Multimedia Compression

Size: px
Start display at page:

Download "Multimedia Compression"

Transcription

1 Multimedia Compression Audio, image and video require vast amounts of data 320x240x8bits grayscale image: 77Kb 1100x900x24bits color image: 3MB 640x480x24x30frames/sec: 27.6 MB/sec Low network s bandwidth doesn't allow for real time video transmission Slow storage devices don't allow for fast playing back Compression reduces storage requirements E.G.M. Petrakis Multimedia Compression 1

2 Classification of Techniques Lossless: recover the original representation Lossy: recover a representation similar to the original one high compression ratios more practical use Hybrid: JPEG, MPEG, px64 combine several approaches E.G.M. Petrakis Multimedia Compression 2

3 Compression Standards Furht at.al. 96 E.G.M. Petrakis Multimedia Compression 3

4 Lossless Techniques Furht at.al. 96 E.G.M. Petrakis Multimedia Compression 4

5 Lossy Techniques Furht at.al. 96 E.G.M. Petrakis Multimedia Compression 5

6 JPEG Modes of Operation Sequential DCT: the image is encoded in one left-to-right, top-to-bottom scan Progressive DCT: the image is encoded in multiple scans (if the transmission time is long, a rough decoded image can be reproduced) Hierarchical: encoding at multiple resolutions Lossless : exact reproduction E.G.M. Petrakis Multimedia Compression 6

7 JPEG Block Diagrams Furht at.al. 96 E.G.M. Petrakis Multimedia Compression 7

8 JPEG Encoder Three main blocks: Forward Discrete Cosine Transform (FDCT) Quantizer Entropy Encoder Essentially the sequential JPEG encoder Main component of progressive, lossless and hierarchical encoders For gray level and color images E.G.M. Petrakis Multimedia Compression 8

9 Sequential JPEG Pixels in [0,2 p -1] are shifted in [-2 p-1,2 p-1-1] The image is divided in 8x8 blocks Each 8x8 block is DCT transformed F( u, v) C( v) = C( u) 2 C( v) 2 = 1 for u = 0 C( u) = 2 1for u > 0 1 for v = 0 2 1for v > x= 0 y= 0 (2x + 1) uπ (2 y + 1) vπ f ( x, y)cos cos E.G.M. Petrakis Multimedia Compression 9

10 DCT Coefficients F(0,0) is the DC coefficient: average value over the 64 samples The remaining 63 coefficients are the AC coefficients Pixels in [-128,127]: DCTs in [-1024,1023] Most frequencies have 0 or near to 0 values and need not to be encoded This fact achieves compression E.G.M. Petrakis Multimedia Compression 10

11 Quantization Step All 64 DCT coefficients are quantized F q (u,v) = Round[F(u,v)/Q(u,v)] Reduces the amplitude of coefficients which contribute little or nothing to 0 Discards information which is not visually significant Quantization coefficients Q(u,v) are specified by quantization tables A set of 4 tables are specified by JPEG E.G.M. Petrakis Multimedia Compression 11

12 Quantization Tables Furht at.al. 96 for (i=0; i < 64; i++) for (j=0; j < 64; j++) Q[i,j] = 1 + [ (1+i+j) quality]; quality = 1: best quality, lowest compression quality = 25: poor quality, highest compression E.G.M. Petrakis Multimedia Compression 12

13 AC Coefficients The 63 AC coefficients are ordered by a zig-zag sequence Places low frequencies before high frequencies Low frequencies are likely to be 0 Sequences of such 0 coefficients will be encoded by fewer bits Furht at.al. 96 E.G.M. Petrakis Multimedia Compression 13

14 DC Coefficients Predictive coding of DC Coefficients Adjacent blocks have similar DC intensities Coding differences yields high compression E.G.M. Petrakis Multimedia Compression 14

15 Entropy Encoding Encodes sequences of quantized DCT coefficients into binary sequences AC: (runlength, size) (amplitude) DC: (size, amplitude) runlength: number consecutive 0 s, up to 15 takes up to 4 bits for coding (39,4)(12) = (15,0)(15,0)(7,4)(12) amplitude: first non-zero value size: number of bits to encode amplitude : (6,9)(476) E.G.M. Petrakis Multimedia Compression 15

16 Huffman coding Converts each sequence into binary First DC following with ACs Huffman tables are specified in JPEG Each (runlength, size) is encoded using Huffman coding Each (amplitude) is encoded using a variable length integer code (1,4)(12) => ( ) E.G.M. Petrakis Multimedia Compression 16

17 Example of Huffman table Furht at.al. 96 E.G.M. Petrakis Multimedia Compression 17

18 JPEG Encoding of a 8x8 block Furht at.al. 96 E.G.M. Petrakis Multimedia Compression 18

19 Compression Measures Compression ratio (CR): increases with higher compression CR = OriginalSize/CompressedSize Root Mean Square Error (RMS): better quality with lower RMS RMS = 1 n X i : original pixel values x i : restored pixel values n: total number of pixels n i = 1 ( X x i i E.G.M. Petrakis Multimedia Compression 19 2 )

20 Furht at.al. 96 E.G.M. Petrakis Multimedia Compression 20

21 JPEG Decoder The same steps in reverse order The binary sequences are converted to symbol sequences using the Huffman tables F (u,v) = Fq(u,v)Q(u,v) Inverse DCT F( x, y) (2x + 1) uπ (2 y + 1) vπ C( u) C( v) F( u, v)cos cos 4 u= 0 v= = E.G.M. Petrakis Multimedia Compression 21

22 Progressive JPEG When image encoding or transmission takes long there may be a need to produce an approximation of the original image which is improved gradually Furht at.al. 96 E.G.M. Petrakis Multimedia Compression 22

23 Progressive Spectral Selection The DCT coefficients are grouped into several bands Low-frequency bands are first band 1 : DC coefficient only band 2 : AC 1,AC 2 coefficients band 3 : AC 3, AC 4, AC 5, AC 6 coefficients band 4 : AC 7, AC 8 coefficients E.G.M. Petrakis Multimedia Compression 23

24 Lossless JPEG Simple predictive encoding Furht at.al. 96 prediction schemes E.G.M. Petrakis Multimedia Compression 24

25 Hierarchical JPEG Produces a set of images at multiple resolutions Begins with small images and continues with larger images (down-sampling) The reduced image is scaled-up to the next resolution and used as predictor for the higher resolution image E.G.M. Petrakis Multimedia Compression 25

26 Encoding 1. Down-sample the image by 2 a in each x, y 2. Encode the reduced size image (sequential, progressive..) 3. Up-sample the reduced image by 2 4. Interpolate by 2 in x, y 5. Use the up-sampled image as predictor 6. Encode differences (predictive coding) 7. Go to step 1 until the full resolution is encoded E.G.M. Petrakis Multimedia Compression 26

27 Furht at.al. 96 E.G.M. Petrakis Multimedia Compression 27

28 JPEG for Color images Encoding of 3 bands (RGB, HSV etc.) in two ways: Non-interleaved data ordering: encodes each band separately Interleaved data ordering: different bands are combined into Minimum Coded Units (MCUs) Display, print or transmit images in parallel with decompression E.G.M. Petrakis Multimedia Compression 28

29 Interleaved JPEG Minimum Coded Unit (MCU): the smallest group of interleaved data blocks (8x8) Furht at.al. 96 E.G.M. Petrakis Multimedia Compression 29

30 Video Compression Various video encoding standards: QuickTime, DVI, H.261, MPEG etc Basic idea: compute motion between adjacent frames and transmit only differences Motion is computed between blocks Effective encoding of camera and object motion E.G.M. Petrakis Multimedia Compression 30

31 MPEG The Moving Picture Coding Experts Group (MPEG) is a working group for the development of standards for compression, decompression, processing, and coded representation of moving pictures and audio MPEG groups are open and have attracted large participation E.G.M. Petrakis Multimedia Compression 31

32 MPEG Features Random access Fast forward / reverse searches Reverse playback Audio visual synchronization Robustness to errors Auditability Cost trade-off E.G.M. Petrakis Multimedia Compression 32

33 MPEG -1, 2 At least 4 MPEG standards finished or under construction MPEG-1: storage and retrieval of moving pictures and audio on storage media 352x288 pixels/frame, 25 fps, at 1.5 Mbps Real-time encoding even on an old PC MPEG-2: higher quality, same principles 720x576 pixels/frame, 2-80 Mbps E.G.M. Petrakis Multimedia Compression 33

34 MPEG-4 Encodes video content as objects Based on identifying, tracking and encoding object layers which are rendered on top of each other Enables objects to be manipulated individually or collectively on an audiovisual scene (interactive video) Only a few implementations Higher compression ratios E.G.M. Petrakis Multimedia Compression 34

35 MPEG-7 Standard for the description of multimedia content XML Schema for content description Does not standardize extraction of descriptions MPEG1, 2, and 4 make content available MPEG7 makes content semantics available E.G.M. Petrakis Multimedia Compression 35

36 MPEG-1,2 Compression Compression of full motion video, interframe compression, stores differences between frames A stream contains I, P and B frames in a given pattern Equivalent blocks are compared and motion vectors are computed and stored as P and B frames Furht at.al. 96 E.G.M. Petrakis Multimedia Compression 36

37 Frame Structures I frames: self contained, JPEG encoded Random access frames in MPEG streams Low compression P frames: predicted coding using with reference to previous I or P frame Higher compression B frames: bidirectional or interpolated coding using past and future I or P frame Highest compression E.G.M. Petrakis Multimedia Compression 37

38 Example of MPEG Stream Furht at.al. 96 B frames are bi-directionally coded using I frame 1 and P frame 5 P frame 5 must be decoded before B frames I frame 9 must be decoded before B frames Frame order for transmission: E.G.M. Petrakis Multimedia Compression 38

39 MPEG Coding Sequences The MPEG application determines a sequence of I, P, B frames For fast random access code the whole video as I frames (MJPEG) High compression is achieved by using large number of B frames Good sequence: (IBBPBBPBB)(IBBPBBPBB)... E.G.M. Petrakis Multimedia Compression 39

40 Motion Estimation The motion estimator finds the best matching block in P, B frames Block: 8x8 or16x16 pixels P frames use only forward prediction: a block in the current frame is predicted from past frame B frames use forward or backward or prediction by interpolation: average of forward, backward predicted blocks E.G.M. Petrakis Multimedia Compression 40

41 Motion Vectors block: 16x16pixles Furht at.al. 96 One or two motion vectors per block One vector for forward predicted P or B frames or backward predicted B frames Two vectors for interpolated B frames E.G.M. Petrakis Multimedia Compression 41

42 MPEG Encoding I frames are JPEG compressed P, B frames are encoded in terms of future or previous frames Motion vectors are estimated and differences between predicted and actual blocks are computed These error terms are DCT encoded Entropy encoding produces a compact binary code Special cases: static and intracoded blocks E.G.M. Petrakis Multimedia Compression 42

43 MPEG encoder JPEG encoding Furht at.al. 96 E.G.M. Petrakis Multimedia Compression 43

44 MPEG Decoder Furht at.al. 96 E.G.M. Petrakis Multimedia Compression 44

45 Motion Estimation Techniques Not specified by MPEG Block matching techniques Estimate the motion of an nxm block in present frame in relation to pixels in previous or future frames The block is compared with a previous or forward block within a search area of size (m+2p)x(n+2p) m = n = 16 p = 6 E.G.M. Petrakis Multimedia Compression 45

46 Block Matching Furht at.al. 96 Search area in block matching techniques Typical case: n=m=16, p=6 F: block in current frame G: search area in previous (or future) frame E.G.M. Petrakis Multimedia Compression 46

47 Cost functions The block has moved to the position that minimizes a cost function I. Mean Absolute Difference (MAD) MAD( dx, dy) = 1 mn n / 2 m / 2 i= n / 2 j= m / 2 F( i, j) G( i + dx, j + dy) F(i,j) : a block in current frame G(i,j) : the same block in previous or future frame (dx,dy) : vector for the search location dx=(-p,p), dy=(-p,p) E.G.M. Petrakis Multimedia Compression 47

48 More Cost Functions II. Mean Squared Difference (MSD) MSD( dx, dy) = 1 mn n / 2 m / 2 i= n / 2 j= m / 2 F( i, j) G( i + dx, j + dy) 2 III. Cross-Correlation Difference (CCF) CCF( dx, dy) = i j F 2 i ( i, j j) F( i, 1/ 2 j) G( i i j + dx, j + dy) G 2 ( i + dx, j + dy) 1/ 2 E.G.M. Petrakis Multimedia Compression 48

49 More cost Functions IV. Pixel Difference Classification (PDC) PDC( dx, dy) = i j T ( dx, dy, i, j) 1 if F( i, j) G( i + dx, j + dy) t T ( dx, dy, i, j) = 0 otherwise t: predefined threshold each pixel is classified as a matching pixel (T=1) or a mismatching pixel (T=0) the matching block maximizes PDC E.G.M. Petrakis Multimedia Compression 49

50 Block Matching Techniques Exhaustive: very slow but accurate Approximation: faster but less accurate Three-step search 2-D logarithmic search Conjugate direction search Parallel hierarchical 1-D search (not discussed) Pixel difference classification (not discussed here) E.G.M. Petrakis Multimedia Compression 50

51 Exhaustive Search Evaluates the cost function at every location in the search area Requires (2p+1) 2 computations of the cost function For p=6 requires169 computations per block!! Very simple to implement but very slow E.G.M. Petrakis Multimedia Compression 51

52 Three-Step Search Computes the cost function at the center and 8 surrounding locations in the search area The location with the minimum cost becomes the center location for the next step The search range is reduced by half E.G.M. Petrakis Multimedia Compression 52

53 Three-Step Motion Vector Estimation (p=6) Furht at.al. 96 E.G.M. Petrakis Multimedia Compression 53

54 Three Step Search 1. Compute cost (MAD) at 9 locations Center + 8 locations at distance 3 from center 2. Pick min MAD location and recompute MAD at 9 locations at distance 2 from center 3. Pick the min MAD locations and do same at distance 1 from center The smallest MAD from all locations indicates the final estimate M 24 at (dx,dy)=(1,6) Requires 25 computations of MAD E.G.M. Petrakis Multimedia Compression 54

55 2-D Logarithic Search Combines cost function and predefined threshold T Check cost at M(0,0), 2 horizontal and 2 vertical locations and take the minimum If cost at any location is less than T then search is complete If no then, search again along the direction of minimum cost - within a smaller region E.G.M. Petrakis Multimedia Compression 55

56 Furht at.al. 96 if cost at M(0,0) < T then search ends! compute min cost at M 1,M 2,M 3,M 4 ; take their min; if min cost < M(0,0) if (cost less than T) then search ends! else compute cost at direction of minimum cost (M 5,M 6 in the example); else compute cost at the neighborhood of min cost within p/2 (M 5 in the example) E.G.M. Petrakis Multimedia Compression 56

57 Conjugate Direction Search Furht at.al. 96 Repeat find min MAD along dx=0,-1,1 (y fixed): M(1,0) in example find min MAD along dy=0,-1,1 starting from previous min (x fixed): M(2,2) search similarly along the direction connecting the above mins E.G.M. Petrakis Multimedia Compression 57

58 Other Compression Techniques Digital Video Interactive (DVI) similar to MPEG-2 Fractal Image Compression Find regions resembling fractals Image representation at various resolutions Sub-band image and video coding Split signal into smaller frequency bands Wavelet-based coding E.G.M. Petrakis Multimedia Compression 58

59 References B. Furht, S. W. Smoliar, H-J. Zang, Video and Image Processing in Multimedia Systems, Kluwer Academic Pub, 1996 E.G.M. Petrakis Multimedia Compression 59

Introduction to image coding

Introduction to image coding Introduction to image coding Image coding aims at reducing amount of data required for image representation, storage or transmission. This is achieved by removing redundant data from an image, i.e. by

More information

Figure 1: Relation between codec, data containers and compression algorithms.

Figure 1: Relation between codec, data containers and compression algorithms. Video Compression Djordje Mitrovic University of Edinburgh This document deals with the issues of video compression. The algorithm, which is used by the MPEG standards, will be elucidated upon in order

More information

Image Compression through DCT and Huffman Coding Technique

Image Compression through DCT and Huffman Coding Technique International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2015 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Rahul

More information

Video-Conferencing System

Video-Conferencing System Video-Conferencing System Evan Broder and C. Christoher Post Introductory Digital Systems Laboratory November 2, 2007 Abstract The goal of this project is to create a video/audio conferencing system. Video

More information

JPEG Image Compression by Using DCT

JPEG Image Compression by Using DCT International Journal of Computer Sciences and Engineering Open Access Research Paper Volume-4, Issue-4 E-ISSN: 2347-2693 JPEG Image Compression by Using DCT Sarika P. Bagal 1* and Vishal B. Raskar 2 1*

More information

Video compression: Performance of available codec software

Video compression: Performance of available codec software Video compression: Performance of available codec software Introduction. Digital Video A digital video is a collection of images presented sequentially to produce the effect of continuous motion. It takes

More information

Conceptual Framework Strategies for Image Compression: A Review

Conceptual Framework Strategies for Image Compression: A Review International Journal of Computer Sciences and Engineering Open Access Review Paper Volume-4, Special Issue-1 E-ISSN: 2347-2693 Conceptual Framework Strategies for Image Compression: A Review Sumanta Lal

More information

Comparison of different image compression formats. ECE 533 Project Report Paula Aguilera

Comparison of different image compression formats. ECE 533 Project Report Paula Aguilera Comparison of different image compression formats ECE 533 Project Report Paula Aguilera Introduction: Images are very important documents nowadays; to work with them in some applications they need to be

More information

Module 8 VIDEO CODING STANDARDS. Version 2 ECE IIT, Kharagpur

Module 8 VIDEO CODING STANDARDS. Version 2 ECE IIT, Kharagpur Module 8 VIDEO CODING STANDARDS Version ECE IIT, Kharagpur Lesson H. andh.3 Standards Version ECE IIT, Kharagpur Lesson Objectives At the end of this lesson the students should be able to :. State the

More information

Video Coding Basics. Yao Wang Polytechnic University, Brooklyn, NY11201 yao@vision.poly.edu

Video Coding Basics. Yao Wang Polytechnic University, Brooklyn, NY11201 yao@vision.poly.edu Video Coding Basics Yao Wang Polytechnic University, Brooklyn, NY11201 yao@vision.poly.edu Outline Motivation for video coding Basic ideas in video coding Block diagram of a typical video codec Different

More information

Data Storage. Chapter 3. Objectives. 3-1 Data Types. Data Inside the Computer. After studying this chapter, students should be able to:

Data Storage. Chapter 3. Objectives. 3-1 Data Types. Data Inside the Computer. After studying this chapter, students should be able to: Chapter 3 Data Storage Objectives After studying this chapter, students should be able to: List five different data types used in a computer. Describe how integers are stored in a computer. Describe how

More information

Information, Entropy, and Coding

Information, Entropy, and Coding Chapter 8 Information, Entropy, and Coding 8. The Need for Data Compression To motivate the material in this chapter, we first consider various data sources and some estimates for the amount of data associated

More information

Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals. Introduction

Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals. Introduction Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals Modified from the lecture slides of Lami Kaya (LKaya@ieee.org) for use CECS 474, Fall 2008. 2009 Pearson Education Inc., Upper

More information

Data Storage 3.1. Foundations of Computer Science Cengage Learning

Data Storage 3.1. Foundations of Computer Science Cengage Learning 3 Data Storage 3.1 Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: List five different data types used in a computer. Describe how

More information

CHAPTER 2 LITERATURE REVIEW

CHAPTER 2 LITERATURE REVIEW 11 CHAPTER 2 LITERATURE REVIEW 2.1 INTRODUCTION Image compression is mainly used to reduce storage space, transmission time and bandwidth requirements. In the subsequent sections of this chapter, general

More information

Study and Implementation of Video Compression Standards (H.264/AVC and Dirac)

Study and Implementation of Video Compression Standards (H.264/AVC and Dirac) Project Proposal Study and Implementation of Video Compression Standards (H.264/AVC and Dirac) Sumedha Phatak-1000731131- sumedha.phatak@mavs.uta.edu Objective: A study, implementation and comparison of

More information

Introduzione alle Biblioteche Digitali Audio/Video

Introduzione alle Biblioteche Digitali Audio/Video Introduzione alle Biblioteche Digitali Audio/Video Biblioteche Digitali 1 Gestione del video Perchè è importante poter gestire biblioteche digitali di audiovisivi Caratteristiche specifiche dell audio/video

More information

http://www.springer.com/0-387-23402-0

http://www.springer.com/0-387-23402-0 http://www.springer.com/0-387-23402-0 Chapter 2 VISUAL DATA FORMATS 1. Image and Video Data Digital visual data is usually organised in rectangular arrays denoted as frames, the elements of these arrays

More information

H 261. Video Compression 1: H 261 Multimedia Systems (Module 4 Lesson 2) H 261 Coding Basics. Sources: Summary:

H 261. Video Compression 1: H 261 Multimedia Systems (Module 4 Lesson 2) H 261 Coding Basics. Sources: Summary: Video Compression : 6 Multimedia Systems (Module Lesson ) Summary: 6 Coding Compress color motion video into a low-rate bit stream at following resolutions: QCIF (76 x ) CIF ( x 88) Inter and Intra Frame

More information

A Robust and Lossless Information Embedding in Image Based on DCT and Scrambling Algorithms

A Robust and Lossless Information Embedding in Image Based on DCT and Scrambling Algorithms A Robust and Lossless Information Embedding in Image Based on DCT and Scrambling Algorithms Dr. Mohammad V. Malakooti Faculty and Head of Department of Computer Engineering, Islamic Azad University, UAE

More information

Implementation of ASIC For High Resolution Image Compression In Jpeg Format

Implementation of ASIC For High Resolution Image Compression In Jpeg Format IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 5, Issue 4, Ver. I (Jul - Aug. 2015), PP 01-10 e-issn: 2319 4200, p-issn No. : 2319 4197 www.iosrjournals.org Implementation of ASIC For High

More information

Quality Estimation for Scalable Video Codec. Presented by Ann Ukhanova (DTU Fotonik, Denmark) Kashaf Mazhar (KTH, Sweden)

Quality Estimation for Scalable Video Codec. Presented by Ann Ukhanova (DTU Fotonik, Denmark) Kashaf Mazhar (KTH, Sweden) Quality Estimation for Scalable Video Codec Presented by Ann Ukhanova (DTU Fotonik, Denmark) Kashaf Mazhar (KTH, Sweden) Purpose of scalable video coding Multiple video streams are needed for heterogeneous

More information

How to Send Video Images Through Internet

How to Send Video Images Through Internet Transmitting Video Images in XML Web Service Francisco Prieto, Antonio J. Sierra, María Carrión García Departamento de Ingeniería de Sistemas y Automática Área de Ingeniería Telemática Escuela Superior

More information

How To Improve Performance Of The H264 Video Codec On A Video Card With A Motion Estimation Algorithm

How To Improve Performance Of The H264 Video Codec On A Video Card With A Motion Estimation Algorithm Implementation of H.264 Video Codec for Block Matching Algorithms Vivek Sinha 1, Dr. K. S. Geetha 2 1 Student of Master of Technology, Communication Systems, Department of ECE, R.V. College of Engineering,

More information

CM0340 SOLNS. Do not turn this page over until instructed to do so by the Senior Invigilator.

CM0340 SOLNS. Do not turn this page over until instructed to do so by the Senior Invigilator. CARDIFF UNIVERSITY EXAMINATION PAPER Academic Year: 2008/2009 Examination Period: Examination Paper Number: Examination Paper Title: SOLUTIONS Duration: Autumn CM0340 SOLNS Multimedia 2 hours Do not turn

More information

Note monitors controlled by analog signals CRT monitors are controlled by analog voltage. i. e. the level of analog signal delivered through the

Note monitors controlled by analog signals CRT monitors are controlled by analog voltage. i. e. the level of analog signal delivered through the DVI Interface The outline: The reasons for digital interface of a monitor the transfer from VGA to DVI. DVI v. analog interface. The principles of LCD control through DVI interface. The link between DVI

More information

Introduction to Medical Image Compression Using Wavelet Transform

Introduction to Medical Image Compression Using Wavelet Transform National Taiwan University Graduate Institute of Communication Engineering Time Frequency Analysis and Wavelet Transform Term Paper Introduction to Medical Image Compression Using Wavelet Transform 李 自

More information

INTERNATIONAL TELECOMMUNICATION UNION TERMINAL EQUIPMENT AND PROTOCOLS FOR TELEMATIC SERVICES

INTERNATIONAL TELECOMMUNICATION UNION TERMINAL EQUIPMENT AND PROTOCOLS FOR TELEMATIC SERVICES INTERNATIONAL TELECOMMUNICATION UNION CCITT T.81 THE INTERNATIONAL (09/92) TELEGRAPH AND TELEPHONE CONSULTATIVE COMMITTEE TERMINAL EQUIPMENT AND PROTOCOLS FOR TELEMATIC SERVICES INFORMATION TECHNOLOGY

More information

Video Authentication for H.264/AVC using Digital Signature Standard and Secure Hash Algorithm

Video Authentication for H.264/AVC using Digital Signature Standard and Secure Hash Algorithm Video Authentication for H.264/AVC using Digital Signature Standard and Secure Hash Algorithm Nandakishore Ramaswamy Qualcomm Inc 5775 Morehouse Dr, Sam Diego, CA 92122. USA nandakishore@qualcomm.com K.

More information

A NEW LOSSLESS METHOD OF IMAGE COMPRESSION AND DECOMPRESSION USING HUFFMAN CODING TECHNIQUES

A NEW LOSSLESS METHOD OF IMAGE COMPRESSION AND DECOMPRESSION USING HUFFMAN CODING TECHNIQUES A NEW LOSSLESS METHOD OF IMAGE COMPRESSION AND DECOMPRESSION USING HUFFMAN CODING TECHNIQUES 1 JAGADISH H. PUJAR, 2 LOHIT M. KADLASKAR 1 Faculty, Department of EEE, B V B College of Engg. & Tech., Hubli,

More information

Reading.. IMAGE COMPRESSION- I IMAGE COMPRESSION. Image compression. Data Redundancy. Lossy vs Lossless Compression. Chapter 8.

Reading.. IMAGE COMPRESSION- I IMAGE COMPRESSION. Image compression. Data Redundancy. Lossy vs Lossless Compression. Chapter 8. Reading.. IMAGE COMPRESSION- I Week VIII Feb 25 Chapter 8 Sections 8.1, 8.2 8.3 (selected topics) 8.4 (Huffman, run-length, loss-less predictive) 8.5 (lossy predictive, transform coding basics) 8.6 Image

More information

Classes of multimedia Applications

Classes of multimedia Applications Classes of multimedia Applications Streaming Stored Audio and Video Streaming Live Audio and Video Real-Time Interactive Audio and Video Others Class: Streaming Stored Audio and Video The multimedia content

More information

Bandwidth Adaptation for MPEG-4 Video Streaming over the Internet

Bandwidth Adaptation for MPEG-4 Video Streaming over the Internet DICTA2002: Digital Image Computing Techniques and Applications, 21--22 January 2002, Melbourne, Australia Bandwidth Adaptation for MPEG-4 Video Streaming over the Internet K. Ramkishor James. P. Mammen

More information

Lossless Grey-scale Image Compression using Source Symbols Reduction and Huffman Coding

Lossless Grey-scale Image Compression using Source Symbols Reduction and Huffman Coding Lossless Grey-scale Image Compression using Source Symbols Reduction and Huffman Coding C. SARAVANAN cs@cc.nitdgp.ac.in Assistant Professor, Computer Centre, National Institute of Technology, Durgapur,WestBengal,

More information

White paper. An explanation of video compression techniques.

White paper. An explanation of video compression techniques. White paper An explanation of video compression techniques. Table of contents 1. Introduction to compression techniques 4 2. Standardization organizations 4 3. Two basic standards: JPEG and MPEG 4 4. The

More information

Fast Arithmetic Coding (FastAC) Implementations

Fast Arithmetic Coding (FastAC) Implementations Fast Arithmetic Coding (FastAC) Implementations Amir Said 1 Introduction This document describes our fast implementations of arithmetic coding, which achieve optimal compression and higher throughput by

More information

WATERMARKING FOR IMAGE AUTHENTICATION

WATERMARKING FOR IMAGE AUTHENTICATION WATERMARKING FOR IMAGE AUTHENTICATION Min Wu Bede Liu Department of Electrical Engineering Princeton University, Princeton, NJ 08544, USA Fax: +1-609-258-3745 {minwu, liu}@ee.princeton.edu ABSTRACT A data

More information

Performance Analysis of medical Image Using Fractal Image Compression

Performance Analysis of medical Image Using Fractal Image Compression Performance Analysis of medical Image Using Fractal Image Compression Akhil Singal 1, Rajni 2 1 M.Tech Scholar, ECE, D.C.R.U.S.T, Murthal, Sonepat, Haryana, India 2 Assistant Professor, ECE, D.C.R.U.S.T,

More information

Compression techniques

Compression techniques Compression techniques David Bařina February 22, 2013 David Bařina Compression techniques February 22, 2013 1 / 37 Contents 1 Terminology 2 Simple techniques 3 Entropy coding 4 Dictionary methods 5 Conclusion

More information

Understanding Network Video Security Systems

Understanding Network Video Security Systems Understanding Network Video Security Systems Chris Adesanya Panasonic System Solutions Company adesanyac@us.panasonic.com Introduction and Overview This session will provide vendor neutral introduction

More information

White paper. H.264 video compression standard. New possibilities within video surveillance.

White paper. H.264 video compression standard. New possibilities within video surveillance. White paper H.264 video compression standard. New possibilities within video surveillance. Table of contents 1. Introduction 3 2. Development of H.264 3 3. How video compression works 4 4. H.264 profiles

More information

JPEG compression of monochrome 2D-barcode images using DCT coefficient distributions

JPEG compression of monochrome 2D-barcode images using DCT coefficient distributions Edith Cowan University Research Online ECU Publications Pre. JPEG compression of monochrome D-barcode images using DCT coefficient distributions Keng Teong Tan Hong Kong Baptist University Douglas Chai

More information

Video and Audio Codecs: How Morae Uses Them

Video and Audio Codecs: How Morae Uses Them Video and Audio Codecs: How Morae Uses Them What is a Codec? Codec is an acronym that stands for "compressor/decompressor." A codec is an algorithm a specialized computer program that compresses data when

More information

Overview: Video Coding Standards

Overview: Video Coding Standards Overview: Video Coding Standards Video coding standards: applications and common structure Relevant standards organizations ITU-T Rec. H.261 ITU-T Rec. H.263 ISO/IEC MPEG-1 ISO/IEC MPEG-2 ISO/IEC MPEG-4

More information

Sachin Dhawan Deptt. of ECE, UIET, Kurukshetra University, Kurukshetra, Haryana, India

Sachin Dhawan Deptt. of ECE, UIET, Kurukshetra University, Kurukshetra, Haryana, India Abstract Image compression is now essential for applications such as transmission and storage in data bases. In this paper we review and discuss about the image compression, need of compression, its principles,

More information

HP Smart Document Scan Software compression schemes and file sizes

HP Smart Document Scan Software compression schemes and file sizes Technical white paper HP Smart Document Scan Software compression schemes and file s Table of contents Introduction 2 schemes supported in HP Smart Document Scan Software 2 Scheme Types 2 2 PNG 3 LZW 3

More information

The Essence of Image and Video Compression 1E8: Introduction to Engineering Introduction to Image and Video Processing

The Essence of Image and Video Compression 1E8: Introduction to Engineering Introduction to Image and Video Processing The Essence of Image and Video Compression E8: Introduction to Engineering Introduction to Image and Video Processing Dr. Anil C. Kokaram, Electronic and Electrical Engineering Dept., Trinity College,

More information

Parametric Comparison of H.264 with Existing Video Standards

Parametric Comparison of H.264 with Existing Video Standards Parametric Comparison of H.264 with Existing Video Standards Sumit Bhardwaj Department of Electronics and Communication Engineering Amity School of Engineering, Noida, Uttar Pradesh,INDIA Jyoti Bhardwaj

More information

Digital Audio and Video Data

Digital Audio and Video Data Multimedia Networking Reading: Sections 3.1.2, 3.3, 4.5, and 6.5 CS-375: Computer Networks Dr. Thomas C. Bressoud 1 Digital Audio and Video Data 2 Challenges for Media Streaming Large volume of data Each

More information

Study and Implementation of Video Compression standards (H.264/AVC, Dirac)

Study and Implementation of Video Compression standards (H.264/AVC, Dirac) Study and Implementation of Video Compression standards (H.264/AVC, Dirac) EE 5359-Multimedia Processing- Spring 2012 Dr. K.R Rao By: Sumedha Phatak(1000731131) Objective A study, implementation and comparison

More information

Secured Lossless Medical Image Compression Based On Adaptive Binary Optimization

Secured Lossless Medical Image Compression Based On Adaptive Binary Optimization IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661, p- ISSN: 2278-8727Volume 16, Issue 2, Ver. IV (Mar-Apr. 2014), PP 43-47 Secured Lossless Medical Image Compression Based On Adaptive Binary

More information

H.264/MPEG-4 AVC Video Compression Tutorial

H.264/MPEG-4 AVC Video Compression Tutorial Introduction The upcoming H.264/MPEG-4 AVC video compression standard promises a significant improvement over all previous video compression standards. In terms of coding efficiency, the new standard is

More information

Digital Video Coding Standards and Their Role in Video Communications

Digital Video Coding Standards and Their Role in Video Communications Digital Video Coding Standards and Their Role in Video Communications RALF SCHAFER AND THOMAS SIKORA, MEMBER, IEEE Invited Paper The eficient digital representation of image and video signals has been

More information

IP Video Rendering Basics

IP Video Rendering Basics CohuHD offers a broad line of High Definition network based cameras, positioning systems and VMS solutions designed for the performance requirements associated with critical infrastructure applications.

More information

Performance Analysis and Comparison of JM 15.1 and Intel IPP H.264 Encoder and Decoder

Performance Analysis and Comparison of JM 15.1 and Intel IPP H.264 Encoder and Decoder Performance Analysis and Comparison of 15.1 and H.264 Encoder and Decoder K.V.Suchethan Swaroop and K.R.Rao, IEEE Fellow Department of Electrical Engineering, University of Texas at Arlington Arlington,

More information

Video Conferencing Glossary of Terms

Video Conferencing Glossary of Terms Video Conferencing Glossary of Terms A Algorithm A step-by-step problem-solving procedure. Transmission of compressed video over a communications network requires sophisticated compression algorithms.

More information

Video compression. Contents. Some helpful concepts.

Video compression. Contents. Some helpful concepts. Video compression. Uncompressed video is extremely large, which makes it hard to store and move. In most cases we compress video to manage it. The amount of compression depends on the task at hand. Contents

More information

ANALYSIS OF THE EFFECTIVENESS IN IMAGE COMPRESSION FOR CLOUD STORAGE FOR VARIOUS IMAGE FORMATS

ANALYSIS OF THE EFFECTIVENESS IN IMAGE COMPRESSION FOR CLOUD STORAGE FOR VARIOUS IMAGE FORMATS ANALYSIS OF THE EFFECTIVENESS IN IMAGE COMPRESSION FOR CLOUD STORAGE FOR VARIOUS IMAGE FORMATS Dasaradha Ramaiah K. 1 and T. Venugopal 2 1 IT Department, BVRIT, Hyderabad, India 2 CSE Department, JNTUH,

More information

Digital Video: A Practical Guide

Digital Video: A Practical Guide Digital Video: A Practical Guide Lucid Communications Ltd Prepared by Neil Turner January 2006 Document History Version Author Comments v1.0 Neil Turner Initial Release 1. Executive Summary From time to

More information

Understanding Megapixel Camera Technology for Network Video Surveillance Systems. Glenn Adair

Understanding Megapixel Camera Technology for Network Video Surveillance Systems. Glenn Adair Understanding Megapixel Camera Technology for Network Video Surveillance Systems Glenn Adair Introduction (1) 3 MP Camera Covers an Area 9X as Large as (1) VGA Camera Megapixel = Reduce Cameras 3 Mega

More information

DCT-JPEG Image Coding Based on GPU

DCT-JPEG Image Coding Based on GPU , pp. 293-302 http://dx.doi.org/10.14257/ijhit.2015.8.5.32 DCT-JPEG Image Coding Based on GPU Rongyang Shan 1, Chengyou Wang 1*, Wei Huang 2 and Xiao Zhou 1 1 School of Mechanical, Electrical and Information

More information

4 Digital Video Signal According to ITU-BT.R.601 (CCIR 601) 43

4 Digital Video Signal According to ITU-BT.R.601 (CCIR 601) 43 Table of Contents 1 Introduction 1 2 Analog Television 7 3 The MPEG Data Stream 11 3.1 The Packetized Elementary Stream (PES) 13 3.2 The MPEG-2 Transport Stream Packet.. 17 3.3 Information for the Receiver

More information

A deterministic fractal is an image which has low information content and no inherent scale.

A deterministic fractal is an image which has low information content and no inherent scale. FRACTAL IMAGE COMPRESSION: A RESOLUTION INDEPENDENT REPRESENTATION FOR IMAGER?? Alan D. Sloan 5550 Peachtree Parkway Iterated Systems, Inc. Norcross, Georgia 30092 1. Background A deterministic fractal

More information

A comprehensive survey on various ETC techniques for secure Data transmission

A comprehensive survey on various ETC techniques for secure Data transmission A comprehensive survey on various ETC techniques for secure Data transmission Shaikh Nasreen 1, Prof. Suchita Wankhade 2 1, 2 Department of Computer Engineering 1, 2 Trinity College of Engineering and

More information

Video Encryption Exploiting Non-Standard 3D Data Arrangements. Stefan A. Kramatsch, Herbert Stögner, and Andreas Uhl uhl@cosy.sbg.ac.

Video Encryption Exploiting Non-Standard 3D Data Arrangements. Stefan A. Kramatsch, Herbert Stögner, and Andreas Uhl uhl@cosy.sbg.ac. Video Encryption Exploiting Non-Standard 3D Data Arrangements Stefan A. Kramatsch, Herbert Stögner, and Andreas Uhl uhl@cosy.sbg.ac.at Andreas Uhl 1 Carinthia Tech Institute & Salzburg University Outline

More information

Optimizing BrightSign Video Quality

Optimizing BrightSign Video Quality Optimizing BrightSign Video Quality The BrightSign "compact" models are capable of producing excellent high quality High Definition video output. However, video quality can be reduced if a system isn't

More information

Compressing Moving Images. Compression and File Formats updated to include HTML5 video tag. The DV standard. Why and where to compress

Compressing Moving Images. Compression and File Formats updated to include HTML5 video tag. The DV standard. Why and where to compress Compressing Moving Images Compression and File Formats updated to include HTML5 video tag. Moving versus still images: Temporal as well as spatial compression Data transfer rates are critical How much

More information

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 1, No 3, 2010

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 1, No 3, 2010 Lossless Medical Image Security Shrikhande Rohini 1, Vinayak Bairagi 2 1 Researcher, Electronics & Telecommunication Department, Sinhgad Academy Of Engg. 2 Assistant Professor, Electronics & Telecommunication

More information

ENG4BF3 Medical Image Processing. Image Visualization

ENG4BF3 Medical Image Processing. Image Visualization ENG4BF3 Medical Image Processing Image Visualization Visualization Methods Visualization of medical images is for the determination of the quantitative information about the properties of anatomic tissues

More information

encoding compression encryption

encoding compression encryption encoding compression encryption ASCII utf-8 utf-16 zip mpeg jpeg AES RSA diffie-hellman Expressing characters... ASCII and Unicode, conventions of how characters are expressed in bits. ASCII (7 bits) -

More information

Understanding Compression Technologies for HD and Megapixel Surveillance

Understanding Compression Technologies for HD and Megapixel Surveillance When the security industry began the transition from using VHS tapes to hard disks for video surveillance storage, the question of how to compress and store video became a top consideration for video surveillance

More information

MPEG-1 and MPEG-2 Digital Video Coding Standards

MPEG-1 and MPEG-2 Digital Video Coding Standards Please note that the page has been produced based on text and image material from a book in [sik] and may be subject to copyright restrictions from McGraw Hill Publishing Company. MPEG-1 and MPEG-2 Digital

More information

Michael W. Marcellin and Ala Bilgin

Michael W. Marcellin and Ala Bilgin JPEG2000: HIGHLY SCALABLE IMAGE COMPRESSION Michael W. Marcellin and Ala Bilgin Department of Electrical and Computer Engineering, The University of Arizona, Tucson, AZ 85721. {mwm,bilgin}@ece.arizona.edu

More information

A Proposal for OpenEXR Color Management

A Proposal for OpenEXR Color Management A Proposal for OpenEXR Color Management Florian Kainz, Industrial Light & Magic Revision 5, 08/05/2004 Abstract We propose a practical color management scheme for the OpenEXR image file format as used

More information

Video Coding Standards. Yao Wang Polytechnic University, Brooklyn, NY11201 yao@vision.poly.edu

Video Coding Standards. Yao Wang Polytechnic University, Brooklyn, NY11201 yao@vision.poly.edu Video Coding Standards Yao Wang Polytechnic University, Brooklyn, NY11201 yao@vision.poly.edu Yao Wang, 2003 EE4414: Video Coding Standards 2 Outline Overview of Standards and Their Applications ITU-T

More information

MPEG Unified Speech and Audio Coding Enabling Efficient Coding of both Speech and Music

MPEG Unified Speech and Audio Coding Enabling Efficient Coding of both Speech and Music ISO/IEC MPEG USAC Unified Speech and Audio Coding MPEG Unified Speech and Audio Coding Enabling Efficient Coding of both Speech and Music The standardization of MPEG USAC in ISO/IEC is now in its final

More information

Statistical Modeling of Huffman Tables Coding

Statistical Modeling of Huffman Tables Coding Statistical Modeling of Huffman Tables Coding S. Battiato 1, C. Bosco 1, A. Bruna 2, G. Di Blasi 1, G.Gallo 1 1 D.M.I. University of Catania - Viale A. Doria 6, 95125, Catania, Italy {battiato, bosco,

More information

Accelerating Wavelet-Based Video Coding on Graphics Hardware

Accelerating Wavelet-Based Video Coding on Graphics Hardware Wladimir J. van der Laan, Andrei C. Jalba, and Jos B.T.M. Roerdink. Accelerating Wavelet-Based Video Coding on Graphics Hardware using CUDA. In Proc. 6th International Symposium on Image and Signal Processing

More information

A Survey of Video Processing with Field Programmable Gate Arrays (FGPA)

A Survey of Video Processing with Field Programmable Gate Arrays (FGPA) A Survey of Video Processing with Field Programmable Gate Arrays (FGPA) Heather Garnell Abstract This paper is a high-level, survey of recent developments in the area of video processing using reconfigurable

More information

Security and protection of digital images by using watermarking methods

Security and protection of digital images by using watermarking methods Security and protection of digital images by using watermarking methods Andreja Samčović Faculty of Transport and Traffic Engineering University of Belgrade, Serbia Gjovik, june 2014. Digital watermarking

More information

Video codecs in multimedia communication

Video codecs in multimedia communication Video codecs in multimedia communication University of Plymouth Department of Communication and Electronic Engineering Short Course in Multimedia Communications over IP Networks T J Dennis Department of

More information

Building an Advanced Invariant Real-Time Human Tracking System

Building an Advanced Invariant Real-Time Human Tracking System UDC 004.41 Building an Advanced Invariant Real-Time Human Tracking System Fayez Idris 1, Mazen Abu_Zaher 2, Rashad J. Rasras 3, and Ibrahiem M. M. El Emary 4 1 School of Informatics and Computing, German-Jordanian

More information

Narrow Bandwidth Streaming Video Codec

Narrow Bandwidth Streaming Video Codec Software Requirements Specification for Narrow Bandwidth Streaming Video Codec Version 1.0 approved Internal Supervisors Dr. Shantha Frenando Dr. Chathura de Silva External Supervisors Mr. Harsha Samarawicrama

More information

PCM Encoding and Decoding:

PCM Encoding and Decoding: PCM Encoding and Decoding: Aim: Introduction to PCM encoding and decoding. Introduction: PCM Encoding: The input to the PCM ENCODER module is an analog message. This must be constrained to a defined bandwidth

More information

!"#$"%&' What is Multimedia?

!#$%&' What is Multimedia? What is Multimedia? %' A Big Umbrella Goal of This Course Understand various aspects of a modern multimedia pipeline Content creating, editing Distribution Search & mining Protection Hands-on experience

More information

Transform-domain Wyner-Ziv Codec for Video

Transform-domain Wyner-Ziv Codec for Video Transform-domain Wyner-Ziv Codec for Video Anne Aaron, Shantanu Rane, Eric Setton, and Bernd Girod Information Systems Laboratory, Department of Electrical Engineering Stanford University 350 Serra Mall,

More information

How To Recognize Voice Over Ip On Pc Or Mac Or Ip On A Pc Or Ip (Ip) On A Microsoft Computer Or Ip Computer On A Mac Or Mac (Ip Or Ip) On An Ip Computer Or Mac Computer On An Mp3

How To Recognize Voice Over Ip On Pc Or Mac Or Ip On A Pc Or Ip (Ip) On A Microsoft Computer Or Ip Computer On A Mac Or Mac (Ip Or Ip) On An Ip Computer Or Mac Computer On An Mp3 Recognizing Voice Over IP: A Robust Front-End for Speech Recognition on the World Wide Web. By C.Moreno, A. Antolin and F.Diaz-de-Maria. Summary By Maheshwar Jayaraman 1 1. Introduction Voice Over IP is

More information

FCE: A Fast Content Expression for Server-based Computing

FCE: A Fast Content Expression for Server-based Computing FCE: A Fast Content Expression for Server-based Computing Qiao Li Mentor Graphics Corporation 11 Ridder Park Drive San Jose, CA 95131, U.S.A. Email: qiao li@mentor.com Fei Li Department of Computer Science

More information

Structures for Data Compression Responsible persons: Claudia Dolci, Dante Salvini, Michael Schrattner, Robert Weibel

Structures for Data Compression Responsible persons: Claudia Dolci, Dante Salvini, Michael Schrattner, Robert Weibel Geographic Information Technology Training Alliance (GITTA) presents: Responsible persons: Claudia Dolci, Dante Salvini, Michael Schrattner, Robert Weibel Content 1.... 2 1.1. General Compression Concepts...3

More information

MMGD0203 Multimedia Design MMGD0203 MULTIMEDIA DESIGN. Chapter 3 Graphics and Animations

MMGD0203 Multimedia Design MMGD0203 MULTIMEDIA DESIGN. Chapter 3 Graphics and Animations MMGD0203 MULTIMEDIA DESIGN Chapter 3 Graphics and Animations 1 Topics: Definition of Graphics Why use Graphics? Graphics Categories Graphics Qualities File Formats Types of Graphics Graphic File Size Introduction

More information

High performance digital video servers: storage. Seungyup Paek and Shih-Fu Chang. Columbia University

High performance digital video servers: storage. Seungyup Paek and Shih-Fu Chang. Columbia University High performance digital video servers: storage and retrieval of compressed scalable video Seungyup Paek and Shih-Fu Chang Department of Electrical Engineering Columbia University New York, N.Y. 10027-6699,

More information

REIHE INFORMATIK 7/98 Efficient Video Transport over Lossy Networks Christoph Kuhmünch and Gerald Kühne Universität Mannheim Praktische Informatik IV

REIHE INFORMATIK 7/98 Efficient Video Transport over Lossy Networks Christoph Kuhmünch and Gerald Kühne Universität Mannheim Praktische Informatik IV REIHE INFORMATIK 7/98 Efficient Video Transport over Lossy Networks Christoph Kuhmünch and Gerald Kühne Universität Mannheim Praktische Informatik IV L15, 16 D-68131 Mannheim Efficient Video Transport

More information

SteganographyinaVideoConferencingSystem? AndreasWestfeld1andGrittaWolf2 2InstituteforOperatingSystems,DatabasesandComputerNetworks 1InstituteforTheoreticalComputerScience DresdenUniversityofTechnology

More information

Sommario [1/2] Vannevar Bush Dalle Biblioteche ai Cataloghi Automatizzati Gli OPAC accessibili via Web Le Biblioteche Digitali

Sommario [1/2] Vannevar Bush Dalle Biblioteche ai Cataloghi Automatizzati Gli OPAC accessibili via Web Le Biblioteche Digitali Introduzione alle Biblioteche Digitali Sommario [1/2] Cenni storici Vannevar Bush Dalle Biblioteche ai Cataloghi Automatizzati Gli OPAC accessibili via Web Le Biblioteche Digitali Cos è una Biblioteca

More information

Chapter 3 Data Warehouse - technological growth

Chapter 3 Data Warehouse - technological growth Chapter 3 Data Warehouse - technological growth Computing began with data storage in conventional file systems. In that era the data volume was too small and easy to be manageable. With the increasing

More information

*EP001025692B1* EP 1 025 692 B1 (19) (11) EP 1 025 692 B1 (12) EUROPEAN PATENT SPECIFICATION

*EP001025692B1* EP 1 025 692 B1 (19) (11) EP 1 025 692 B1 (12) EUROPEAN PATENT SPECIFICATION (19) Europäisches Patentamt European Patent Office Office européen des brevets *EP002692B1* (11) EP 1 02 692 B1 (12) EUROPEAN PATENT SPECIFICATION (4) Date of publication and mention of the grant of the

More information

VIDEOTELEPHONY AND VIDEOCONFERENCE OVER ISDN

VIDEOTELEPHONY AND VIDEOCONFERENCE OVER ISDN VIDEOTELEPHONY AND VIDEOCONFERENCE OVER ISDN Fernando Pereira Instituto Superior Técnico Digital Video Video versus Images Still Image Services No strong temporal requirements; no realtime notion. Video

More information

Multi-factor Authentication in Banking Sector

Multi-factor Authentication in Banking Sector Multi-factor Authentication in Banking Sector Tushar Bhivgade, Mithilesh Bhusari, Ajay Kuthe, Bhavna Jiddewar,Prof. Pooja Dubey Department of Computer Science & Engineering, Rajiv Gandhi College of Engineering

More information