Guidebook for Optical Time Domain Reflectometer

Size: px
Start display at page:

Download "Guidebook for Optical Time Domain Reflectometer"

Transcription

1 Guidebook for Optical Time Domain Reflectometer May 2006 Communication and Measurement Business Headquarters Yokogawa Electric Corporation Copyright (C) 05 NTT Advanced Technology Corporation Optical Time Domain Reflectometer Optical Time Domain Reflectometers can measure distance to the connector and the loss at that point by using only one end of the optic fiber. AQ7260 OTDR <Usage> Loss Measurement: transmission loss (loss between optional zones), loss at the connector Distance Measurement: distance to the connector, distance to point of defaults, the length of optic fiber Return Loss Measurement: return loss at the connector and at the tip of optic fiber 1 1

2 The Conditions of the Optic Fiber and the OTDR Waveform Display Incoming light Fusion point Connector Bending point Open tip Backscattered light level Distance 2 Characteristics (1) Dynamic Range These figures display the amount of loss. The bigger the figure, the bigger the loss (or longer the distance). Dynamic range (SNR=1) 3 2

3 Characteristics (2) Attenuation Dead Zone This reflects the minimum distance from the Fresnel reflection where loss measurements are made. Optic fiber Connector Connection loss Attenuation dead zone 4 Characteristics (3) Event Dead Zone The smallest distance to detect a reflective event that follows another reflective event. Optic fiber Peak Connector Event dead zone 5 3

4 Check measurement environment In principle, keep both ends open. Must take care particularly when using maintenance wavelength (1,650nm) according to the construction and maintenance specifications when connecting active lines. Clean OTDR and the optic connectors. Measurement Flowchart Power ON Set up measurement conditions Execute measurement Store measurement results Power OFF Write up report 6 Setting the Measurement Conditions The following conditions must be set up prior to making measurements. a) Measurement Wavelength Set up the measurement wavelengths according to the figures specified in the construction and maintenance specifications or set the wavelengths adjusted to the wavelength used in the optical lines. b) Distance Range c) Pulse Width d) Attenuation e) Group Refractive Index Must make accurate settings according to the optic fiber characteristics. Make settings according to the group refractive index written in the specifications of the optic fiber manufacturer or the construction and maintenance specifications. f) Others: Average out the number of times (time), event detection threshold level, approximation process 7 4

5 Measurement Conditions Settings TRACE MARKER FILE OPTION SETTING INITIALIZE MEASURE CONDITION WAVELENGTH AUTO SET Dist. RANGE PULSE WIDTH ATTENUATION AVE CONDITION AVE INTERVAL GROUP INDEX DATA SIZE AVERAGE METHOD AUTO SEARCH CONDITION EVENT SEARCH APPROX. METHOD BACKSCATTER SPLICE LOSS RETURN LOSS END OF FIBER OTHER CONDITION FILTER PLUG CHECK AVE CONTINUE UNDO MULTI WL MEASURE OFF DONE CANCEL Cursor Movement Select Cancel MEASURE CONDITION LIST The changed conditions will be final. Screen for List of Measurement Conditions Settings 8 Setting the Distance Range Set the distance range to the closest distance when the length of the optic fiber under test is known. eg.) optic fiber: 15km distance range, 10km, 20km, 40km, [Ref] The measurement time will be longer when the distance range is longer. The distance range can be set automatically with the auto range function when the length of the optic fiber under test is unknown. To avoid ghost waveforms due to secondary reflections, we recommend to set the distance range to the closest distance that is over two fold of the optic fiber under test when measuring short optic fibers under 10km particularly with little loss and does not terminate at the far end (has large Fresnel reflections) eg.) optic fiber: 4km distance range:, 5km, 10km, 20km 9 5

6 Ghost Waveform due to Secondary Reflection OTDR First reflection Second reflection Distance L Distance L Ghost Secondary reflection Distance Range Widen 10 Setting the Pulse Width Pulse width is the width of the optical pulse from the OTDR reflected in a time frame. Long pulse widths are suitable for long distance measurements but then the dead zone will become wider and the connector for short intervals will disappear. On the other hand, short pulse widths can identify connectors of short intervals but it cannot make long distance measurements as the optical power will decrease. The pulse width can be set automatically according to the distance range by using the automatic range function. Relationship between the Pulse Width and Dynamic Range Dead Zone (for reference) Pulse Width Dynamic Range 1.31/155μm Attenuation/Event Dead Zones 10ns 12/10dB 8/3m 20ns 13/11dB 9/4m 200ms 21/19dB 27/16m 1μs 30/28dB 122/122m 20μs 45/43dB 2030/-m 11 6

7 Examples of Measurements using Different Pulse Widths (1) The following diagrams are measurement results when the optic fiber is approximately 40m and the pulse width is 4μs and 100ns. Results when using 4μs Results when using 100ns 12 Examples of Measurements using Different Pulse Widths (2) The following diagram shows the measurement results of connected optic fiber using pulse widths of 10ns, 50ns, and 100ns. OTDR 40m 15m 20m Pulse width 10ns Pulse width 50ns Pulse width 100ns 13 7

8 Setting the Attenuation Attenuation can be set up automatically to the value suitable to the pulse width under test by using the auto range function. However, the reflection point may saturate, as shown in the diagram below, when large Fresnel reflections occur due to bad connections. Accurate return loss values cannot be measured when the reflection point is saturated. Please set the attenuation to a larger figure so that the waveform will not saturate. Saturating Increase the attenuation value 14 Selecting Collinear Approximation (LSA and TPA) Approximation Process Waveform with a lot of noise Lease Square Approximation (LSA) Calculate the loss between two points with lease square Two Point Approximately (TPA) Calculate with the difference in level between two points Waveforms with reflections 15 8

9 How to Measure Distance Yokogawa Electric Corporation Marker Distance between the base point to each marker Distance from the base point to cursor Cursor Distance between market 1 and 2 Marker 1 Marker 2 Place at the starting point of the zone under test Place at the final point of the zone under test 16 How to Measure Loss Connection loss at cursor point. Marker 1 Marker 2 Marker 3 Loss characteristics per 1km of the optic fiber, the distance between Marker 1, Marker 2, and their losses Marker Y2 Place before Marker 2 where there will be no influence from the connector right before Place on the connector right before the point where the level will change. Place behind the connector where there is no influence Place behind Y2 and immediately before the next connector Loss characteristics per 1km of the optic fiber, the distance between Marker 2 and Marker 3, and their losses. 17 9

10 How to Measure Reflection and Return Loss Pulse width: 50ns Reflections will change according to pulse width Pulse width Reflection amount Pulse width: 20ns Can switch reflection and return loss display with settings Marker 1 Marker 2 Place immediately before the waveform rises (the point where the level changes) Place on the peak of the waveform or to the right of the peak. 18 Automatic Detection Function Event Distance Connection loss Return loss Accu loss db/km Event Zone The right or wrong judgment of the measurement results on the distance, loss, and return loss can be made automatically

11 Storing the Measured Results Can store data in inner memory (20MB) and USB memory. Drive Control Number FILE Control Number + Comment The file can be stored in SOR (Telecordis) TRD (AQ7269) BMP (image) CSV (text), etc. Type Can enter control number and text as file name. The control number is automatically updated. 20 How to Measure Loss within Total Interval Enter dummy fiber AO OTDR Measurement interval Customer s residence Measure loss within measurement interval with Marker 1 and 2 (TPA) Can measure loss in total interval by entering dummy fiber in the incoming tip to reduce measurement errors due to effects of large Fresnel reflection by incoming tip

12 How to Measure Long and Short Optic Fibers OTDR 10km 20m Distance range: 20km Cannot detect connector Pulse width: 100ns Reduce the pulse width and measure Distance range: 20km Pulse width: 10ns Can detect connector 22 Easy to Use Functions Automatic Setting of Measurement Conditions OTDR will automatically detect and set up the best value for distance range, pulse width, and attenuation One Button Measurements An automatic function that automatically sets up the measurement conditions, executes the measurement, automatically detects the event, and stores the measurement results. Real Time Measurement Displays the waveform in real time. Can easily find out if there are any changes in the conditions of the optic fiber or whether the measurement conditions are suitable. Fixed Waveform Stores the displayed waveform when the measurement is completed (a fixed display). This is effective when searching for defects when comparing with real time displays

AQ7275 OTDR Optical Time Domain Reflectometer

AQ7275 OTDR Optical Time Domain Reflectometer AQ7275 OTDR Optical Time Domain Reflectometer Wide range of models available Supporting FTTH to core networks Short dead zone (0.75 m) High dynamic range (45 db) Dead zone Dynamic range Bulletin AQ7275-03EN

More information

Module 13 : Measurements on Fiber Optic Systems

Module 13 : Measurements on Fiber Optic Systems Module 13 : Measurements on Fiber Optic Systems Lecture : Measurements on Fiber Optic Systems Objectives In this lecture you will learn the following Measurements on Fiber Optic Systems Attenuation (Loss)

More information

Removing the Mystery from OTDR Measurements. Keith Foord Product Manager Greenlee Communications

Removing the Mystery from OTDR Measurements. Keith Foord Product Manager Greenlee Communications Removing the Mystery from OTDR Measurements Keith Foord Product Manager Greenlee Communications Why an OTDR? Terminology Theory Standards Key specifications Trade-offs Cleaning and Inspection Measurements

More information

MTS/T-BERD Platforms Very Long Range (VLR) OTDR Module

MTS/T-BERD Platforms Very Long Range (VLR) OTDR Module COMMUNICATIONS TEST & MEASUREMENT SOLUTIONS MTS/T-BERD Platforms (VLR) OTDR Module Key Features CWDM/DWDM ready with 1310, 1383, 1490, 1550, and 1625 nm wavelengths FTTx ready with 1310/1490/1550 nm wavelengths

More information

FIBER OPTIC SYSTEM TEST PROCEDURES

FIBER OPTIC SYSTEM TEST PROCEDURES FIBER OPTIC SYSTEM TEST PROCEDURES Data Systems Performance Engineering LLC performs three tests in order to determine fiber optic cable adequacy. The order in which the tests are to be performed is not

More information

Optical Fiber Data Center Field Testing. ANSI/BICSI 002-2011 Data Center Design and Implementation Best Practices

Optical Fiber Data Center Field Testing. ANSI/BICSI 002-2011 Data Center Design and Implementation Best Practices Optical Fiber Data Center Field Testing ANSI/BICSI 002-2011 Data Center Design and Implementation Best Practices Abstract Data Centers are a growing segment of the enterprise market. Regardless of whether

More information

STATE OF OHIO DEPARTMENT OF TRANSPORTATION SUPPLEMENTAL SPECIFICATION 804 FIBER OPTIC CABLE FOR TRAFFIC SIGNAL INTERCONNECT JANUARY 19, 2007

STATE OF OHIO DEPARTMENT OF TRANSPORTATION SUPPLEMENTAL SPECIFICATION 804 FIBER OPTIC CABLE FOR TRAFFIC SIGNAL INTERCONNECT JANUARY 19, 2007 804.01 Description 804.02 General 804.03 Materials 804.04 Fan-Out Kit 804.05 Drop Cable 804.06 Fiber Optic Patch Cord 804.07 Termination Panel 804.08 Fusion Splice 804.09 Fiber Optic Connector 804.10 Splice

More information

A compact, lightweight, portable optical spectrum analyzer for DWDM system installation and maintenance.

A compact, lightweight, portable optical spectrum analyzer for DWDM system installation and maintenance. A compact, lightweight, portable optical spectrum analyzer for DWDM system installation and maintenance. Bulletin -01E http://www.yokogawa.com/tm/... Visit our website to sign for e-mail updates Compact,

More information

École Supérieure d'optique

École Supérieure d'optique Conference on Education and Training in Optics & Photonics Marseille, 27 th October 2005 An Optical Time Domain Reflectometry Set-Up for Laboratory Work at École Supérieure d'optique École Supérieure d'optique

More information

Explanation of Reflection Features in Optical Fiber as Sometimes Observed in OTDR Measurement Traces

Explanation of Reflection Features in Optical Fiber as Sometimes Observed in OTDR Measurement Traces Explanation of Reflection Features in Optical Fiber as Sometimes Observed in OTDR Measurement Traces WP1281 Issued: November 2015 Supersedes: 2012 Author: Dr. Russell Ellis ISO 9001 Registered Background

More information

Field Measurements of Deployed Fiber

Field Measurements of Deployed Fiber Field Measurements of Deployed Fiber Robert J. Feuerstein Level 3 Communications, 1025 Eldorado Boulevard, Broomfield, Colorado 80021 Robert.Feuerstein@Level3.com Abstract: New generations of ultra-long

More information

Fiber Optic Specifications

Fiber Optic Specifications Fiber Optic Specifications All Fiber Optic shall be Corning Altos Single Mode OS1 Outdoor Loose Tube Gel Free Cable Corning Fiber Products only will be accepted and no substitutions or alternates will

More information

How To Read A Fiber Optic Sensor

How To Read A Fiber Optic Sensor 2572-17 Winter College on Optics: Fundamentals of Photonics - Theory, Devices and Applications 10-21 February 2014 Optical Fiber Sensors Basic Principles Scuola Superiore Sant'Anna Pisa Italy Optical Fiber

More information

Measuring of optical output and attenuation

Measuring of optical output and attenuation Measuring of optical output and attenuation THEORY Measuring of optical output is the fundamental part of measuring in optoelectronics. The importance of an optical power meter can be compared to an ammeter

More information

Trace.Net OTDR Test Management Software User s guide

Trace.Net OTDR Test Management Software User s guide Trace.Net OTDR Test Management Software User s guide 2007-2009, AFL Telecommunications, all rights reserved. TRAC-01-1000 Revision B, 2009-06-10 Specifications are subject to change without notice. I Contents

More information

Resolution of comments 242 and 267 on Insertion loss measurements of installed fiber cables. Steve Swanson May 5, 2009

Resolution of comments 242 and 267 on Insertion loss measurements of installed fiber cables. Steve Swanson May 5, 2009 Resolution of comments 242 and 267 on Insertion loss measurements of installed fiber cables Steve Swanson May 5, 2009 Current text in 86.10.1 Insertion loss measurements of installed fiber cables are made

More information

Trace600 OTDR Test Management Software User s guide

Trace600 OTDR Test Management Software User s guide Trace600 OTDR Test Management Software User s guide T e s t & I n s p e c t i o n A Trace600 OTDR Test Management Software User s guide T e s t & I n s p e c t i o n 2002, AFL Telecommunications, all rights

More information

Four Ways To Test Installed Fiber Optic Cables And How The Results Will Differ With Each Method

Four Ways To Test Installed Fiber Optic Cables And How The Results Will Differ With Each Method Four Ways To Test Installed Fiber Optic Cables And How The Results Will Differ With Each Method Jim Hayes, VDV Works, LLC Abstract: We often are asked questions about testing installed fiber optic cables

More information

M310 Data Center OTDR

M310 Data Center OTDR Designed for Data Center Testing, Troubleshooting and Documentation Features Event Dead Zone 0.8 m Attenuation Dead Zone

More information

palmotdr Series Handheld OTDR

palmotdr Series Handheld OTDR palmotdr Series Handheld OTDR Most Compact High-Performance OTDR Comprehensive fiber applications, ideal for LAN/WAN/FTTx certification & trouble-shooting: SM: 1310/1490/1550, 1625/1650nm (with filter),

More information

Cabling & Test Considerations for 10 Gigabit Ethernet LAN

Cabling & Test Considerations for 10 Gigabit Ethernet LAN Introduction Current communication data rates in local networks range from 10/100 megabits per second (Mbps) in Ethernet to 1 gigabit per second (Gbps) in fiber distributed data interface (FDDI) and Gigabit

More information

Service Description blizznetdarkfiber

Service Description blizznetdarkfiber Service Description blizznetdarkfiber Version: 2.1 Inhalt: 1. About Wien Energie and blizznet... 1 2. Basic Services... 1 3. Prerequisites... 1 1.1. Physical availability... 1 1.2. Construction prerequisites/space

More information

M310 Enterprise OTDR. Designed for Enterprise Network Testing, Troubleshooting and Documentation. www.aflglobal.com or (800) 321-5298, (603) 528-7780

M310 Enterprise OTDR. Designed for Enterprise Network Testing, Troubleshooting and Documentation. www.aflglobal.com or (800) 321-5298, (603) 528-7780 Designed for Enterprise Network Testing, Troubleshooting and Documentation Features Integrated Optical Power Meter and Visual Fault Locator Short dead zones provide testing of closely spaced events Industry

More information

Cisco - Calculating the Maximum Attenuation for Optical Fiber Links

Cisco - Calculating the Maximum Attenuation for Optical Fiber Links Page 1 of 5 Calculating the Maximum Attenuation for Optical Fiber Links Document ID: 27042 Contents Introduction Prerequisites Requirements Components Used Conventions What is Attenuation? Wavelength Estimate

More information

Graphical User Interface Capabilities of MATLAB in Centralized Failure Detection System (CFDS)

Graphical User Interface Capabilities of MATLAB in Centralized Failure Detection System (CFDS) INTERNATIONAL JOURNAL OF MICROWAVE AND OPTICAL TECHNOLOGY 128 Graphical User Interface Capabilities of MATLAB in Centralized Failure Detection System (CFDS) Mohammad Syuhaimi Ab-Rahman* and Boonchuan Ng

More information

Fibre optic testing best practices

Fibre optic testing best practices Fibre optic testing best practices Adrian Young Senior Technical Support Engineer Fluke Networks November 2011 Singapore Inspecting and cleaning Keeping the output port on your test equipment clean is

More information

Insertion Losses of Fiber Optical Connectors

Insertion Losses of Fiber Optical Connectors Insertion Losses of Fiber Optical Connectors Martin Strasser, Fiber Optics, HUBER+SUHNER AG, Switzerland H+S Technical Series HUBER+SUHNER Excellence in Connectivity Solutions Table of contents 1 Origins

More information

home site map help ECMS Project: 70197 Standard / Federal Oversight Advertised

home site map help ECMS Project: 70197 Standard / Federal Oversight Advertised Page 1 of 6 S PECIAL PROVISION home site map help ECMS BP ADMIN Project: 70197 Standard / Federal Oversight Advertised Short Description: US 422 Schuylkill River Bridge - D/B: Retaining Wall; ITS Devices;

More information

Fiber Optic Light Sources

Fiber Optic Light Sources Phone 800/426 8688 Fax 800/626 0329 3 Fiber Optic Light Sources 7XT Light Source 375 The Photodyne 7XT Light Source is used as a stand alone single-mode dual wavelength laser light source, or in conjunction

More information

Splicing and Fiber Assembly Compatibility for Non-Zero Dispersion-Shifted Fiber and Standard Single-Mode Fiber

Splicing and Fiber Assembly Compatibility for Non-Zero Dispersion-Shifted Fiber and Standard Single-Mode Fiber Presented at NOC/EC 2000 Splicing and Fiber Assembly Compatibility for Non-Zero Dispersion-Shifted Fiber and Standard Single-Mode Fiber Mary Adcox, Optical Fiber, Corning Incorporated As non-zero dispersion-shifted

More information

Polymer Coated Fiber Cable (PCF)

Polymer Coated Fiber Cable (PCF) Polymer Coated Fiber Cable (PCF) Panduit has introduced a Polymer Coated Fiber (PCF) to their fiber cable offering available in 50µm and 62.5µm core diameters. Along with this cable having a stronger durability

More information

What testing is required for PREMISES Fiber Optic Cabling and the standards used

What testing is required for PREMISES Fiber Optic Cabling and the standards used Testing Cabling in the Data Center Part 1 Fiber Testing Wayne Allen Product Marketing Engineer Asia Pacific Region Fluke Networks In this presentation What testing is required for PREMISES Fiber Optic

More information

FTB-720 LAN/WAN Access OTDR OPTIMIZED FOR MULTIMODE AND SINGLEMODE ACCESS NETWORK TESTING

FTB-720 LAN/WAN Access OTDR OPTIMIZED FOR MULTIMODE AND SINGLEMODE ACCESS NETWORK TESTING FTB-720 LAN/WAN Access OTDR OPTIMIZED FOR MULTIMODE AND SINGLEMODE ACCESS NETWORK TESTING i OLM R E A D Y 2014 GLOBAL PORTABLE FIBER OPTIC TEST EQUIPMENT MARKET LEADERSHIP AWARD The ideal construction

More information

BOTDR Measurement Techniques and Brillouin Backscatter Characteristics of Corning Single-Mode Optical Fibers

BOTDR Measurement Techniques and Brillouin Backscatter Characteristics of Corning Single-Mode Optical Fibers BOTDR Measurement Techniques and Brillouin Backscatter Characteristics of Corning Single-Mode Optical Fibers WP4259 Issued: January 2015 Brillouin Optical Time Domain Reflectometry The Brillouin Optical

More information

FTB-720 LAN/WAN Access OTDR OPTIMIZED FOR MULTIMODE AND SINGLEMODE ACCESS NETWORK TESTING

FTB-720 LAN/WAN Access OTDR OPTIMIZED FOR MULTIMODE AND SINGLEMODE ACCESS NETWORK TESTING FTB-720 LAN/WAN Access OTDR OPTIMIZED FOR MULTIMODE AND SINGLEMODE ACCESS NETWORK TESTING i OLM R E A D Y 2014 GLOBAL PORTABLE FIBER OPTIC TEST EQUIPMENT MARKET LEADERSHIP AWARD The ideal construction

More information

Cable Network Transparency Fiber Optic Monitoring

Cable Network Transparency Fiber Optic Monitoring Cable Network Transparency Fiber Optic Monitoring Fault recognition, localisation and reporting Fiber Optic Cable Future of Telecommunication The demand for complex fiber optic cable networks and flexible

More information

Optical Fibres. Introduction. Safety precautions. For your safety. For the safety of the apparatus

Optical Fibres. Introduction. Safety precautions. For your safety. For the safety of the apparatus Please do not remove this manual from from the lab. It is available at www.cm.ph.bham.ac.uk/y2lab Optics Introduction Optical fibres are widely used for transmitting data at high speeds. In this experiment,

More information

Testing Fiber Optic Cables. Rudy De Winter C.N. Rood RDeWinter@cnrood.com

Testing Fiber Optic Cables. Rudy De Winter C.N. Rood RDeWinter@cnrood.com Testing Fiber Optic Cables Rudy De Winter C.N. Rood RDeWinter@cnrood.com LAN, WAN, MAN,... Testing Fiber Optic Cables The Goal: A network Testing Fiber Optic Cables The OSI Reference Model Application

More information

Fiber Characterization Service

Fiber Characterization Service About JDSU JDSU s verifies the integrity and capacity of your fiber plant through the measurement of key fundamental properties, such as attenuation, reflectance, and dispersion. Comprehensive testing,

More information

Improvement of the precision (repeatability and reproducibility) of a test method to characterize microbending performance of optical fibers

Improvement of the precision (repeatability and reproducibility) of a test method to characterize microbending performance of optical fibers Improvement of the precision ( and reproducibility) of a test method to characterize microbending performance of optical fibers Long Han 1, Pratik Shah 1, Jackie Zhao 2, Xiaosong Wu 1, Steven R. Schmid

More information

Accurately Testing fibre Optic Cables

Accurately Testing fibre Optic Cables Accurately Testing fibre Optic Cables Note: You need to know what we mean when we say accurate that the measurement made gives a value close to the real value. Standards people prefer we refer to the uncertainty

More information

OPERATIONS GUIDE OWL

OPERATIONS GUIDE OWL - t c - T Optical Wavelength Laboratories OPERATIONS GUIDE OWLTrek Optical Time Domain Reflectometer (OTDR) Singlemode: WTO-S15 / WTO-S13 / WTO-S35 Multimode: WTO-M85 / WTO-M13 / WTO-M83 Opti l a c a W

More information

Sol: Optical range from λ 1 to λ 1 +Δλ contains bandwidth

Sol: Optical range from λ 1 to λ 1 +Δλ contains bandwidth 1. Use Figure 3.47 and Figure 3.50 to explain why the bandwidth of twisted-wire pairs and coaxial cable decreases with distance. Figure 3.47 figure 3.50 sol: The bandwidth is the range of frequencies where

More information

An advanced Dark Fiber Monitoring System for Next Generation Optical Access Networks

An advanced Dark Fiber Monitoring System for Next Generation Optical Access Networks An advanced Dark Fiber Monitoring System for Next Generation Optical Access Networks Min Cen, Jiajia Chen, Véronique Moeyaert, Patrice Mégret and Marc Wuilpart 18th Annual Workshop of the IEEE Photonics

More information

The Conversion Technology Experts. Fiber Optics Basics

The Conversion Technology Experts. Fiber Optics Basics The Conversion Technology Experts Fiber Optics Basics Introduction Fiber optic technology is simply the use of light to transmit data. The general use of fiber optics did not begin until the 1970s. Robert

More information

SECTION 27 08 23 TESTING OF FIBER OPTIC CABLES

SECTION 27 08 23 TESTING OF FIBER OPTIC CABLES SECTION 27 08 23 TESTING OF FIBER OPTIC CABLES PART 1 GENERAL 1.01 DESCRIPTION A. The work covered by this section of the Specifications includes all labor necessary to perform and complete such construction,

More information

FIA Breakfast Seminar June 2000 TESTING SOLUTIONS FOR NEW FIBRE OPTICS. prepared and delivered by. FIA Breakfast Seminar 21st June 2000 9.15-10.

FIA Breakfast Seminar June 2000 TESTING SOLUTIONS FOR NEW FIBRE OPTICS. prepared and delivered by. FIA Breakfast Seminar 21st June 2000 9.15-10. Breakfast prepared and delivered by Breakfast Seminar 21st June 2000 9.15-10.30 Optical Test and Calibration 5 Campus Road Listerhills Science Park Bradford BD7 1HR Tel: +44 (0) 1274 393857 Fax: +44 (0)

More information

CNC-STEP. "LaserProbe4500" 3D laser scanning system Instruction manual

CNC-STEP. LaserProbe4500 3D laser scanning system Instruction manual LaserProbe4500 CNC-STEP "LaserProbe4500" 3D laser scanning system Instruction manual 2 Hylewicz CNC-Technik Siemensstrasse 13-15 D-47608 Geldern Fon.: +49 (0) 2831 133236 E-Mail: info@cnc-step.com Website:

More information

Optical Communications Analysis of transmission systems. Henrique Salgado hsalgado@fe.up.pt. Point-to-point system

Optical Communications Analysis of transmission systems. Henrique Salgado hsalgado@fe.up.pt. Point-to-point system Optical Communications Analysis of transmission systems 2007-2008 Henrique Salgado hsalgado@fe.up.pt 1 Point-to-point system The project of a point-to-point link involves, in general, many interrelated

More information

Agilent E6020B FTTx OTDR

Agilent E6020B FTTx OTDR Agilent E6020B FTTx OTDR Fast and Cost-effective Fiber Installation for Access Networks Technical Data Sheet Introducing the New FTTx OTDR Agilent's new E6020B FTTx OTDR is a cost-effective, easy to use

More information

Acterna OFS-100/-200. Optical results analysis & cable acceptance report generation software ACTERNA TEST & MEASUREMENT SOLUTIONS

Acterna OFS-100/-200. Optical results analysis & cable acceptance report generation software ACTERNA TEST & MEASUREMENT SOLUTIONS ACTERNA TEST & MEASUREMENT SOLUTIONS Acterna OFS-100/-200 Optical results analysis & cable acceptance report software Key Features OFS-100 OTDR, CD, PMD, AP, ORL and OSA results analysis Batch processing

More information

EE4367 Telecom. Switching & Transmission. Prof. Murat Torlak

EE4367 Telecom. Switching & Transmission. Prof. Murat Torlak FIBER OPTIC COMMUNICATIONS Optical Fibers Fiber optics (optical fibers) are long, thin strands of very pure glass about the size of a human hair. They are arranged in bundles called optical cables and

More information

Technical Bulletin. Guidelines For Testing And Troubleshooting Fiber Optic Installations

Technical Bulletin. Guidelines For Testing And Troubleshooting Fiber Optic Installations The Fiber Optic Association, Inc. 1119 S. Mission Road #355, Fallbrook, CA 92028 1-760-451-3655 Fax 1-781-207-2421 Email: info@thefoa.org http://www.thefoa.org Technical Bulletin Guidelines For Testing

More information

TROUBLESHOOTING AT THE SPEED OF LIGHT EMBEDDED OTDR FOR OPERATIONAL EXCELLENCE IN PASSIVE OPTICAL NETWORKS

TROUBLESHOOTING AT THE SPEED OF LIGHT EMBEDDED OTDR FOR OPERATIONAL EXCELLENCE IN PASSIVE OPTICAL NETWORKS TROUBLESHOOTING AT THE SPEED OF LIGHT EMBEDDED OTDR FOR OPERATIONAL EXCELLENCE IN PASSIVE OPTICAL NETWORKS Application Note Abstract With our increasing dependence on broadband, service disruptions are

More information

The following terms are defined within the context of the fiber optic industry

The following terms are defined within the context of the fiber optic industry The following terms are defined within the context of the fiber optic industry Adapter A mechanical media termination device designed to align and join fiber optic connectors. Often referred to as coupling,

More information

National Radio Astronomy Observatory Socorro, NM 87801. ELVA Memorandum 40 Fiber Optic Cable Acceptance Tests. June 7, 2002 T.

National Radio Astronomy Observatory Socorro, NM 87801. ELVA Memorandum 40 Fiber Optic Cable Acceptance Tests. June 7, 2002 T. National Radio Astronomy Observatory Socorro, NM 87801 ELVA Memorandum 40 Fiber Optic Cable Acceptance Tests June 7, 2002 T.Baldwin Summary Optical cable must be tested throughout the procurement and installation

More information

Tracing Live or Dark FTTx PONs through Splitter using OFL280

Tracing Live or Dark FTTx PONs through Splitter using OFL280 Introduction AFL s PON-optimized OFL280-103 FlexTester is ideally suited for both out-of-service installation testing, as well as in-service fault location on FTTx PON networks. The OFL280-103 s unique

More information

FIBER OPTIC COMMUNICATIONS. Optical Fibers

FIBER OPTIC COMMUNICATIONS. Optical Fibers FIBER OPTIC COMMUNICATIONS Optical Fibers Fiber optics (optical fibers) are long, thin strands of very pure glass about the size of a human hair. They are arranged in bundles called optical cables and

More information

Live Fiber Monitoring in CWDM Networks

Live Fiber Monitoring in CWDM Networks Live Fiber Monitoring in CWDM Networks Olivier Plomteux, Senior Product Line Manager, Optical Business Unit To cope with the signifi cant increase for storage and on-demand delivery of digital content,

More information

SVPRIBOR ALFA DSL. Users Manual

SVPRIBOR ALFA DSL. Users Manual SVPRIBOR ALFA DSL Users Manual TABLE OF CONTENTS THE GENERAL INORMATION... 3 EXPLOITATION CONDITIONS... 3 CHARACTERISTICS... 3 PACKING LIST... 4 SOKCETS PANNEL... 5 CONTROL... 6 TURNING ON THE DEVICE...

More information

Cable Network Transparency Unified Monitoring System UMS

Cable Network Transparency Unified Monitoring System UMS Cable Network Transparency Unified System UMS Fault recognition, localisation and reporting UMS Universal cable network and equipment monitoring cable networks and associated equipment used to be considered

More information

OFS AllWave Zero Water Peak (ZWP) single-mode

OFS AllWave Zero Water Peak (ZWP) single-mode The New Standard for Single-Mode Fiber Product Description OFS AllWave Zero Water Peak (ZWP) single-mode optical fiber is the industry s first full-spectrum fiber designed for optical transmission systems

More information

NORTH ORANGE COUNTY COMMUNITY COLLEGE DISTRICT SECTION 27 10 00 STRUCTURE CABLING TESTING

NORTH ORANGE COUNTY COMMUNITY COLLEGE DISTRICT SECTION 27 10 00 STRUCTURE CABLING TESTING RELATED SECTIONS: NORTH ORANGE COUNTY COMMUNITY COLLEGE DISTRICT Section 27 00 00 General Requirements Section 27 02 00 General Communication Requirements Section 27 05 26 Grounding and Bonding for Communications

More information

Optical Fibers Fiber Optic Cables Indoor/Outdoor

Optical Fibers Fiber Optic Cables Indoor/Outdoor presents Optical Fibers Fiber Optic Cables Indoor/Outdoor Content Optical fiber function, types optical effects applications production of optical fibre Cable - general types Indoor Indoor / outdoor Outdoor

More information

Guidelines. LANscape Solutions Recommended Fiber Optic Test Guidelines. Table of Contents. 1. Introduction. 2. Why Test? 1. Introduction...

Guidelines. LANscape Solutions Recommended Fiber Optic Test Guidelines. Table of Contents. 1. Introduction. 2. Why Test? 1. Introduction... LANscape Solutions Recommended Fiber Optic Test Guidelines Table of Contents 1. Introduction...1 2. Why Test?...1 3. Tier 1 and Tier 2 Testing...2 4. Encircled Flux...3 5. Link-Loss Budgets...4 6. Proper

More information

Subsea Asset Monitoring using Distributed Fiber Optic Sensing

Subsea Asset Monitoring using Distributed Fiber Optic Sensing Subsea Asset Monitoring using Distributed Fiber Optic Sensing Carlos Borda Omnisens S.A. Subsea Asia Conference June 2014 Agenda Who is Omnisens? Distributed Fiber Optic Monitoring Power Umbilicals Flow

More information

Single or Dual Fiber for 100 Mbps over SMF?

Single or Dual Fiber for 100 Mbps over SMF? Single or Dual Fiber for 100 Mbps over SMF? Hans Mickelsson, Ericsson Research Ulf Jönsson, Ericsson Research 1 Service Network Layering Traditional view (Telco) The infrastructure can be used for different

More information

TESTING PROCEDURE FOR NETWORK DEPLOYMENT

TESTING PROCEDURE FOR NETWORK DEPLOYMENT TESTING PROCEDURE FOR NETWORK DEPLOYMENT 086 APPLICATION NOTE Francis Audet, Eng., Product Manager Johnny Oo, Regional Sales Manager Russell Teague, Applications Engineer It is a widely recognized fact:

More information

Technical Note. HDTV-SDI Cabling Material Selection. HD-SDI Distribution : Introduction canare.com. Cabling Material Selection

Technical Note. HDTV-SDI Cabling Material Selection. HD-SDI Distribution : Introduction canare.com. Cabling Material Selection HD-SDI Distribution : Introduction HD-SDI Distribution : Introduction canare.com HDTV-SDI Cabling Material Selection Broadcast stations and postproduction studios in many countries around the world are

More information

OPTICAL FIBERS INTRODUCTION

OPTICAL FIBERS INTRODUCTION OPTICAL FIBERS References: J. Hecht: Understanding Fiber Optics, Ch. 1-3, Prentice Hall N.J. 1999 D. R. Goff: Fiber Optic Reference Guide (2 nd ed.) Focal Press 1999 Projects in Fiber Optics (Applications

More information

USER GUIDE. 2 Channel POTS Mux DIN Fiber Link System. Introduction SYSTEM INSTALLATION INFORMATION. The leader in rugged fiber optic technology.

USER GUIDE. 2 Channel POTS Mux DIN Fiber Link System. Introduction SYSTEM INSTALLATION INFORMATION. The leader in rugged fiber optic technology. The leader in rugged fiber optic technology. USER GUIDE! Lifetime Warranty U-04 015A-01 Channel POTS Mux DIN Fiber Link System SYSTEM INSTALLATION INFORMATION Introduction The Channel POTS Mux DIN Fiber

More information

Fiber-to-the-Home/FTTH

Fiber-to-the-Home/FTTH Hands-On Design, Installation, Maintenance & Troubleshooting Active and Passive Optical Networks Course Description This Hands-On 2-day course is designed to provide technicians with Hands-On practical

More information

Impedance 50 (75 connectors via adapters)

Impedance 50 (75 connectors via adapters) VECTOR NETWORK ANALYZER PLANAR TR1300/1 DATA SHEET Frequency range: 300 khz to 1.3 GHz Measured parameters: S11, S21 Dynamic range of transmission measurement magnitude: 130 db Measurement time per point:

More information

WiFi Long Shots Get the latest copy at www.scii.nl/~elektra. Elektra Wagenrad

WiFi Long Shots Get the latest copy at www.scii.nl/~elektra. Elektra Wagenrad WiFi Long Shots Get the latest copy at www.scii.nl/~elektra Elektra Wagenrad Why? Building cheap infrastructure wherever ISP's don't see the chance of quick return of investment. Community Networks Add

More information

Operation Manual. OTDR Plus Multitester. OTDR Plus. Offset + Offset - 850l.m85 850xl.m85. 00.0 m (200.0 m /div) 2000.0 m. M1: 788.

Operation Manual. OTDR Plus Multitester. OTDR Plus. Offset + Offset - 850l.m85 850xl.m85. 00.0 m (200.0 m /div) 2000.0 m. M1: 788. Offset + Offset - OTDR Plus 850l.m85 850xl.m85 8.00dB 0.2 db/div Scale 00.0 m (200.0 m /div) 2000.0 m Move M1: 788.0 m Full OTDR Plus Multitester Operation Manual M2: 1770.0 m Diff: 982.0 m Loss A: 0.20

More information

Ethernet/IEEE 802.3 evolution

Ethernet/IEEE 802.3 evolution Ethernet/IEEE 802.3 evolution Pietro Nicoletti www.studioreti.it 8023-Evolution-Engl - 1 P. Nicoletti: see note pag. 2 Copyright note These slides are protected by copyright and international treaties.

More information

CISCO DWDM XENPAK. Main features of the Cisco DWDM XENPAK include:

CISCO DWDM XENPAK. Main features of the Cisco DWDM XENPAK include: DATA SHEET CISCO DWDM XENPAK OVERVIEW The Cisco Dense Wavelength-Division Multiplexing (DWDM) XENPAK pluggable allows enterprise companies and service providers to provide scalable and easy-to-deploy 10

More information

Fiber optic communication

Fiber optic communication Fiber optic communication Fiber optic communication Outline Introduction Properties of single- and multi-mode fiber Optical fiber manufacture Optical network concepts Robert R. McLeod, University of Colorado

More information

SECTION 680 FIBER OPTIC CABLE DESCRIPTION

SECTION 680 FIBER OPTIC CABLE DESCRIPTION 680 SECTION 680 FIBER OPTIC CABLE DESCRIPTION 680.01.01 GENERAL A. The work under this section shall consist of furnishing, installing, and testing all underground and outdoor fiber optic cables. B. All

More information

SpecLine Offline Spectroscopy Analysis Software SPECLINE-P/SPECLINE-U. Installation and Operation Manual Document Number 000-20000-090-02-1209

SpecLine Offline Spectroscopy Analysis Software SPECLINE-P/SPECLINE-U. Installation and Operation Manual Document Number 000-20000-090-02-1209 SpecLine Offline Spectroscopy Analysis Software SPECLINE-P/SPECLINE-U Installation and Operation Manual Document Number 000-20000-090-02-1209 Offices: Ocean Optics, Inc. World Headquarters 830 Douglas

More information

Application Note Fiber Optic Standards Reference Guide

Application Note Fiber Optic Standards Reference Guide Multimode Ethernet Note Fiber Optic Standards Reference Guide Fiber Type 62.5/125 µm 50/125 µm 850 nm laseroptimized 50/125 µm Nominal wavelength (nm) TIA 492AAAA (OM1) TIA 492AAAB (OM2) TIA 492AAAC (OM3)

More information

Wide-Area Optical Fiber Network Monitoring and Management System

Wide-Area Optical Fiber Network Monitoring and Management System by Kunihiro Yamamoto *, Masahide Ogawa *, Tetsuhiro Yamashita * and Masao Sasaki * The optical fiber cable networks that form the backbone of high-speed ABSTRACT communications are increasingly being laid

More information

ST800K-U Optical Power Meter. User Manual V1.0

ST800K-U Optical Power Meter. User Manual V1.0 User Manual V1.0 Contents 1. Summary... 1 2. Functions... 2 3. Specifications... 2 4. Layout... 4 5. Operation... 5 6. Maintenance... 7 7. Faults & Solutions... 8 8. Appendix A...9 9. Appendix B...11 10.

More information

Six-servo Robot Arm. DAGU Hi-Tech Electronic Co., LTD www.arexx.com.cn. Six-servo Robot Arm

Six-servo Robot Arm. DAGU Hi-Tech Electronic Co., LTD www.arexx.com.cn. Six-servo Robot Arm Six-servo Robot Arm 1 1, Introduction 1.1, Function Briefing Servo robot, as the name suggests, is the six servo motor-driven robot arm. Since the arm has a few joints, we can imagine, our human arm, in

More information

T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p

T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p Data Transmission Concepts and terminology Transmission terminology Transmission from transmitter to receiver goes over some transmission medium using electromagnetic waves Guided media. Waves are guided

More information

Testing and troubleshooting enterprise fiber-optic cabling. Presenter: Neftali Usabal Fluke Networks - LATAM

Testing and troubleshooting enterprise fiber-optic cabling. Presenter: Neftali Usabal Fluke Networks - LATAM Testing and troubleshooting enterprise fiber-optic cabling Presenter: Neftali Usabal Fluke Networks - LATAM Agenda Testing Methods and Standards Why we test optical systems Terminology & types of testing

More information

Best Practices for Ensuring Fiber Optic System Performance. David Zambrano

Best Practices for Ensuring Fiber Optic System Performance. David Zambrano Best Practices for Ensuring Fiber Optic System Performance David Zambrano Inspect Before You Connect Optical Connectors in our Networks Contamination and Signal Performance Sources of Contamination Process

More information

Agilent FieldFox RF Vector Network Analyzer N9923A Quick Reference Guide

Agilent FieldFox RF Vector Network Analyzer N9923A Quick Reference Guide Contents Agilent FieldFox RF Vector Network Analyzer N9923A Quick Reference Guide Do You Have Everything?... 2 The Power Button and LED... 2 Battery Usage... 3 Measure S-Parameters... 4 Multi-Trace Configurations...

More information

HP 70950B OPTICAL SPECTRUM ANALYZER

HP 70950B OPTICAL SPECTRUM ANALYZER HP 71450B, 71451B, and 71452B Optical Spectrum Analyzers Technical Specifications Spectral Measurements from 600 to 1700 nm HP 70950B OPTICAL SPECTRUM ANALYZER OPTICAL INPUT The HP 71450B, 71451B, and

More information

USE OF FIBRE OPTICS INTERNATIONAL STANDARDS FOR CALIBRATION LABORATORY ACCREDITATION INTERNATIONAL ELECTROTECHNICAL COMMISSION

USE OF FIBRE OPTICS INTERNATIONAL STANDARDS FOR CALIBRATION LABORATORY ACCREDITATION INTERNATIONAL ELECTROTECHNICAL COMMISSION USE OF FIBRE OPTICS INTERNATIONAL STANDARDS FOR CALIBRATION LABORATORY ACCREDITATION INTERNATIONAL ELECTROTECHNICAL COMMISSION USE OF FIBRE OPTICS INTERNATIONAL STANDARDS FOR CALIBRATION LABORATORY ACCREDITATION

More information

MANUAL FOR RX700 LR and NR

MANUAL FOR RX700 LR and NR MANUAL FOR RX700 LR and NR 2013, November 11 Revision/ updates Date, updates, and person Revision 1.2 03-12-2013, By Patrick M Affected pages, ETC ALL Content Revision/ updates... 1 Preface... 2 Technical

More information

Detecting faulty fiber with centralized failure detection system (CFDS) in fiber-to-the-home (FTTH) access network

Detecting faulty fiber with centralized failure detection system (CFDS) in fiber-to-the-home (FTTH) access network Optica Applicata, Vol. XXXIX, No. 2, 2009 Detecting faulty fiber with centralized failure detection system (CFDS) in fiber-to-the-home (FTTH) access network MOHAMMAD SYUHAIMI AB-RAHMAN *, BOON CHUAN NG,

More information

Attaching the PA-A1-ATM Interface Cables

Attaching the PA-A1-ATM Interface Cables CHAPTER 4 Attaching the PA-A1-ATM Interface Cables To continue your PA-A1-ATM port adapter installation, you must attach the port adapter cables. The instructions that follow apply to all supported platforms.

More information

H-NW-1 H-NW-2 H-NW-3 H-NW-4 H-NW-5 H-NW-6. Reliability Management of Telecommunication Networks by Analyzing Outage Data

H-NW-1 H-NW-2 H-NW-3 H-NW-4 H-NW-5 H-NW-6. Reliability Management of Telecommunication Networks by Analyzing Outage Data Technologies for establishing a base network infrastructure including optical networks, wireless and satellite, all of which are essential to guaranteed bandwidth and broadband telecommunication. H-NW-1

More information

Simulation and Best Design of an Optical Single Channel in Optical Communication Network

Simulation and Best Design of an Optical Single Channel in Optical Communication Network International Arab Journal of e-technology, Vol., No., June 11 91 Simulation and Best Design of an Optical Single Channel in Optical Communication Network Salah Alabady Computer Engineering Department,

More information

155Mbps/1250Mbps SFP Bi-Directional Transceiver, 40km Reach 1310nm TX / 1550 nm RX

155Mbps/1250Mbps SFP Bi-Directional Transceiver, 40km Reach 1310nm TX / 1550 nm RX Features 155Mbps/1250Mbps SFP Bi-Directional Transceiver, 40km Reach 1310nm TX / 1550 nm RX 1310nm FP laser and PIN photodetector for 40km transmission Compliant with SFP MSA and SFF-8472 with simplex

More information

FOM-5A, 6A. Asynchronous Fiber Optic Modem

FOM-5A, 6A. Asynchronous Fiber Optic Modem FOM-5A, 6A Asynchronous Fiber Optic Modem FEATURES Asynchronous transmission at up to 19.2 kbps Transmission range up to 3 km (1.8 mi), regardless of data rate Full- or half-duplex Transfers one control

More information

Industry solutions: Broad cast

Industry solutions: Broad cast Industry solutions: Broad cast BC 2 industry solutions: Broadcast Optical Cable Corporation s broad range of Fiber Optic Broadcast Cables are specifically designed for real-time transmission of high definition

More information

Gigabit Passive Optical Networks

Gigabit Passive Optical Networks White Paper Gigabit Passive Optical Networks Passive Optical LAN Solutions (POLS) Theory, Design, and Installation Considerations Sean McCloud, RCDD Senior Applications Engineer, Leviton Network Solutions

More information

CONCEPT1 RS232 COMMUNICATION

CONCEPT1 RS232 COMMUNICATION Concept 1 RS-232 Communication Communication with Concept 1 via RS-232 is done with simple ASCII Commands and Replies. The port settings are 19200Baud, 8bits, no parity and 1 stop bit. The physical connection

More information