Bertrand/Perkins
8 Problem: A 5.0 kg object is connected to a 10.0 kg object by a string. If a pulling force F of 20 N is applied to the 5.0 kg object, a) what is the acceleration of the system? Sample problem: A 10 kg block rests on a table connected by a string to a 5 kg block Find the minimum coefficient of static friction for which the blocks remain stationary. m1 Frictionless table m2 b)what is the tension in the string connecting the objects? Problem: Derive the acceleration, assuming a coefficient of friction of 0.20 between the table and the 3.0 kg block. Determine the tension in the string. Pulleys What is the main effect of a magic pulley on a Newton s 2 nd Law problem? 3.0 kg 35 o 5.0 kg Sample problem: Derive an expression for the acceleration due to gravity of the system below, and for the tension in the string. m 1 Frictionless table m 2 Uniform Circular Motion Definition: Question: Why is uniform circular motion accelerated motion? 9/19/ Bertrand/Perkins
9 Question: What is centrifugal force? Problem: A 1200kg car rounds a corner of radius r = 45 m. If the coefficient of static friction between tires and the road is 0.93, what is the maximum velocity the car can have without skidding? Question: If your body feels flung in a certain direction, in which direction is the net force acting upon your body. Centripetal Acceleration Definition: Picture: Problem: You whirl a 1.0 kg stone in a horizontal circle about your head. The rope attached to the stone is 1.5 m long. What is the tension in the rope? (The rope makes a 10 o angle with the horizontal). Equation: Centripetal Force Definition: b) How fast is the stone moving? Newton s 2 nd Law with centripetal acceleration: Forces that can cause centripetal acceleration: 9/19/ Bertrand/Perkins
10 Newton s Law of Universal Gravitation Definition: planet Jupiter does. Is Joe correct? (Assume a 100lb Lab 1.0 meter away, and Jupiter at its farthest distance from Earth). Equation Problem: a) How much force does the earth exert on the moon? b) How much force does the moon exert on the earth? Problem: What would be your weight if you were orbiting the earth in a satellite at an altitude of 3,000,000 km above the earth s surface? (Note that even though you are apparently weightless, gravity is still exerting a force on your body, and this is your actual weight.) Problem: Using centripetal force and Newton s Law of Universal Gravitation, derive the mass of the sun using the orbit of the earth. Problem: Derive the numeric value of the acceleration due to gravity on the surface of the earth. Start with Newton s 2 nd Law. Problem: Sally, an astrology buff, claims that the position of the planet Jupiter influences events in her life. She surmises this is due to its gravitational pull. Joe scoffs at Sally and says your Labrador Retriever exerts more gravitational pull on your body than the 9/19/ Bertrand/Perkins
11 Problem: What is the acceleration due to gravity at an altitude equal to twice the earth s radius? Problem: What velocity does a satellite in orbit about the earth at an altitude of 25,000 km have? What is the period of this satellite? Problem: What is the acceleration due to gravity at the surface of the moon? Kepler s Laws 1. Planets orbit the sun in elliptical orbits, with the sun at a focus. 2. Planets orbiting the sun carve out equal area triangles in equal times. 3. The planet s year is related to its distance from the sun in a predictable way. Problem: A geosynchronous satellite is one which remains above the same point on the earth. Such a satellite orbits the earth in 24 hours, thus matching the earth's rotation. How high must must a geosynchronous satellite be above the surface to maintain a geosynchronous orbit? Problem: Using Newton s Law of Universal Gravitation, derive a formula to show how the period of a planet s orbit varies with the radius of that orbit. Assume a nearly circular orbit. (This is a derivation of Kepler s 3 rd Law.) 9/19/ Bertrand/Perkins
12 Physics B Newton s Laws Name: Per: Teacher: A176 B1. In the system shown at right, the block of mass M 1 is on a rough horizontal table. The string that attaches it to the block of mass M 2 passes over a frictionless pulley of negligible mass. The coefficient of kinetic friction µ k between M 1 and the table is less than the coefficient of static friction µ s a. On the diagram below, draw and identify all the forces acting on the block of mass M 1. M1 b. In terms of M 1 and M 2 determine the minimum value of µ s that will prevent the blocks from moving. The blocks are set in motion by giving M 2 a momentary downward push. In terms of M 1, M 2, µ k, and g, determine each of the following: c. The magnitude of the acceleration of M 1 d. The tension in the string. 9/19/ Bertrand/Perkins
13 A178 B1. An object of mass M on a string is whirled with increasing speed in a horizontal circle, as shown at right. When the string breaks, the object has speed v o and the circular path has radius R and is a height h above the ground. Neglect air friction. a. Determine the following, expressing all answers in terms of h, v o, and g. i. The time required for the object to hit the ground after the string breaks ii. The horizontal distance the object travels from the time the string breaks until it hits the ground iii. The speed of the object just before it hits the ground b. On the figure below, draw and label all the forces acting on the object when it is in the position shown in the diagram above.. c. Determine the tension in the string just before the string breaks. Express your answer in terms of M, R, v o, and g. 9/19/ Bertrand/Perkins
14 A182 B1. A student whose normal weight is 500 newtons stands on a scale in an elevator and records the scale reading as a function of time. The data are shown in the graph above. At time t = 0, the elevator is at displacement x = 0 with velocity v = 0. Assume that the positive directions for displacement, velocity, and acceleration are upward. a. On the diagram below, draw and label all of the forces on the student at t = 8 seconds. b. Calculate the acceleration a of the elevator for each 5second interval. i. Indicate your results by completing the following table. Time Interval (s) a (m s 2 ) ii. Plot the acceleration as a function of time on the following graph. 9/19/ Bertrand/Perkins
15 c. Determine the velocity v of the elevator at the end of each 5second interval. i. Indicate your results by completing the following table. Time (s) v (m s) ii. Plot the velocity as a function of time on the following graph. d. Determine the displacement x of the elevator above the starting point at the end of each 5second interval. i. Indicate your results by completing the following table. Time (s) x (m) ii. Plot the displacement as a function of time on the following graph. 9/19/ Bertrand/Perkins
16 S099 B5 (10 pts) A coin C of mass kg is placed on a horizontal disk at a distance of 0.14 m from the center, as shown above. The disk rotates at a constant rate in a counterclockwise direction as seen from above. The coin does not slip, and the time it takes for the coin to make a complete revolution is 1.5 s. a. The figure below shows the disk and coin as viewed from above. Draw and label vectors on the figure below to show the instantaneous acceleration and linear velocity vectors for the coin when it is at the position shown. b. Determine the linear speed of the coin. c. The rate of rotation of the disk is gradually increased. The coefficient of static friction between the coin and the disk is Determine the linear speed of the coin when it just begins to slip. d. If the experiment in part (c) were repeated with a second, identical coin glued to the top of the first coin, how would this affect the answer to part (c)? Explain your reasoning. 9/19/ Bertrand/Perkins
1. Newton s Laws of Motion and their Applications Tutorial 1
1. Newton s Laws of Motion and their Applications Tutorial 1 1.1 On a planet far, far away, an astronaut picks up a rock. The rock has a mass of 5.00 kg, and on this particular planet its weight is 40.0
More informationChapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.
Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular
More information2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration.
2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. Dynamics looks at the cause of acceleration: an unbalanced force. Isaac Newton was
More informationC B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N
Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a
More informationChapter 4 Dynamics: Newton s Laws of Motion
Chapter 4 Dynamics: Newton s Laws of Motion Units of Chapter 4 Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal
More informationcircular motion & gravitation physics 111N
circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would
More informationPhysics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion
Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckleup? A) the first law
More informationPhysics 2A, Sec B00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam
Physics 2A, Sec B00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry
More informationPHY121 #8 Midterm I 3.06.2013
PHY11 #8 Midterm I 3.06.013 AP Physics Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension
More informationUnits DEMO spring scales masses
Dynamics the study of the causes and changes of motion Force Force Categories ContactField 4 fundamental Force Types 1 Gravity 2 Weak Nuclear Force 3 Electromagnetic 4 Strong Nuclear Force Units DEMO spring
More informationChapter 4: Newton s Laws: Explaining Motion
Chapter 4: Newton s Laws: Explaining Motion 1. All except one of the following require the application of a net force. Which one is the exception? A. to change an object from a state of rest to a state
More information5. Forces and MotionI. Force is an interaction that causes the acceleration of a body. A vector quantity.
5. Forces and MotionI 1 Force is an interaction that causes the acceleration of a body. A vector quantity. Newton's First Law: Consider a body on which no net force acts. If the body is at rest, it will
More informationConceptual Questions: Forces and Newton s Laws
Conceptual Questions: Forces and Newton s Laws 1. An object can have motion only if a net force acts on it. his statement is a. true b. false 2. And the reason for this (refer to previous question) is
More informationLAB 6: GRAVITATIONAL AND PASSIVE FORCES
55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction
More informationLAB 6  GRAVITATIONAL AND PASSIVE FORCES
L061 Name Date Partners LAB 6  GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies
More informationThis week s homework. 2 parts Quiz on Friday, Ch. 4 Today s class: Newton s third law Friction Pulleys tension. PHYS 2: Chap.
This week s homework. 2 parts Quiz on Friday, Ch. 4 Today s class: Newton s third law Friction Pulleys tension PHYS 2: Chap. 19, Pg 2 1 New Topic Phys 1021 Ch 7, p 3 A 2.0 kg wood box slides down a vertical
More informationAP Physics C Fall Final Web Review
Name: Class: _ Date: _ AP Physics C Fall Final Web Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. On a position versus time graph, the slope of
More informationPHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?
1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always
More informationF N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26
Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250N force is directed horizontally as shown to push a 29kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,
More informationWork, Energy and Power Practice Test 1
Name: ate: 1. How much work is required to lift a 2kilogram mass to a height of 10 meters?. 5 joules. 20 joules. 100 joules. 200 joules 5. ar and car of equal mass travel up a hill. ar moves up the hill
More informationChapter 5 Newton s Laws of Motion
Chapter 5 Newton s Laws of Motion Sir Isaac Newton (1642 1727) Developed a picture of the universe as a subtle, elaborate clockwork slowly unwinding according to welldefined rules. The book Philosophiae
More informationPHY231 Section 1, Form B March 22, 2012
1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate
More informationPhysics 125 Practice Exam #3 Chapters 67 Professor Siegel
Physics 125 Practice Exam #3 Chapters 67 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the
More informationNewton s Laws of Motion
Physics Newton s Laws of Motion Newton s Laws of Motion 4.1 Objectives Explain Newton s first law of motion. Explain Newton s second law of motion. Explain Newton s third law of motion. Solve problems
More informationChapter 3.8 & 6 Solutions
Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled
More informationAP Physics  Chapter 8 Practice Test
AP Physics  Chapter 8 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A single conservative force F x = (6.0x 12) N (x is in m) acts on
More information9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J
1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9
More informationb. Velocity tells you both speed and direction of an object s movement. Velocity is the change in position divided by the change in time.
I. What is Motion? a. Motion  is when an object changes place or position. To properly describe motion, you need to use the following: 1. Start and end position? 2. Movement relative to what? 3. How far
More informationChapter 4. Forces and Newton s Laws of Motion. continued
Chapter 4 Forces and Newton s Laws of Motion continued Clicker Question 4.3 A mass at rest on a ramp. How does the friction between the mass and the table know how much force will EXACTLY balance the gravity
More informationName Class Period. F = G m 1 m 2 d 2. G =6.67 x 1011 Nm 2 /kg 2
Gravitational Forces 13.1 Newton s Law of Universal Gravity Newton discovered that gravity is universal. Everything pulls on everything else in the universe in a way that involves only mass and distance.
More information1) 0.33 m/s 2. 2) 2 m/s 2. 3) 6 m/s 2. 4) 18 m/s 2 1) 120 J 2) 40 J 3) 30 J 4) 12 J. 1) unchanged. 2) halved. 3) doubled.
Base your answers to questions 1 through 5 on the diagram below which represents a 3.0kilogram mass being moved at a constant speed by a force of 6.0 Newtons. 4. If the surface were frictionless, the
More informationWorksheet #1 Free Body or Force diagrams
Worksheet #1 Free Body or Force diagrams Drawing FreeBody Diagrams Freebody diagrams are diagrams used to show the relative magnitude and direction of all forces acting upon an object in a given situation.
More informationNewton s Laws of Motion
Section 3.2 Newton s Laws of Motion Objectives Analyze relationships between forces and motion Calculate the effects of forces on objects Identify force pairs between objects New Vocabulary Newton s first
More informationPhysics 11 Assignment KEY Dynamics Chapters 4 & 5
Physics Assignment KEY Dynamics Chapters 4 & 5 ote: for all dynamics problemsolving questions, draw appropriate free body diagrams and use the aforementioned problemsolving method.. Define the following
More informationChapter 4. Forces and Newton s Laws of Motion. continued
Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting
More information7. Kinetic Energy and Work
Kinetic Energy: 7. Kinetic Energy and Work The kinetic energy of a moving object: k = 1 2 mv 2 Kinetic energy is proportional to the square of the velocity. If the velocity of an object doubles, the kinetic
More informationTEACHER ANSWER KEY November 12, 2003. Phys  Vectors 11132003
Phys  Vectors 11132003 TEACHER ANSWER KEY November 12, 2003 5 1. A 1.5kilogram lab cart is accelerated uniformly from rest to a speed of 2.0 meters per second in 0.50 second. What is the magnitude
More informationChapter 4 Dynamics: Newton s Laws of Motion
Chapter 4 Dynamics: Newton s Laws of Motion Units of Chapter 4 Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the NormalForce
More informationPHYS 211 FINAL FALL 2004 Form A
1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each
More informationSerway_ISM_V1 1 Chapter 4
Serway_ISM_V1 1 Chapter 4 ANSWERS TO MULTIPLE CHOICE QUESTIONS 1. Newton s second law gives the net force acting on the crate as This gives the kinetic friction force as, so choice (a) is correct. 2. As
More informationLecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014
Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,
More informationHomework 4. problems: 5.61, 5.67, 6.63, 13.21
Homework 4 problems: 5.6, 5.67, 6.6,. Problem 5.6 An object of mass M is held in place by an applied force F. and a pulley system as shown in the figure. he pulleys are massless and frictionless. Find
More information1) The gure below shows the position of a particle (moving along a straight line) as a function of time. Which of the following statements is true?
Physics 2A, Sec C00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to ll your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry
More informationVELOCITY, ACCELERATION, FORCE
VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how
More informationPhysics Midterm Review Packet January 2010
Physics Midterm Review Packet January 2010 This Packet is a Study Guide, not a replacement for studying from your notes, tests, quizzes, and textbook. Midterm Date: Thursday, January 28 th 8:1510:15 Room:
More informationExperiment: Static and Kinetic Friction
PHY 201: General Physics I Lab page 1 of 6 OBJECTIVES Experiment: Static and Kinetic Friction Use a Force Sensor to measure the force of static friction. Determine the relationship between force of static
More informationCh 6 Forces. Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79
Ch 6 Forces Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79 Friction When is friction present in ordinary life?  car brakes  driving around a turn  walking  rubbing your hands together
More informationPhysics I Honors: Chapter 4 Practice Exam
Physics I Honors: Chapter 4 Practice Exam Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Which of the following statements does not describe
More informationF13HPhysQ5 Practice
Name: Class: Date: ID: A F13HPhysQ5 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A vector is a quantity that has a. time and direction.
More informationUNIT 2D. Laws of Motion
Name: Regents Physics Date: Mr. Morgante UNIT 2D Laws of Motion Laws of Motion Science of Describing Motion is Kinematics. Dynamics the study of forces that act on bodies in motion. First Law of Motion
More informationv v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )
Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
More informationIMPORTANT NOTE ABOUT WEBASSIGN:
Week 8 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
More informationFriction and Newton s 3rd law
Lecture 4 Friction and Newton s 3rd law Prereading: KJF 4.8 Frictional Forces Friction is a force exerted by a surface. The frictional force is always parallel to the surface Due to roughness of both
More informationPhysics Notes Class 11 CHAPTER 5 LAWS OF MOTION
1 P a g e Inertia Physics Notes Class 11 CHAPTER 5 LAWS OF MOTION The property of an object by virtue of which it cannot change its state of rest or of uniform motion along a straight line its own, is
More informationPractice Test SHM with Answers
Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one
More informationAP Physics C. Oscillations/SHM Review Packet
AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete
More informationSHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
Exam Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) A person on a sled coasts down a hill and then goes over a slight rise with speed 2.7 m/s.
More informationSOLUTIONS TO PROBLEM SET 4
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01X Fall Term 2002 SOLUTIONS TO PROBLEM SET 4 1 Young & Friedman 5 26 A box of bananas weighing 40.0 N rests on a horizontal surface.
More informationWORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS
WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS 1. Stored energy or energy due to position is known as Potential energy. 2. The formula for calculating potential energy is mgh. 3. The three factors that
More informationB) 286 m C) 325 m D) 367 m Answer: B
Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of
More informationDescribe the relationship between gravitational force and distance as shown in the diagram.
Name Period Chapter 2 The Laws of Motion Review Describe the relationship between gravitational force and distance as shown in the diagram. Assess the information about gravity, mass, and weight. Read
More informationStudent Exploration: Gravitational Force
5. Drag STUDENT PACKET # 7 Name: Date: Student Exploration: Gravitational Force Big Idea 13: Forces and Changes in Motion Benchmark: SC.6.P.13.1 Investigate and describe types of forces including contact
More informationChapter 6 Work and Energy
Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system
More informationTennessee State University
Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an Fgrade. Other instructions will be given in the Hall. MULTIPLE CHOICE.
More informationName Period WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS. 1. Stored energy or energy due to position is known as energy.
Name Period Date WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS 1. Stored energy or energy due to position is known as energy. 2. The formula for calculating potential energy is. 3. The three factors
More information10.1 Quantitative. Answer: A Var: 50+
Chapter 10 Energy and Work 10.1 Quantitative 1) A child does 350 J of work while pulling a box from the ground up to his tree house with a rope. The tree house is 4.8 m above the ground. What is the mass
More informationAP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s
AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s Answer the multiple choice questions (2 Points Each) on this sheet with capital
More informationReview Chapters 2, 3, 4, 5
Review Chapters 2, 3, 4, 5 4) The gain in speed each second for a freelyfalling object is about A) 0. B) 5 m/s. C) 10 m/s. D) 20 m/s. E) depends on the initial speed 9) Whirl a rock at the end of a string
More informationFundamental Mechanics: Supplementary Exercises
Phys 131 Fall 2015 Fundamental Mechanics: Supplementary Exercises 1 Motion diagrams: horizontal motion A car moves to the right. For an initial period it slows down and after that it speeds up. Which of
More informationNEWTON S LAWS OF MOTION
NEWTON S LAWS OF MOTION Background: Aristotle believed that the natural state of motion for objects on the earth was one of rest. In other words, objects needed a force to be kept in motion. Galileo studied
More informationIII. Applications of Force and Motion Concepts. Concept Review. Conflicting Contentions. 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument
III. Applications of Force and Motion Concepts Concept Review Conflicting Contentions 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument Qualitative Reasoning 1. Dropping Balls 2. Spinning Bug
More informationAP1 Oscillations. 1. Which of the following statements about a springblock oscillator in simple harmonic motion about its equilibrium point is false?
1. Which of the following statements about a springblock oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The
More informationBHS Freshman Physics Review. Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science.
BHS Freshman Physics Review Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science. Galileo (15641642): 1 st true scientist and 1 st person to use
More informationForces: Equilibrium Examples
Physics 101: Lecture 02 Forces: Equilibrium Examples oday s lecture will cover extbook Sections 2.12.7 Phys 101 URL: http://courses.physics.illinois.edu/phys101/ Read the course web page! Physics 101:
More informationMass, energy, power and time are scalar quantities which do not have direction.
Dynamics Worksheet Answers (a) Answers: A vector quantity has direction while a scalar quantity does not have direction. Answers: (D) Velocity, weight and friction are vector quantities. Note: weight and
More informationAP Physics 1 Midterm Exam Review
AP Physics 1 Midterm Exam Review 1. The graph above shows the velocity v as a function of time t for an object moving in a straight line. Which of the following graphs shows the corresponding displacement
More information4 Gravity: A Force of Attraction
CHAPTER 1 SECTION Matter in Motion 4 Gravity: A Force of Attraction BEFORE YOU READ After you read this section, you should be able to answer these questions: What is gravity? How are weight and mass different?
More informationChapter 5: Circular Motion, the Planets, and Gravity
Chapter 5: Circular Motion, the Planets, and Gravity 1. Earth s gravity attracts a person with a force of 120 lbs. The force with which the Earth is attracted towards the person is A. Zero. B. Small but
More informationPHYS 117 Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.
PHYS 117 Exam I Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Car A travels from milepost 343 to milepost 349 in 5 minutes. Car B travels
More informationPhysics 1401  Exam 2 Chapter 5NNew
Physics 1401  Exam 2 Chapter 5NNew 2. The second hand on a watch has a length of 4.50 mm and makes one revolution in 60.00 s. What is the speed of the end of the second hand as it moves in uniform circular
More informationSTATIC AND KINETIC FRICTION
STATIC AND KINETIC FRICTION LAB MECH 3.COMP From Physics with Computers, Vernier Software & Technology, 2000. INTRODUCTION If you try to slide a heavy box resting on the floor, you may find it difficult
More informationSample Questions for the AP Physics 1 Exam
Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiplechoice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each
More informationACTIVITY 1: Gravitational Force and Acceleration
CHAPTER 3 ACTIVITY 1: Gravitational Force and Acceleration LEARNING TARGET: You will determine the relationship between mass, acceleration, and gravitational force. PURPOSE: So far in the course, you ve
More informationQUESTIONS : CHAPTER5: LAWS OF MOTION
QUESTIONS : CHAPTER5: LAWS OF MOTION 1. What is Aristotle s fallacy? 2. State Aristotlean law of motion 3. Why uniformly moving body comes to rest? 4. What is uniform motion? 5. Who discovered Aristotlean
More informationChapter 6. Work and Energy
Chapter 6 Work and Energy ENERGY IS THE ABILITY TO DO WORK = TO APPLY A FORCE OVER A DISTANCE= Example: push over a distance, pull over a distance. Mechanical energy comes into 2 forms: Kinetic energy
More informationWork, Power, Energy Multiple Choice. PSI Physics. Multiple Choice Questions
Work, Power, Energy Multiple Choice PSI Physics Name Multiple Choice Questions 1. A block of mass m is pulled over a distance d by an applied force F which is directed in parallel to the displacement.
More informationPhysics 113 Exam #4 Angular momentum, static equilibrium, universal gravitation, fluid mechanics, oscillatory motion (first part)
Physics 113 Exam #4 Angular momentum, static equilibrium, universal gravitation, fluid mechanics, oscillatory motion (first part) Answer all questions on this examination. You must show all equations,
More informationSteps to Solving Newtons Laws Problems.
Mathematical Analysis With Newtons Laws similar to projectiles (x y) isolation Steps to Solving Newtons Laws Problems. 1) FBD 2) Axis 3) Components 4) Fnet (x) (y) 5) Subs 1 Visual Samples F 4 1) F 3 F
More informationA ball, attached to a cord of length 1.20 m, is set in motion so that it is swinging backwards and forwards like a pendulum.
MECHANICS: SIMPLE HARMONIC MOTION QUESTIONS THE PENDULUM (2014;2) A pendulum is set up, as shown in the diagram. The length of the cord attached to the bob is 1.55 m. The bob has a mass of 1.80 kg. The
More informationNewton s Third Law. object 1 on object 2 is equal in magnitude and opposite in direction to the force exerted by object 2 on object 1
Newton s Third Law! If two objects interact, the force exerted by object 1 on object 2 is equal in magnitude and opposite in direction to the force exerted by object 2 on object 1!! Note on notation: is
More informationExam 2 Review Questions PHY Exam 2
Exam 2 Review Questions PHY 2425  Exam 2 Section: 4 1 Topic: Newton's First Law: The Law of Inertia Type: Conceptual 1 According to Newton's law of inertia, A) objects moving with an initial speed relative
More informationUse the following information to deduce that the gravitational field strength at the surface of the Earth is approximately 10 N kg 1.
IB PHYSICS: Gravitational Forces Review 1. This question is about gravitation and ocean tides. (b) State Newton s law of universal gravitation. Use the following information to deduce that the gravitational
More information1 of 10 11/23/2009 6:37 PM
hapter 14 Homework Due: 9:00am on Thursday November 19 2009 Note: To understand how points are awarded read your instructor's Grading Policy. [Return to Standard Assignment View] Good Vibes: Introduction
More informationA Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion
A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion Objective In the experiment you will determine the cart acceleration, a, and the friction force, f, experimentally for
More informationChapter 13, example problems: x (cm) 10.0
Chapter 13, example problems: (13.04) Reading Fig. 1330 (reproduced on the right): (a) Frequency f = 1/ T = 1/ (16s) = 0.0625 Hz. (since the figure shows that T/2 is 8 s.) (b) The amplitude is 10 cm.
More informationquestions: force and motion I
questions: force and motion I problem 1 The figure below is an overhead view of a 12 kg tire that is to be pulled by three ropes. One force (F l, with magnitude 50 N) is indicated. Orient the other two
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Vector A has length 4 units and directed to the north. Vector B has length 9 units and is directed
More informationWork, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work!
Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work! 1. A student holds her 1.5kg psychology textbook out of a second floor classroom window until her arm is tired; then she releases
More informationSupplemental Questions
Supplemental Questions The fastest of all fishes is the sailfish. If a sailfish accelerates at a rate of 14 (km/hr)/sec [fwd] for 4.7 s from its initial velocity of 42 km/h [fwd], what is its final velocity?
More informationFriction and Gravity. Friction. Section 2. The Causes of Friction
Section 2 Friction and Gravity What happens when you jump on a sled on the side of a snowcovered hill? Without actually doing this, you can predict that the sled will slide down the hill. Now think about
More information