Continued fractions. Yann BUGEAUD. x 1 + and, more generally, we call any expression of the above form or of the form

Size: px
Start display at page:

Download "Continued fractions. Yann BUGEAUD. x 1 + and, more generally, we call any expression of the above form or of the form"

Transcription

1 Continued fractions Yann BUGEAUD Let x 0, x,... be real numbers with x, x 2,... positive. A finite continued fraction denotes any expression of the form [x 0 ; x, x 2..., x n ] = x 0 + x + x x n, and, more generally, we call any expression of the above form or of the form [x 0 ; x, x 2,...] = x 0 + x + x = lim n + [x 0; x, x 2..., x n ] a continued fraction, provided that the limit exists. The aim of this Section is to show how a real number ξ can be expressed as ξ = [x 0 ; x, x 2,...], where x 0 is an integer and x n a positive integer for any n. We first deal with the case of a rational number ξ, then we describe an algorithm which associates to any irrational ξ an infinite sequence of integers (a n ) n 0, with a n for n, and we show that the sequence of rational numbers [a 0 ; a, a 2..., a n ] converges to ξ. For more results on continued fractions or/and different points of view on this theory, the reader may consult e.g. a text of Van der Poorten [6] and the books of Cassels [], Dajani & Kraaikamp [3], Hardy & Wright [4], Perron [5], and Schmidt [7]. Lemma.. Any rational number r has exactly two different continued fraction expansions. These are [r] and [r ; ] if r is an integer and, otherwise, one of them has the form [a 0 ; a,..., a n, a n ] with a n 2, and the other one is [a 0 ; a,..., a n, a n, ]. Proof. Let r be a rational number and write r = u/v with v positive and u and v coprime. We argue by induction on v. If v =, then r = u = [u], and if r = [a 0 ; a,..., a n ] with n, we have r = a 0 + /[a ; a 2,..., a n ]. Since a and r is an integer, we deduce that n = and a =, thus r = a 0 + = [r ; ]. We assume v 2 and that the lemma holds true for any rational of denominator positive and at most equal to v. Performing the Euclidean division of u by v, there exist integers q and c with u = qv + c and c v. Thus, u/v = q + c/v and, by our inductive hypothesis, the rational v/c has exactly two expansions in continued fraction, École du CIMPA, Bamako, novembre 200.

2 which we denote by [a ; a 2,..., a n, a n ] with a n 2, and [a ; a 2,..., a n, a n, ]. Setting a 0 equal to q, the desired result follows for u/v. Unless otherwise explicitly stated, by the continued fraction expansion of a rational number p/q, we mean [] if p/q =, and that one which does not terminate in if p/q. The following algorithm allows us to associate to any irrational real number ξ an infinite sequence of integers. Let define the integer a 0 and the real number ξ > by a 0 = [ξ] and ξ = /{ξ}. We then have ξ = a 0 + /ξ. For any positive integer n, we define inductively the integer a n and the real number ξ n+ > by a n = [ξ n ] and ξ n+ = /{ξ n }, and we observe that ξ n = a n + /ξ n+. We point out that the algorithm does not stop since ξ is assumed to be irrational. Thus, we have associated to any irrational real number ξ an infinite sequence of integers a 0, a, a 2,... with a n positive for all n. If ξ is rational, the same algorithm terminates and associates to ξ a finite sequence of integers. Indeed, the ξ j s are then rational numbers and, if we set ξ j = u j /v j, with u j, v j positive and gcd(u j, v j ) =, an easy induction shows that we get u j > u j+, for any positive integer j with v j. Consequently, there must be some index n for which v n and ξ n is an integer. Thus, a n+, a n+2,... are not defined. We have ξ = [a 0 ; a,..., a n ], and this corresponds to the Euclidean algorithm. Definition.2. Let ξ be an irrational number (resp. a rational number). Let a 0, a,... (resp. a 0, a,..., a N ) be the sequence of integers associated to ξ by the algorithm defined above. For any integer n (resp. n =,..., N), the rational number p n := [a 0 ; a,..., a n ] is called the n-th convergent of ξ and a n is termed the n-th partial quotient of ξ. Further, for any integer n (resp. n =,..., N ), there exists a real number η n in ]0, [ such that, ξ = [a 0 ; a,..., a n, a n + η n ]. We observe that the real numbers η n occurring in Definition.2 are exactly the real numbers /ξ n+ given by the algorithm. In all what follows until the end of Theorem.7 included, unless otherwise explicitly stated, we assume that ξ is a real irrational number and we associate to ξ the sequences (a n ) n 0 and (p n / ) n as given by Definition.2. However, the statements below remain true for rational numbers ξ provided that the a n s and the p n / s are well-defined. The integers p n and can be easily expressed in terms of a n, p n, p n 2,, and 2. 2

3 Theorem.3. Setting we have, for any positive integer n, p =, q = 0, p 0 = a 0, and q 0 =, p n = a n p n + p n 2 and = a n + 2. Proof. We proceed by induction. Since p /q = a 0 + /a = (a 0 a + )/a, the definitions of p, q, p 0, and q 0 show that the theorem is true for n =. Assume that it holds true for a positive integer n and denote by p 0/q 0,..., p n/q n the convergents of the rational number [a ; a 2,..., a n+ ]. For any integer j with 0 j n + we have thus p j q j = [a 0 ; a,..., a j ] = a 0 + [a ; a 2,..., a j ] = a 0 + q j, p j p j = a 0 p j + q j and q j = p j. () It follows from () with j = n + and the inductive hypothesis applied to the rational [a ; a 2,..., a n+ ] that and p n+ = a 0 (a n+ p n + p n 2) + a n+ q n + q n 2 = a n+ (a 0 p n + q n ) + (a 0 p n 2 + q n 2) + = a n+ p n + p n 2, whence, by () with j = n and j = n, we get + = a n+ + and p n+ = a n+ p n + p n, as claimed. Theorem.4. For any non-negative integer n, we have and, for all n, p n p n = ( ) n (2) p n 2 p n 2 = ( ) n a n. (3) Proof. These equalities are clearly true for n = 0 and n =. It then suffices to argue by induction, using Theorem.3. Lemma.5. For any irrational number ξ and any non-negative integer n, the difference ξ p n / is positive if, and only if, n is even. Proof. We easily check that this is true for n = 0,, and 2 and we proceed by induction. Let n 4 be an even integer. Then ξ = [a 0 ; a, [a 2 ; a 3,..., a n + η n ]] and the inductive hypothesis implies that [a 2 ; a 3,..., a n + η n ] > [a 2 ; a 3,..., a n ]. Since [a 0 ; a, u] > [a 0 ; a, v] holds for all positive real numbers u > v, we get that ξ > [a 0 ; a, [a 2 ; a 3,..., a n ]] = p n /. We deal with the case n odd in exactly the same way. As a corollary of Lemma.5, we get a result of Vahlen. 3

4 Corollary.6. Let p n / and p n+ /+ be two consecutive convergents of the continued fraction expansion of an irrational number ξ. Then at least one of them satisfies ξ p q < 2q 2. (4) In particular, there are infinitely many rational numbers p/q satisfying (4). Proof. We infer from Lemma.5 that ξ is an inner point of the interval bounded by p n / and p n+ /+. Thus, using (2) and the inequality a 2 + b 2 > 2ab, valid for any distinct real numbers a and b, we get 2q 2 n + 2q 2 n+ > and the claimed result follows. + = p n p n+ = ξ p n + ξ p n+, The next two theorems show that the real irrational numbers are in a one-to-one correspondence with the set of integer sequences (a i ) i 0 with a i positive for i. Theorem.7. The convergents of even order of any real irrational ξ form a strictly increasing sequence and those of odd order a strictly decreasing sequence. The sequence of convergents (p n / ) n 0 converges to ξ, and we set + ξ = [a 0 ; a, a 2,...]. Any irrational number has a unique expansion in continued fraction. Proof. It follows from (3) that for any integer n with n 2 we have p n 2 2 p n = ( )n a n 2, and, since the a n s are positive, we deduce that the convergents of even order of the real irrational ξ form a strictly increasing sequence and those of odd order a strictly decreasing sequence. To conclude, we observe that, by Lemma.5, we have p 2n /q 2n < ξ < p 2n+ /q 2n+ for all n 0, and, by (2), the difference p 2n /q 2n p 2n+ /q 2n+ tends to 0 when n tends to infinity. Unicity is clear. Indeed, if (b i ) i 0 is a sequence of integers with b i positive for i and such that lim n + [b 0 ; b, b 2,...] exist, then this limit cannot be equal to lim n + [a 0 ; a, a 2,...] as soon as there exists a non-negative integer i with a i b i. Theorem.8. Let a 0, a,... be integers with a, a 2,... positive. Then the sequence of rational numbers [a 0 ; a,..., a i ], i, converges to the irrational number whose partial quotients are precisely a 0, a,... Proof. For any positive integer n, denote by p n / the rational number [a 0 ; a,..., a n ]. The recurrence relations obtained in Theorems.3 and.4 hold true in the present context. As 4 +

5 in the proof of Theorem.7, we deduce from (2) and (3) that the sequences (p 2n /q 2n ) n and (p 2n+ /q 2n+ ) n are adjacent. Hence, they converge to the same limit, namely to the irrational number [a 0 ; a, a 2,...], whose partial quotients are precisely a 0, a,..., by Theorem.7. We observe that for any irrational number ξ the sequences (a n ) n 0 and (ξ n ) n given by the algorithm defined below Lemma. satisfy ξ n = [a n ; a n+, a n+2,...] for all positive integers n. Theorem.9. Let n be a positive integer and ξ = [a 0 ; a, a 2...] be an irrational number. We then have ξ = [a 0 ; a,..., a n, ξ n+ ] = p nξ n+ + p n ξ n+ + and ξ p n = ( ) n ξ n+ + = ( )n ξ n+ + [0; a n, a n,..., a ]. Furthermore, the set of real numbers having a continued fraction expansion whose n + first partial quotients are a 0, a,..., a n is precisely the closed interval bounded by (p n + p n )/( + ) and p n /, which are equal to [a 0 ; a,..., a n, ] and [a 0 ; a,..., a n ], respectively. Proof. We proceed by induction, using Theorem.3 and noticing that we have ξ n = a n + /ξ n+ and / = [a n ; a n,..., a ] for all positive integers n. The last assertion of the theorem follows immediately, since the admissible values of ξ n+ run exactly through the interval ], + [. Corollary.0. For any irrational number ξ and any non-negative integer n, we have ( + + ) < ξ p n <. + Proof. Writing ξ = [a 0 ; a, a 2,...] and ξ n+ = [a n+ ; a n+2,...], we observe that a n+ < ξ n+ < a n+ +, and we get from Theorem.9 that ( ) < (an+ + ) + q ξ p n < n (a n+ + ). The corollary follows then from Theorem.3. The following result of Legendre provides a partial converse to Corollary.6. Theorem.. Let ξ be a real number. Any non-zero rational number a/b with ξ a b < 2b 2 is a convergent of ξ. Proof. We assume that ξ a/b and we write ξ a/b = εθ/b 2, with ε = ± and 0 < θ < /2. By Lemma., setting a n = if necessary, we may write a/b = [a 0 ; a,..., a n ], with 5

6 n given by ( ) n = ε, and we denote by p /q,..., p n / the convergents of a/b. Let ω be such that ξ = p n ω + p n 2 ω + 2 = [a 0 ; a,..., a n, ω]. We check that whence εθ b 2 = ξ a b = ξ p n = (ξ p n ) = ω = θ 2 ( ) n ω + 2, and ω >. Denote by [a n ; a n+, a n+2,...] the continued fraction expansion of ω. Since a j for all j, we have ξ = [a 0 ; a,..., a n, ω] = [a 0 ; a, a 2,...], and Theorem.8 yields that a/b = p n / is a convergent of ξ. A less-known result of Fatou provides a satisfactory complement to Theorem.. It asserts that if the real number ξ and the rational number a/b satisfy ξ a/b < /b 2, then there exists an integer n such that a b belongs to { pn, p n+ + p n, p } n+2 p n Definition.2. The irrational real number ξ is said to be badly approximable if there exists a positive constant c(ξ) such that ξ p q c(ξ) q 2 for any rational p/q distinct from ξ. The set of badly approximable real numbers is denoted by B. Quadratic real numbers are badly approximable (see Exercise ), and many other real numbers share this property, as follows from the next theorem. Theorem.3. An irrational real number ξ is badly approximable if, and only if, the sequence of its partial quotients is bounded. Consequently, the set B is uncountable. Proof. Assume that ξ is badly approximable, and let c be a positive real number such that ξ p/q > c/q 2 for any rational p/q. Let n be a positive integer. It follows from Corollary.0 that /c. Since Theorem.3 yields that a n, we get a n /c, and the sequence of partial quotients of ξ is bounded. Conversely, if the partial quotients of ξ are not greater than a constant M, we then have + (M + ) for any non-negative integer n. Furthermore, if a/b satisfies 6

7 ξ a/b < /(2b 2 ), then, by Theorem. and Corollary.0, there exists a non-negative integer n such that a/b = p n / and ξ a b > b(b + + ) (M + 2)b 2. This shows that ξ is badly approximable. The last assertion of the theorem follows from Theorem.8. Quadratic numbers are badly approximable numbers, thus, by Theorem.3, their partial quotients are bounded. However, much more is known: the sequence of their partial quotients is ultimately periodic. Theorem.4. The real irrational number ξ = [a 0 ; a, a 2,...] has a periodic continued fraction expansion (that is, there exist integers k 0 and n such that a m+n = a m for all m k) if, and only if, ξ is a quadratic irrationality. The only if part is due to Euler, and the (more difficult) if part was established by Lagrange in 770, see Exercise 2. The next result dates back to (at least) 877 and can be found in the book of Serret. Theorem.5. Let ξ = [a 0 ; a, a 2,...] and η = [b 0 ; b, b 2,...] be two irrational numbers. There exist integers u and v such that a u+n = b v+n for every positive integer n if, and only if, there exist integers a, b, c, and d such that ad bc = and η = (aξ + b)/(cξ + d). Two real numbers satisfying the equivalent conditions of Theorem.5 are called equivalent. Hurwitz improved the last assertion of Corollary.6. Theorem.6. For any real irrational number ξ, there exist infinitely many rationals p/q satisfying ξ p q <. 5q 2 Further, the constant 5 cannot be replaced by a larger real number. We observe that the Golden Section ( + 5)/2 = [;,,...,,...] is, up to equivalence, the irrational number which is the most badly approximable by rational numbers. As shown by Hurwitz, Theorem.6 can be improved if, besides the rationals, we also exclude the numbers which are equivalent to the Golden Section. Theorem.7. For any irrational real number ξ which is not equivalent to ( + 5)/2, there exist infinitely many rationals p/q satisfying ξ p q <. 8q 2 The constant 8 cannot be replaced by a larger real number. In other words, the assumptions of Theorem.7 are satisfied by any irrational ξ having infinitely many partial quotients greater than or equal to 2. The limiting case is obtained with real numbers equivalent to ( + 2)/2. 7

8 More generally, for a real ξ we define ν(ξ) = lim inf q + q qξ, where denotes the function distance to the nearest integer. Clearly, ν(ξ) = 0 holds for any rational ξ. The set of values taken by the function ν is called the Lagrange spectrum. By Theorem.6, it is included in the interval [0, / 5]. Theorem.8. There exists a sequence of numbers ν = 5 > ν 2 = 8 > ν 3 > ν 4 >... tending to /3 such that, for all ν i, there is, up to equivalence, a finite number of real numbers ξ satisfying ν(ξ) = ν i. More results on the Lagrange spectrum can be found in the book of Cusick & Flahive [2]. We continue with some complements. It is sometimes important to take the matrix point of view, that is, to note that the recurrence relations given in Theorem.3 imply that, if ξ = [a 0 ; a,...] is a positive real irrational number, with convergents p n / = [a 0 ; a,..., a n ], then, for n, we have ( ) pn p M n := n = ( a0 0 ) ( ) a... 0 ( ) an. (5) 0 Theorem.9. Let n 2 be an integer and a,..., a n be positive integers. For j =,..., n, set p j /q j = [0; a,..., a j ]. Then, we have Proof. We get from Theorem.3 that = [0; a n, a n,..., a ]. + = a n+ +. Theorem.9 then follows by induction. Alternatively, we can conclude by setting a 0 = 0 in (5) and then by taking the transpose of both sides of (5). Definition.20. Let m and a,..., a m be positive integers. The continuant of a,..., a m, usually denoted by K m (a,..., a m ), is the denominator of the rational number [0; a,..., a m ]. Theorem.2. For any positive integers a,..., a m and any integer k with k m, we have K m (a,..., a m ) = K m (a m,..., a ), (6) 8

9 2 (m )/2 K m (a,..., a m ) ( + max{a,..., a m }) m, (7) and K k (a,..., a k ) K m k (a k+,..., a m ) K m (a,..., a m ) 2 K k (a,..., a k ) K m k (a k+,..., a m ). (8) Proof. The first statement is an immediate consequence of Theorem.9. For the second statement, letting a be the maximum of a,..., a m, it follows from Theorem.3 that K m (,..., ) K m (a,..., a m ) K m (a,..., a) (a + ) m. Since K () =, K 2 (, ) = 2 and 2 l/2 2 (l )/2 + 2 (l 2)/2 for l 2, an immediate induction gives the first inequality of (7). Combining K m (a,..., a m ) = a m K m (a,..., a m )+K m 2 (a,..., a m 2 ) with (6), we get K m (a,..., a m ) = a K m (a 2,..., a m ) + K m 2 (a 3,..., a m ), which implies (8) for k =. Let k be in {, 2,..., m 2} be such that K m := K m (a,..., a m ) =K k (a,..., a k ) K m k (a k+,..., a m ) + K k (a,..., a k ) K m k+ (a k+2,..., a m ), (9) with the convention that K 0 =. We then have K m = K k (a,..., a k ) (a k+ K m k+ (a k+2,..., a m ) + K m k+2 (a k+3,..., a m ) ) + K k (a,..., a k ) K m k+ (a k+2,..., a m ) = ( a k+ K k (a,..., a k ) + K k (a,..., a k ) ) K m k+ (a k+2,..., a m ) + K k (a,..., a k ) K m k+2 (a k+3,..., a m ), giving (9) for the index k +. This shows that (9) and, a fortiori, (8) hold for k =,..., m. 9

10 Exercises Exercise. Prove that every real quadratic number a + b d is badly approximable (introduce a b d). Exercise 2. (Proof of Theorem.4). Show that any irrational real number having a periodic continued fraction expansion is a quadratic irrationality. Prove the converse, following Steinig. Let ξ be a quadratic real number and define the sequences (a n ) n 0 and (ξ n ) n by the algorithm given above. Set ξ 0 := ξ. ) Show, by induction, that for each non-negative integer n there is an integer polynomial f n (x) := A n x 2 + B n x + C n, with Bn 2 4A n C n positive and not a square, such that f n (ξ n ) = 0. Prove that A n+, B n+ and C n+ are given by A n+ = a 2 n A n + a n B n + C n, B n+ = 2a n A n + B n, and C n+ = A n. (0) 2) Observe that D := B 2 0 4A 0 C 0 = B 2 n 4A n C n, for any n 0, () and deduce from (0) that there exists an infinite set N of distinct positive integers such that A n A n is negative for any n in N. 3) Deduce from () that for any n in N. Conclude. B n < D, A n D/4, and C n D/4, Exercise 3. (Proof of Hurwitz Theorems.6 and.7, following Forder.) Let ξ be an irrational number and assume that its convergents p n /, p n /, and p n+ /+ satisfy ξ p j /q j /( 5qj 2 ) for j = n, n, n +. ) Prove that we have ( 5 qn 2 + ) qn 2, and deduce that / and / belong to the interval ]( 5 )/2, ( 5 + )/2[. Prove that the same conclusion also holds for /+ and + /. Conclude. 2) With a suitable adaptation of the above proof, show that if the convergents p n / of an irrational number ξ satisfy ξ p n / /( 8q 2 n) from some integer n 0 onwards then + < 2 + holds for any sufficiently large integer n. Conclude. 0

11 References [] J. W. S. Cassels, An introduction to Diophantine Approximation. Cambridge Tracts in Math. and Math. Phys., vol. 99, Cambridge University Press, 957. [2] T. W. Cusick and M. E. Flahive, The Markoff and Lagrange spectra. Mathematical Surveys and Monographs, 30. American Mathematical Society, Providence, RI, 989. [3] K. Dajani and C. Kraaikamp, Ergodic theory of numbers. Carus Mathematical Monographs 29, Mathematical Association of America, Washington, DC, [4] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers. 5th. edition, Clarendon Press, 979. [5] O. Perron, Die Lehre von den Ketterbrüchen. Teubner, Leipzig, 929. [6] A. J. van der Poorten, An introduction to continued fractions. In: Diophantine analysis (Kensington, 985), 99 38, London Math. Soc. Lecture Note Ser. 09, Cambridge Univ. Press, Cambridge, 986. [7] W. M. Schmidt, Diophantine Approximation. Lecture Notes in Math. 785, Springer, Berlin, 980. Yann Bugeaud Université de Strasbourg Mathématiques 7, rue René Descartes STRASBOURG (FRANCE)

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12 CONTINUED FRACTIONS AND PELL S EQUATION SEUNG HYUN YANG Abstract. In this REU paper, I will use some important characteristics of continued fractions to give the complete set of solutions to Pell s equation.

More information

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)! Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following

More information

Continued Fractions. Darren C. Collins

Continued Fractions. Darren C. Collins Continued Fractions Darren C Collins Abstract In this paper, we discuss continued fractions First, we discuss the definition and notation Second, we discuss the development of the subject throughout history

More information

CS 103X: Discrete Structures Homework Assignment 3 Solutions

CS 103X: Discrete Structures Homework Assignment 3 Solutions CS 103X: Discrete Structures Homework Assignment 3 s Exercise 1 (20 points). On well-ordering and induction: (a) Prove the induction principle from the well-ordering principle. (b) Prove the well-ordering

More information

On continued fractions of the square root of prime numbers

On continued fractions of the square root of prime numbers On continued fractions of the square root of prime numbers Alexandra Ioana Gliga March 17, 2006 Nota Bene: Conjecture 5.2 of the numerical results at the end of this paper was not correctly derived from

More information

Every Positive Integer is the Sum of Four Squares! (and other exciting problems)

Every Positive Integer is the Sum of Four Squares! (and other exciting problems) Every Positive Integer is the Sum of Four Squares! (and other exciting problems) Sophex University of Texas at Austin October 18th, 00 Matilde N. Lalín 1. Lagrange s Theorem Theorem 1 Every positive integer

More information

ON FIBONACCI NUMBERS WITH FEW PRIME DIVISORS

ON FIBONACCI NUMBERS WITH FEW PRIME DIVISORS ON FIBONACCI NUMBERS WITH FEW PRIME DIVISORS YANN BUGEAUD, FLORIAN LUCA, MAURICE MIGNOTTE, SAMIR SIKSEK Abstract If n is a positive integer, write F n for the nth Fibonacci number, and ω(n) for the number

More information

5. Factoring by the QF method

5. Factoring by the QF method 5. Factoring by the QF method 5.0 Preliminaries 5.1 The QF view of factorability 5.2 Illustration of the QF view of factorability 5.3 The QF approach to factorization 5.4 Alternative factorization by the

More information

An example of a computable

An example of a computable An example of a computable absolutely normal number Verónica Becher Santiago Figueira Abstract The first example of an absolutely normal number was given by Sierpinski in 96, twenty years before the concept

More information

Settling a Question about Pythagorean Triples

Settling a Question about Pythagorean Triples Settling a Question about Pythagorean Triples TOM VERHOEFF Department of Mathematics and Computing Science Eindhoven University of Technology P.O. Box 513, 5600 MB Eindhoven, The Netherlands E-Mail address:

More information

1 if 1 x 0 1 if 0 x 1

1 if 1 x 0 1 if 0 x 1 Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

More information

PROOFS BY DESCENT KEITH CONRAD

PROOFS BY DESCENT KEITH CONRAD PROOFS BY DESCENT KEITH CONRAD As ordinary methods, such as are found in the books, are inadequate to proving such difficult propositions, I discovered at last a most singular method... that I called the

More information

Basic Proof Techniques

Basic Proof Techniques Basic Proof Techniques David Ferry dsf43@truman.edu September 13, 010 1 Four Fundamental Proof Techniques When one wishes to prove the statement P Q there are four fundamental approaches. This document

More information

International Journal of Information Technology, Modeling and Computing (IJITMC) Vol.1, No.3,August 2013

International Journal of Information Technology, Modeling and Computing (IJITMC) Vol.1, No.3,August 2013 FACTORING CRYPTOSYSTEM MODULI WHEN THE CO-FACTORS DIFFERENCE IS BOUNDED Omar Akchiche 1 and Omar Khadir 2 1,2 Laboratory of Mathematics, Cryptography and Mechanics, Fstm, University of Hassan II Mohammedia-Casablanca,

More information

MATH10040 Chapter 2: Prime and relatively prime numbers

MATH10040 Chapter 2: Prime and relatively prime numbers MATH10040 Chapter 2: Prime and relatively prime numbers Recall the basic definition: 1. Prime numbers Definition 1.1. Recall that a positive integer is said to be prime if it has precisely two positive

More information

CONTINUED FRACTIONS AND FACTORING. Niels Lauritzen

CONTINUED FRACTIONS AND FACTORING. Niels Lauritzen CONTINUED FRACTIONS AND FACTORING Niels Lauritzen ii NIELS LAURITZEN DEPARTMENT OF MATHEMATICAL SCIENCES UNIVERSITY OF AARHUS, DENMARK EMAIL: niels@imf.au.dk URL: http://home.imf.au.dk/niels/ Contents

More information

k, then n = p2α 1 1 pα k

k, then n = p2α 1 1 pα k Powers of Integers An integer n is a perfect square if n = m for some integer m. Taking into account the prime factorization, if m = p α 1 1 pα k k, then n = pα 1 1 p α k k. That is, n is a perfect square

More information

arxiv:math/0601660v3 [math.nt] 25 Feb 2006

arxiv:math/0601660v3 [math.nt] 25 Feb 2006 NOTES Edited by William Adkins arxiv:math/666v3 [math.nt] 25 Feb 26 A Short Proof of the Simple Continued Fraction Expansion of e Henry Cohn. INTRODUCTION. In [3], Euler analyzed the Riccati equation to

More information

Math Workshop October 2010 Fractions and Repeating Decimals

Math Workshop October 2010 Fractions and Repeating Decimals Math Workshop October 2010 Fractions and Repeating Decimals This evening we will investigate the patterns that arise when converting fractions to decimals. As an example of what we will be looking at,

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES Contents 1. Random variables and measurable functions 2. Cumulative distribution functions 3. Discrete

More information

Algebraic and Transcendental Numbers

Algebraic and Transcendental Numbers Pondicherry University July 2000 Algebraic and Transcendental Numbers Stéphane Fischler This text is meant to be an introduction to algebraic and transcendental numbers. For a detailed (though elementary)

More information

God created the integers and the rest is the work of man. (Leopold Kronecker, in an after-dinner speech at a conference, Berlin, 1886)

God created the integers and the rest is the work of man. (Leopold Kronecker, in an after-dinner speech at a conference, Berlin, 1886) Chapter 2 Numbers God created the integers and the rest is the work of man. (Leopold Kronecker, in an after-dinner speech at a conference, Berlin, 1886) God created the integers and the rest is the work

More information

Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.

Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom. Some Polynomial Theorems by John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.com This paper contains a collection of 31 theorems, lemmas,

More information

Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.

Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook. Elementary Number Theory and Methods of Proof CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.edu/~cse215 1 Number theory Properties: 2 Properties of integers (whole

More information

THE BANACH CONTRACTION PRINCIPLE. Contents

THE BANACH CONTRACTION PRINCIPLE. Contents THE BANACH CONTRACTION PRINCIPLE ALEX PONIECKI Abstract. This paper will study contractions of metric spaces. To do this, we will mainly use tools from topology. We will give some examples of contractions,

More information

Cycles in a Graph Whose Lengths Differ by One or Two

Cycles in a Graph Whose Lengths Differ by One or Two Cycles in a Graph Whose Lengths Differ by One or Two J. A. Bondy 1 and A. Vince 2 1 LABORATOIRE DE MATHÉMATIQUES DISCRÉTES UNIVERSITÉ CLAUDE-BERNARD LYON 1 69622 VILLEURBANNE, FRANCE 2 DEPARTMENT OF MATHEMATICS

More information

MATH 289 PROBLEM SET 4: NUMBER THEORY

MATH 289 PROBLEM SET 4: NUMBER THEORY MATH 289 PROBLEM SET 4: NUMBER THEORY 1. The greatest common divisor If d and n are integers, then we say that d divides n if and only if there exists an integer q such that n = qd. Notice that if d divides

More information

Irreducibility criteria for compositions and multiplicative convolutions of polynomials with integer coefficients

Irreducibility criteria for compositions and multiplicative convolutions of polynomials with integer coefficients DOI: 10.2478/auom-2014-0007 An. Şt. Univ. Ovidius Constanţa Vol. 221),2014, 73 84 Irreducibility criteria for compositions and multiplicative convolutions of polynomials with integer coefficients Anca

More information

Real Roots of Univariate Polynomials with Real Coefficients

Real Roots of Univariate Polynomials with Real Coefficients Real Roots of Univariate Polynomials with Real Coefficients mostly written by Christina Hewitt March 22, 2012 1 Introduction Polynomial equations are used throughout mathematics. When solving polynomials

More information

Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.

Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P. MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called

More information

1. Prove that the empty set is a subset of every set.

1. Prove that the empty set is a subset of every set. 1. Prove that the empty set is a subset of every set. Basic Topology Written by Men-Gen Tsai email: b89902089@ntu.edu.tw Proof: For any element x of the empty set, x is also an element of every set since

More information

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS STEVEN P. LALLEY AND ANDREW NOBEL Abstract. It is shown that there are no consistent decision rules for the hypothesis testing problem

More information

CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e.

CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. This chapter contains the beginnings of the most important, and probably the most subtle, notion in mathematical analysis, i.e.,

More information

8 Divisibility and prime numbers

8 Divisibility and prime numbers 8 Divisibility and prime numbers 8.1 Divisibility In this short section we extend the concept of a multiple from the natural numbers to the integers. We also summarize several other terms that express

More information

Kevin James. MTHSC 412 Section 2.4 Prime Factors and Greatest Comm

Kevin James. MTHSC 412 Section 2.4 Prime Factors and Greatest Comm MTHSC 412 Section 2.4 Prime Factors and Greatest Common Divisor Greatest Common Divisor Definition Suppose that a, b Z. Then we say that d Z is a greatest common divisor (gcd) of a and b if the following

More information

Introduction. Appendix D Mathematical Induction D1

Introduction. Appendix D Mathematical Induction D1 Appendix D Mathematical Induction D D Mathematical Induction Use mathematical induction to prove a formula. Find a sum of powers of integers. Find a formula for a finite sum. Use finite differences to

More information

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear

More information

PRIME FACTORS OF CONSECUTIVE INTEGERS

PRIME FACTORS OF CONSECUTIVE INTEGERS PRIME FACTORS OF CONSECUTIVE INTEGERS MARK BAUER AND MICHAEL A. BENNETT Abstract. This note contains a new algorithm for computing a function f(k) introduced by Erdős to measure the minimal gap size in

More information

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory

More information

Answer Key for California State Standards: Algebra I

Answer Key for California State Standards: Algebra I Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.

More information

Homework until Test #2

Homework until Test #2 MATH31: Number Theory Homework until Test # Philipp BRAUN Section 3.1 page 43, 1. It has been conjectured that there are infinitely many primes of the form n. Exhibit five such primes. Solution. Five such

More information

The sum of digits of polynomial values in arithmetic progressions

The sum of digits of polynomial values in arithmetic progressions The sum of digits of polynomial values in arithmetic progressions Thomas Stoll Institut de Mathématiques de Luminy, Université de la Méditerranée, 13288 Marseille Cedex 9, France E-mail: stoll@iml.univ-mrs.fr

More information

Lecture 13: Factoring Integers

Lecture 13: Factoring Integers CS 880: Quantum Information Processing 0/4/0 Lecture 3: Factoring Integers Instructor: Dieter van Melkebeek Scribe: Mark Wellons In this lecture, we review order finding and use this to develop a method

More information

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

More information

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called

More information

MATHEMATICAL INDUCTION. Mathematical Induction. This is a powerful method to prove properties of positive integers.

MATHEMATICAL INDUCTION. Mathematical Induction. This is a powerful method to prove properties of positive integers. MATHEMATICAL INDUCTION MIGUEL A LERMA (Last updated: February 8, 003) Mathematical Induction This is a powerful method to prove properties of positive integers Principle of Mathematical Induction Let P

More information

it is easy to see that α = a

it is easy to see that α = a 21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore

More information

The last three chapters introduced three major proof techniques: direct,

The last three chapters introduced three major proof techniques: direct, CHAPTER 7 Proving Non-Conditional Statements The last three chapters introduced three major proof techniques: direct, contrapositive and contradiction. These three techniques are used to prove statements

More information

STUDENT S SOLUTIONS MANUAL ELEMENTARY NUMBER THEORY. Bart Goddard. Kenneth H. Rosen AND ITS APPLICATIONS FIFTH EDITION. to accompany.

STUDENT S SOLUTIONS MANUAL ELEMENTARY NUMBER THEORY. Bart Goddard. Kenneth H. Rosen AND ITS APPLICATIONS FIFTH EDITION. to accompany. STUDENT S SOLUTIONS MANUAL to accompany ELEMENTARY NUMBER THEORY AND ITS APPLICATIONS FIFTH EDITION Bart Goddard Kenneth H. Rosen AT&T Labs Reproduced by Pearson Addison-Wesley from electronic files supplied

More information

Lectures on Number Theory. Lars-Åke Lindahl

Lectures on Number Theory. Lars-Åke Lindahl Lectures on Number Theory Lars-Åke Lindahl 2002 Contents 1 Divisibility 1 2 Prime Numbers 7 3 The Linear Diophantine Equation ax+by=c 12 4 Congruences 15 5 Linear Congruences 19 6 The Chinese Remainder

More information

On the largest prime factor of x 2 1

On the largest prime factor of x 2 1 On the largest prime factor of x 2 1 Florian Luca and Filip Najman Abstract In this paper, we find all integers x such that x 2 1 has only prime factors smaller than 100. This gives some interesting numerical

More information

How To Know If A Domain Is Unique In An Octempo (Euclidean) Or Not (Ecl)

How To Know If A Domain Is Unique In An Octempo (Euclidean) Or Not (Ecl) Subsets of Euclidean domains possessing a unique division algorithm Andrew D. Lewis 2009/03/16 Abstract Subsets of a Euclidean domain are characterised with the following objectives: (1) ensuring uniqueness

More information

3 0 + 4 + 3 1 + 1 + 3 9 + 6 + 3 0 + 1 + 3 0 + 1 + 3 2 mod 10 = 4 + 3 + 1 + 27 + 6 + 1 + 1 + 6 mod 10 = 49 mod 10 = 9.

3 0 + 4 + 3 1 + 1 + 3 9 + 6 + 3 0 + 1 + 3 0 + 1 + 3 2 mod 10 = 4 + 3 + 1 + 27 + 6 + 1 + 1 + 6 mod 10 = 49 mod 10 = 9. SOLUTIONS TO HOMEWORK 2 - MATH 170, SUMMER SESSION I (2012) (1) (Exercise 11, Page 107) Which of the following is the correct UPC for Progresso minestrone soup? Show why the other numbers are not valid

More information

Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1

Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1 Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1 J. Zhang Institute of Applied Mathematics, Chongqing University of Posts and Telecommunications, Chongqing

More information

= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that

= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without

More information

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights

More information

Notes on Factoring. MA 206 Kurt Bryan

Notes on Factoring. MA 206 Kurt Bryan The General Approach Notes on Factoring MA 26 Kurt Bryan Suppose I hand you n, a 2 digit integer and tell you that n is composite, with smallest prime factor around 5 digits. Finding a nontrivial factor

More information

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 Proofs Intuitively, the concept of proof should already be familiar We all like to assert things, and few of us

More information

On the irreducibility of certain polynomials with coefficients as products of terms in an arithmetic progression

On the irreducibility of certain polynomials with coefficients as products of terms in an arithmetic progression On the irreducibility of certain polynomials with coefficients as products of terms in an arithmetic progression Carrie E. Finch and N. Saradha Abstract We prove the irreducibility of ceratin polynomials

More information

Contents. 6 Continued Fractions and Diophantine Equations. 6.1 Linear Diophantine Equations

Contents. 6 Continued Fractions and Diophantine Equations. 6.1 Linear Diophantine Equations Number Theory (part 6): Continued Fractions and Diophantine Equations (by Evan Dummit, 04, v 00) Contents 6 Continued Fractions and Diophantine Equations 6 Linear Diophantine Equations 6 The Frobenius

More information

x a x 2 (1 + x 2 ) n.

x a x 2 (1 + x 2 ) n. Limits and continuity Suppose that we have a function f : R R. Let a R. We say that f(x) tends to the limit l as x tends to a; lim f(x) = l ; x a if, given any real number ɛ > 0, there exists a real number

More information

Mathematical Induction

Mathematical Induction Mathematical Induction (Handout March 8, 01) The Principle of Mathematical Induction provides a means to prove infinitely many statements all at once The principle is logical rather than strictly mathematical,

More information

WHEN DOES A CROSS PRODUCT ON R n EXIST?

WHEN DOES A CROSS PRODUCT ON R n EXIST? WHEN DOES A CROSS PRODUCT ON R n EXIST? PETER F. MCLOUGHLIN It is probably safe to say that just about everyone reading this article is familiar with the cross product and the dot product. However, what

More information

Stationary random graphs on Z with prescribed iid degrees and finite mean connections

Stationary random graphs on Z with prescribed iid degrees and finite mean connections Stationary random graphs on Z with prescribed iid degrees and finite mean connections Maria Deijfen Johan Jonasson February 2006 Abstract Let F be a probability distribution with support on the non-negative

More information

Jacobi s four squares identity Martin Klazar

Jacobi s four squares identity Martin Klazar Jacobi s four squares identity Martin Klazar (lecture on the 7-th PhD conference) Ostrava, September 10, 013 C. Jacobi [] in 189 proved that for any integer n 1, r (n) = #{(x 1, x, x 3, x ) Z ( i=1 x i

More information

Solutions for Practice problems on proofs

Solutions for Practice problems on proofs Solutions for Practice problems on proofs Definition: (even) An integer n Z is even if and only if n = 2m for some number m Z. Definition: (odd) An integer n Z is odd if and only if n = 2m + 1 for some

More information

Lecture 13 - Basic Number Theory.

Lecture 13 - Basic Number Theory. Lecture 13 - Basic Number Theory. Boaz Barak March 22, 2010 Divisibility and primes Unless mentioned otherwise throughout this lecture all numbers are non-negative integers. We say that A divides B, denoted

More information

arxiv:math/0202219v1 [math.co] 21 Feb 2002

arxiv:math/0202219v1 [math.co] 21 Feb 2002 RESTRICTED PERMUTATIONS BY PATTERNS OF TYPE (2, 1) arxiv:math/0202219v1 [math.co] 21 Feb 2002 TOUFIK MANSOUR LaBRI (UMR 5800), Université Bordeaux 1, 351 cours de la Libération, 33405 Talence Cedex, France

More information

Sign changes of Hecke eigenvalues of Siegel cusp forms of degree 2

Sign changes of Hecke eigenvalues of Siegel cusp forms of degree 2 Sign changes of Hecke eigenvalues of Siegel cusp forms of degree 2 Ameya Pitale, Ralf Schmidt 2 Abstract Let µ(n), n > 0, be the sequence of Hecke eigenvalues of a cuspidal Siegel eigenform F of degree

More information

arxiv:1112.0829v1 [math.pr] 5 Dec 2011

arxiv:1112.0829v1 [math.pr] 5 Dec 2011 How Not to Win a Million Dollars: A Counterexample to a Conjecture of L. Breiman Thomas P. Hayes arxiv:1112.0829v1 [math.pr] 5 Dec 2011 Abstract Consider a gambling game in which we are allowed to repeatedly

More information

A Course on Number Theory. Peter J. Cameron

A Course on Number Theory. Peter J. Cameron A Course on Number Theory Peter J. Cameron ii Preface These are the notes of the course MTH6128, Number Theory, which I taught at Queen Mary, University of London, in the spring semester of 2009. There

More information

Zeros of a Polynomial Function

Zeros of a Polynomial Function Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we

More information

MA651 Topology. Lecture 6. Separation Axioms.

MA651 Topology. Lecture 6. Separation Axioms. MA651 Topology. Lecture 6. Separation Axioms. This text is based on the following books: Fundamental concepts of topology by Peter O Neil Elements of Mathematics: General Topology by Nicolas Bourbaki Counterexamples

More information

Notes on Determinant

Notes on Determinant ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 9-18/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without

More information

arxiv:0804.4490v1 [math.gm] 28 Apr 2008

arxiv:0804.4490v1 [math.gm] 28 Apr 2008 Infinite sequences in the framework of classical logic arxiv:0804.4490v1 [math.gm] 28 Apr 2008 V.V. Ivanov N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin str.4, Moscow,

More information

GREATEST COMMON DIVISOR

GREATEST COMMON DIVISOR DEFINITION: GREATEST COMMON DIVISOR The greatest common divisor (gcd) of a and b, denoted by (a, b), is the largest common divisor of integers a and b. THEOREM: If a and b are nonzero integers, then their

More information

Lecture 3: Finding integer solutions to systems of linear equations

Lecture 3: Finding integer solutions to systems of linear equations Lecture 3: Finding integer solutions to systems of linear equations Algorithmic Number Theory (Fall 2014) Rutgers University Swastik Kopparty Scribe: Abhishek Bhrushundi 1 Overview The goal of this lecture

More information

Math 55: Discrete Mathematics

Math 55: Discrete Mathematics Math 55: Discrete Mathematics UC Berkeley, Spring 2012 Homework # 9, due Wednesday, April 11 8.1.5 How many ways are there to pay a bill of 17 pesos using a currency with coins of values of 1 peso, 2 pesos,

More information

Duality of linear conic problems

Duality of linear conic problems Duality of linear conic problems Alexander Shapiro and Arkadi Nemirovski Abstract It is well known that the optimal values of a linear programming problem and its dual are equal to each other if at least

More information

3. INNER PRODUCT SPACES

3. INNER PRODUCT SPACES . INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.

More information

IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction

IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL R. DRNOVŠEK, T. KOŠIR Dedicated to Prof. Heydar Radjavi on the occasion of his seventieth birthday. Abstract. Let S be an irreducible

More information

MATH 22. THE FUNDAMENTAL THEOREM of ARITHMETIC. Lecture R: 10/30/2003

MATH 22. THE FUNDAMENTAL THEOREM of ARITHMETIC. Lecture R: 10/30/2003 MATH 22 Lecture R: 10/30/2003 THE FUNDAMENTAL THEOREM of ARITHMETIC You must remember this, A kiss is still a kiss, A sigh is just a sigh; The fundamental things apply, As time goes by. Herman Hupfeld

More information

FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z

FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z DANIEL BIRMAJER, JUAN B GIL, AND MICHAEL WEINER Abstract We consider polynomials with integer coefficients and discuss their factorization

More information

CHAPTER 5. Number Theory. 1. Integers and Division. Discussion

CHAPTER 5. Number Theory. 1. Integers and Division. Discussion CHAPTER 5 Number Theory 1. Integers and Division 1.1. Divisibility. Definition 1.1.1. Given two integers a and b we say a divides b if there is an integer c such that b = ac. If a divides b, we write a

More information

Zeros of Polynomial Functions

Zeros of Polynomial Functions Zeros of Polynomial Functions The Rational Zero Theorem If f (x) = a n x n + a n-1 x n-1 + + a 1 x + a 0 has integer coefficients and p/q (where p/q is reduced) is a rational zero, then p is a factor of

More information

Handout NUMBER THEORY

Handout NUMBER THEORY Handout of NUMBER THEORY by Kus Prihantoso Krisnawan MATHEMATICS DEPARTMENT FACULTY OF MATHEMATICS AND NATURAL SCIENCES YOGYAKARTA STATE UNIVERSITY 2012 Contents Contents i 1 Some Preliminary Considerations

More information

Winter Camp 2011 Polynomials Alexander Remorov. Polynomials. Alexander Remorov alexanderrem@gmail.com

Winter Camp 2011 Polynomials Alexander Remorov. Polynomials. Alexander Remorov alexanderrem@gmail.com Polynomials Alexander Remorov alexanderrem@gmail.com Warm-up Problem 1: Let f(x) be a quadratic polynomial. Prove that there exist quadratic polynomials g(x) and h(x) such that f(x)f(x + 1) = g(h(x)).

More information

Math 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i.

Math 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i. Math 5A HW4 Solutions September 5, 202 University of California, Los Angeles Problem 4..3b Calculate the determinant, 5 2i 6 + 4i 3 + i 7i Solution: The textbook s instructions give us, (5 2i)7i (6 + 4i)(

More information

11 Ideals. 11.1 Revisiting Z

11 Ideals. 11.1 Revisiting Z 11 Ideals The presentation here is somewhat different than the text. In particular, the sections do not match up. We have seen issues with the failure of unique factorization already, e.g., Z[ 5] = O Q(

More information

Cardinality. The set of all finite strings over the alphabet of lowercase letters is countable. The set of real numbers R is an uncountable set.

Cardinality. The set of all finite strings over the alphabet of lowercase letters is countable. The set of real numbers R is an uncountable set. Section 2.5 Cardinality (another) Definition: The cardinality of a set A is equal to the cardinality of a set B, denoted A = B, if and only if there is a bijection from A to B. If there is an injection

More information

Math 319 Problem Set #3 Solution 21 February 2002

Math 319 Problem Set #3 Solution 21 February 2002 Math 319 Problem Set #3 Solution 21 February 2002 1. ( 2.1, problem 15) Find integers a 1, a 2, a 3, a 4, a 5 such that every integer x satisfies at least one of the congruences x a 1 (mod 2), x a 2 (mod

More information

FACTORING WITH CONTINUED FRACTIONS, THE PELL EQUATION, AND WEIGHTED MEDIANTS

FACTORING WITH CONTINUED FRACTIONS, THE PELL EQUATION, AND WEIGHTED MEDIANTS Fizikos ir matematikos fakulteto Seminaro darbai, iauliu universitetas, 6, 2003, 120130 FACTORING WITH CONTINUED FRACTIONS, THE PELL EQUATION, AND WEIGHTED MEDIANTS Jörn STEUDING, Rasa LEšEVIƒIEN E Johann

More information

ON GENERALIZED RELATIVE COMMUTATIVITY DEGREE OF A FINITE GROUP. A. K. Das and R. K. Nath

ON GENERALIZED RELATIVE COMMUTATIVITY DEGREE OF A FINITE GROUP. A. K. Das and R. K. Nath International Electronic Journal of Algebra Volume 7 (2010) 140-151 ON GENERALIZED RELATIVE COMMUTATIVITY DEGREE OF A FINITE GROUP A. K. Das and R. K. Nath Received: 12 October 2009; Revised: 15 December

More information

Counting Primes whose Sum of Digits is Prime

Counting Primes whose Sum of Digits is Prime 2 3 47 6 23 Journal of Integer Sequences, Vol. 5 (202), Article 2.2.2 Counting Primes whose Sum of Digits is Prime Glyn Harman Department of Mathematics Royal Holloway, University of London Egham Surrey

More information

The Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors.

The Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors. The Prime Numbers Before starting our study of primes, we record the following important lemma. Recall that integers a, b are said to be relatively prime if gcd(a, b) = 1. Lemma (Euclid s Lemma). If gcd(a,

More information

Math 4310 Handout - Quotient Vector Spaces

Math 4310 Handout - Quotient Vector Spaces Math 4310 Handout - Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable

More information

6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives

6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives 6 EXTENDING ALGEBRA Chapter 6 Extending Algebra Objectives After studying this chapter you should understand techniques whereby equations of cubic degree and higher can be solved; be able to factorise

More information

Integer roots of quadratic and cubic polynomials with integer coefficients

Integer roots of quadratic and cubic polynomials with integer coefficients Integer roots of quadratic and cubic polynomials with integer coefficients Konstantine Zelator Mathematics, Computer Science and Statistics 212 Ben Franklin Hall Bloomsburg University 400 East Second Street

More information

Probability Generating Functions

Probability Generating Functions page 39 Chapter 3 Probability Generating Functions 3 Preamble: Generating Functions Generating functions are widely used in mathematics, and play an important role in probability theory Consider a sequence

More information