in the example above).

Size: px
Start display at page:

Download "in the example above)."

Transcription

1 4: Matrices 41: Organizing Data into Matrices A matrix is just a grid of numbers That's all However, matrices can be quite useful The size of a matrix is given as r c, where the matrix has r rows and c columns Below are two images of a 3 4 matrix Row 1 a b c d Row Row 3 e f g h i j k l Column Column 4 a b c d e f g h i j k l Column 1 Column 3 Sometimes, subscripts are used to identif the individual elements (cells) in a matrix Note that the first digit of the subscript is the row, and the second digit is the column a11 a1 a13 a14 A a1 a a3 a 4 a31 a3 a33 a 34 To refer to a matrix without listing its elements, an italicized capital roman letter is tpicall used (like the A in the example above) To refer to the elements of a matrix in general, a subscripted lowercase italicized roman letter (the same as the matrix) is used (like a 3 in the example above) 4: Adding and Subtracting Matrices Adding and Subtracting Matrices Unlike the real numbers, not all matrices can be added or subtracted In particular, onl matrices of the same size (same number of rows; same number of columns) can be added or subtracted To add two matrices, add elements in the same position in the two matrices (ie, The element in row i and column j of A+ B is aij + bij ) HOLLOMAN S ALGEBRA HONORS AH NOTES 04, PAGE 1 OF 10

2 Do exactl the same thing to subtract two matrices! Like the real numbers, addition of matrices is commutative the order of addition makes no difference Solving Matrix Equations If ou have an equation made up of matrices like X + A B and ou want to solve for matrix X, then what should ou do? Subtract matrix A, of course! X + A B X + A A B A X B A [1] Add [] Subtract [3] Solve for X: X X + 1 X : Matrix Multiplication Scalar Multiplication A scalar is a regular number Scalar multiplication means multipling a scalar against a matrix To do this, simpl multipl each element of the matrix b the scalar HOLLOMAN S ALGEBRA HONORS AH NOTES 04, PAGE OF 10

3 Matrix Multiplication Matrix multiplication is one matrix times another However, not all matrices can be multiplied and just in case that wasn't fun enough, matrix multiplication is not commutative the order of the matrices matters! Two matrices can be multiplied if the number of columns in the left hand matrix equals the number of rows in the right hand matrix The resulting matrix will have the same number of rows as the left hand matrix and the same number of columns as the right hand matrix Left hand matrix Right hand matrix a b b c identical multiplication is possible the result will be a c The procedure for actuall multipling the matrices is involved basicall, ou will multipl ever element in a left hand row with ever (corresponding) element in a right hand column, then add For example: a11 a1 b11 b1 b13 a11b 11+ a1b1 a11b 1+ a1b a11b 13+ a1b3 a1 a b1 b b 3 a1b11 ab1 a1b1 ab a1b13 ab This will require some practice [4] Multipl: ( ) ( ) [5] Multipl: 1 Here's a wa to arrange the matrices to make multipling a little easier (it lines up the required rows and columns for each element of the answer): HOLLOMAN S ALGEBRA HONORS AH NOTES 04, PAGE 3 OF 10

4 ???? The answer is ( )( ) + ( )( ) ( )( ) + ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) [6] Multipl The arrangement I suggested above ma be of some help here! The answer: ( 1)( 1) + ( )( 3) + ( )( 4) ( 1)( 0) + ( )( 1) + ( )( ) ( 1)( 1) + ( )( 5) + ( )( 0) ( 1)( 1) + ( 0)( 3) + ( )( 4) ( 1)( 0) + ( 0)( 1) + ( )( ) ( 1)( 1) + ( 0)( 5) + ( )( 0 ) : x Matrices, Determinants and Inverses The Identit and Inverses A matrix with an equal number of rows and columns is called a square matrix The real numbers have two identities additive (0) and multiplicative (1) Square matrices 0 0 have the same things The zero matrix is Actuall, the smbol 0 is used regardless of the size of the matrix, so this is also the zero matrix: The zero matrix is the additive identit adding it results in no change Also, adding a matrix with its opposite (negation) results in the zero matrix The identit matrix is a square matrix with 1's along the left-right diagonal (the main 1 0 diagonal), and zeros everwhere else The identit matrix is I 0 1 This is a multiplicative identit multipling b this matrix results in no change Also, due to its nature, it actuall doesn't matter which side ou multipl on when using the identit matrix The inverse of a matrix is another matrix that, when multiplied, results in the (multiplicative) 1 identit: the inverse of A is A 1 1, so that A A A A I In the real numbers, we call this the reciprocal however, that's the onl place that we'll use that term especiall since ever real number has an reciprocal, but not ever matrix has an inverse HOLLOMAN S ALGEBRA HONORS AH NOTES 04, PAGE 4 OF 10

5 Finding the inverse of a matrix requires that we learn about The Determinant This is a special number that describes a matrix Not ever matrix has one! a b Given a matrix A c d, the determinant of A is det( A) A ad bc If the determinant is non-zero, then the matrix has an inverse, and is called non-singular (if the determinant is zero, then the matrix is singular) a b 1 1 d b Given a non-singular matrix A c d, the inverse of the matrix is A A c a Solving Matrix Equations When last we solved matrix equations, we could onl handle matrices that were added or subtracted Now, we can handle multiplication! (there is no matrix division) Specificall, we can solve equations of the form AX B How can we get that A off of X and solve? Use the inverse! AX B A AX A B IX A B X A B Of course, this will require that the inverse exists [7] Find 1 1 It is ( 1)( ) ( 1)( ) 0 [] Find the inverse of the matrix M First, the determinant: ( )( ) ( )( ) Thus, M [9] Solve 6 4 x HOLLOMAN S ALGEBRA HONORS AH NOTES 04, PAGE 5 OF 10

6 6 4 x 14 x Isolate the variables: I'll let m technolog find the 1 1 x inverse for me Finall, multipl: x Thus, the solution is x 1, : 3x3 Matrices, Determinants and Inverses The Determinant First, note that the multiplicative identit is now I The determinant of a 3 3 matrix is a little more complicated that that of a There is a fine diagram on page 0 of the text that I'll not attempt to duplicate here Inverses You'll note that the book doesn't even attempt to show how to find the inverse of a 3 3 matrix b hand so neither will I (et) Just use our calculator of course, I'll be giving instructions on how to do this in class (unless ou actuall read the manual for our calculator ) Solving Matrix Equations is exactl the same [10] Find M technolog tells me that this is 4 [11] Find HOLLOMAN S ALGEBRA HONORS AH NOTES 04, PAGE 6 OF 10

7 Again, m technolog tells me that the answer is x 1 [1] Solve z x x z z : Inverse Matrices and Sstems Matrices can be used to solve sstems of equations ou just have to know how to translate from the equations into matrices First, write our equations in standard form This will make three matrices the coefficient matrix (A), the variable matrix (X), and the constant matrix (B) Use our previousl learned techniques (and our calculator) to solve x + z 3 [13] Solve x + z x + z x 3 The three matrices are A 1 1, X and B 1 1 z x 3 The matrix equation is z x The solution is 1 1 z HOLLOMAN S ALGEBRA HONORS AH NOTES 04, PAGE 7 OF 10

8 4: Augmented Matrices and Sstems Cramer's Rule Let's sa that we have a matrix equation AX B note that the size of A will be n n, and B will be n 1 There is another wa to solve for the n variables of the sstem! Let matrix D 1 be the same as matrix A, but replace the first column with the elements from matrix B Let matrix D be the same as A, but replace the second column with the elements from matrix B Keep this up until ou've created n of these matrices (up to D n ) D The solution for the first variable is 1 A ; the solution for the second variable is D ; and so A on, up to the solution for the n th variable D n A Gaussian Elimination There is another wa to use the elimination method one that removes all of the variables, and just manipulates the coefficients and constants The method is called Gaussian Elimination Start with a matrix equation, as before: AX B From this, we will create an augmented matrix b tacking matrix B on as an extra column in matrix A Tpicall, we draw a dashed vertical line after the last column of A and before matrix B There are three rules (operations) in this method 1 Switch an two rows Multipl a row b a constant 3 Add a multiple of an row into another row There are two possible goals of this method 1 Row Echelon Form: ones along the main diagonal, and zeros below (onl) Reduced Row Echelon Form: ones along the main diagonal, and zeros above and below In other words, where matrix A had been, there is now the identit matrix I When ou have row echelon form, then ou have solved for the final variable This can be plugged back in to find the value of the other variables However, when ou have reduced row echelon form, then ou have solved for all variables! The wa to work efficientl is to create a one in the upper left corner, then use that one to make zeros underneath Next, make a one in row two column Use that one to make zeros above and below Keep this up until ou're done If ou end up with a row of all zeros, then there are an infinite number of solutions to the sstem If ou end up with a row that contains all zeros except for the last column, then there is no solution to the sstem There is an extension to this, called Gauss-Jordan Elimination In this method, augment matrix A with the identit I Now use the row operations to achieve reduced row echelon form Where matrix I had been, there is now 1 A! [14] Convert this to reduced row echelon form: HOLLOMAN S ALGEBRA HONORS AH NOTES 04, PAGE OF 10

9 There is alread a one in the upper left corner To make a zero underneath, I'll do ( 1) R1 + R (add row 1 into row ) The result is Now do 1 4 R (multipl row b 1 ) The result is Finall, do ( 3) R + R1 (negative three times row two added into row 1) 1 0 From that we get The solution is x, 1 x+ 1 [15] Solve b Gaussian elimination x The augmented matrix is 3 5 ( ) R1 + R gives Next, 1 7 R Finall, ( ) R + R1 gives The solution is x 1, 1 gives x+ 3z [16] Solve x + + 5z 4 b Gaussian elimination + 3z The augmented matrix is ( 1) R1 + R ( 1) R + R R HOLLOMAN S ALGEBRA HONORS AH NOTES 04, PAGE 9 OF 10

10 ( ) R3 + R ( 3) R3 + R The solution is x,, z HOLLOMAN S ALGEBRA HONORS AH NOTES 04, PAGE 10 OF 10

Using row reduction to calculate the inverse and the determinant of a square matrix

Using row reduction to calculate the inverse and the determinant of a square matrix Using row reduction to calculate the inverse and the determinant of a square matrix Notes for MATH 0290 Honors by Prof. Anna Vainchtein 1 Inverse of a square matrix An n n square matrix A is called invertible

More information

Introduction to Matrices for Engineers

Introduction to Matrices for Engineers Introduction to Matrices for Engineers C.T.J. Dodson, School of Mathematics, Manchester Universit 1 What is a Matrix? A matrix is a rectangular arra of elements, usuall numbers, e.g. 1 0-8 4 0-1 1 0 11

More information

MAT188H1S Lec0101 Burbulla

MAT188H1S Lec0101 Burbulla Winter 206 Linear Transformations A linear transformation T : R m R n is a function that takes vectors in R m to vectors in R n such that and T (u + v) T (u) + T (v) T (k v) k T (v), for all vectors u

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +

More information

Use order of operations to simplify. Show all steps in the space provided below each problem. INTEGER OPERATIONS

Use order of operations to simplify. Show all steps in the space provided below each problem. INTEGER OPERATIONS ORDER OF OPERATIONS In the following order: 1) Work inside the grouping smbols such as parenthesis and brackets. ) Evaluate the powers. 3) Do the multiplication and/or division in order from left to right.

More information

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation

More information

SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89. by Joseph Collison

SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89. by Joseph Collison SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89 by Joseph Collison Copyright 2000 by Joseph Collison All rights reserved Reproduction or translation of any part of this work beyond that permitted by Sections

More information

Solving Linear Systems, Continued and The Inverse of a Matrix

Solving Linear Systems, Continued and The Inverse of a Matrix , Continued and The of a Matrix Calculus III Summer 2013, Session II Monday, July 15, 2013 Agenda 1. The rank of a matrix 2. The inverse of a square matrix Gaussian Gaussian solves a linear system by reducing

More information

Section 8.2 Solving a System of Equations Using Matrices (Guassian Elimination)

Section 8.2 Solving a System of Equations Using Matrices (Guassian Elimination) Section 8. Solving a System of Equations Using Matrices (Guassian Elimination) x + y + z = x y + 4z = x 4y + z = System of Equations x 4 y = 4 z A System in matrix form x A x = b b 4 4 Augmented Matrix

More information

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1. MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

More information

Abstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix multiplication).

Abstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix multiplication). MAT 2 (Badger, Spring 202) LU Factorization Selected Notes September 2, 202 Abstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix

More information

Lecture 2 Matrix Operations

Lecture 2 Matrix Operations Lecture 2 Matrix Operations transpose, sum & difference, scalar multiplication matrix multiplication, matrix-vector product matrix inverse 2 1 Matrix transpose transpose of m n matrix A, denoted A T or

More information

Solutions to Homework Section 3.7 February 18th, 2005

Solutions to Homework Section 3.7 February 18th, 2005 Math 54W Spring 5 Solutions to Homeork Section 37 Februar 8th, 5 List the ro vectors and the column vectors of the matrix The ro vectors are The column vectors are ( 5 5 The matrix ( (,,,, 4, (5,,,, (

More information

Solving Systems of Linear Equations Using Matrices

Solving Systems of Linear Equations Using Matrices Solving Systems of Linear Equations Using Matrices What is a Matrix? A matrix is a compact grid or array of numbers. It can be created from a system of equations and used to solve the system of equations.

More information

Question 2: How do you solve a matrix equation using the matrix inverse?

Question 2: How do you solve a matrix equation using the matrix inverse? Question : How do you solve a matrix equation using the matrix inverse? In the previous question, we wrote systems of equations as a matrix equation AX B. In this format, the matrix A contains the coefficients

More information

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

More information

Solving Systems of Linear Equations

Solving Systems of Linear Equations LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how

More information

Linear Equations ! 25 30 35$ & " 350 150% & " 11,750 12,750 13,750% MATHEMATICS LEARNING SERVICE Centre for Learning and Professional Development

Linear Equations ! 25 30 35$ &  350 150% &  11,750 12,750 13,750% MATHEMATICS LEARNING SERVICE Centre for Learning and Professional Development MathsTrack (NOTE Feb 2013: This is the old version of MathsTrack. New books will be created during 2013 and 2014) Topic 4 Module 9 Introduction Systems of to Matrices Linear Equations Income = Tickets!

More information

Typical Linear Equation Set and Corresponding Matrices

Typical Linear Equation Set and Corresponding Matrices EWE: Engineering With Excel Larsen Page 1 4. Matrix Operations in Excel. Matrix Manipulations: Vectors, Matrices, and Arrays. How Excel Handles Matrix Math. Basic Matrix Operations. Solving Systems of

More information

x y The matrix form, the vector form, and the augmented matrix form, respectively, for the system of equations are

x y The matrix form, the vector form, and the augmented matrix form, respectively, for the system of equations are Solving Sstems of Linear Equations in Matri Form with rref Learning Goals Determine the solution of a sstem of equations from the augmented matri Determine the reduced row echelon form of the augmented

More information

Arithmetic and Algebra of Matrices

Arithmetic and Algebra of Matrices Arithmetic and Algebra of Matrices Math 572: Algebra for Middle School Teachers The University of Montana 1 The Real Numbers 2 Classroom Connection: Systems of Linear Equations 3 Rational Numbers 4 Irrational

More information

1 Introduction to Matrices

1 Introduction to Matrices 1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns

More information

Similar matrices and Jordan form

Similar matrices and Jordan form Similar matrices and Jordan form We ve nearly covered the entire heart of linear algebra once we ve finished singular value decompositions we ll have seen all the most central topics. A T A is positive

More information

Chapter Two: Matrix Algebra and its Applications 1 CHAPTER TWO. Matrix Algebra and its applications

Chapter Two: Matrix Algebra and its Applications 1 CHAPTER TWO. Matrix Algebra and its applications Chapter Two: Matrix Algebra and its Applications 1 CHAPTER TWO Matrix Algebra and its applications Algebra - is a part of mathematics that deals with operations (+, -, x ). Matrix is A RECTANGULAR ARRAY

More information

LINEAR ALGEBRA. September 23, 2010

LINEAR ALGEBRA. September 23, 2010 LINEAR ALGEBRA September 3, 00 Contents 0. LU-decomposition.................................... 0. Inverses and Transposes................................. 0.3 Column Spaces and NullSpaces.............................

More information

Introduction to Matrix Algebra

Introduction to Matrix Algebra Psychology 7291: Multivariate Statistics (Carey) 8/27/98 Matrix Algebra - 1 Introduction to Matrix Algebra Definitions: A matrix is a collection of numbers ordered by rows and columns. It is customary

More information

Row Echelon Form and Reduced Row Echelon Form

Row Echelon Form and Reduced Row Echelon Form These notes closely follow the presentation of the material given in David C Lay s textbook Linear Algebra and its Applications (3rd edition) These notes are intended primarily for in-class presentation

More information

SECTION 2.2. Distance and Midpoint Formulas; Circles

SECTION 2.2. Distance and Midpoint Formulas; Circles SECTION. Objectives. Find the distance between two points.. Find the midpoint of a line segment.. Write the standard form of a circle s equation.. Give the center and radius of a circle whose equation

More information

Example 1: Model A Model B Total Available. Gizmos. Dodads. System:

Example 1: Model A Model B Total Available. Gizmos. Dodads. System: Lesson : Sstems of Equations and Matrices Outline Objectives: I can solve sstems of three linear equations in three variables. I can solve sstems of linear inequalities I can model and solve real-world

More information

MATH2210 Notebook 1 Fall Semester 2016/2017. 1 MATH2210 Notebook 1 3. 1.1 Solving Systems of Linear Equations... 3

MATH2210 Notebook 1 Fall Semester 2016/2017. 1 MATH2210 Notebook 1 3. 1.1 Solving Systems of Linear Equations... 3 MATH0 Notebook Fall Semester 06/07 prepared by Professor Jenny Baglivo c Copyright 009 07 by Jenny A. Baglivo. All Rights Reserved. Contents MATH0 Notebook 3. Solving Systems of Linear Equations........................

More information

SYSTEMS OF LINEAR EQUATIONS

SYSTEMS OF LINEAR EQUATIONS SYSTEMS OF LINEAR EQUATIONS Sstems of linear equations refer to a set of two or more linear equations used to find the value of the unknown variables. If the set of linear equations consist of two equations

More information

MATHEMATICS FOR ENGINEERS BASIC MATRIX THEORY TUTORIAL 2

MATHEMATICS FOR ENGINEERS BASIC MATRIX THEORY TUTORIAL 2 MATHEMATICS FO ENGINEES BASIC MATIX THEOY TUTOIAL This is the second of two tutorials on matrix theory. On completion you should be able to do the following. Explain the general method for solving simultaneous

More information

5.5. Solving linear systems by the elimination method

5.5. Solving linear systems by the elimination method 55 Solving linear systems by the elimination method Equivalent systems The major technique of solving systems of equations is changing the original problem into another one which is of an easier to solve

More information

Here are some examples of combining elements and the operations used:

Here are some examples of combining elements and the operations used: MATRIX OPERATIONS Summary of article: What is an operation? Addition of two matrices. Multiplication of a Matrix by a scalar. Subtraction of two matrices: two ways to do it. Combinations of Addition, Subtraction,

More information

Math 2524: Activity 3 (Excel and Matrices, continued) Fall 2002

Math 2524: Activity 3 (Excel and Matrices, continued) Fall 2002 Inverse of a Matrix: This activity will illustrate how Excel can help you find and use the inverse of a matrix. It will also discuss a matrix function called the determinant and a method called Cramer's

More information

Name: Section Registered In:

Name: Section Registered In: Name: Section Registered In: Math 125 Exam 3 Version 1 April 24, 2006 60 total points possible 1. (5pts) Use Cramer s Rule to solve 3x + 4y = 30 x 2y = 8. Be sure to show enough detail that shows you are

More information

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. Vector space A vector space is a set V equipped with two operations, addition V V (x,y) x + y V and scalar

More information

8.2. Solution by Inverse Matrix Method. Introduction. Prerequisites. Learning Outcomes

8.2. Solution by Inverse Matrix Method. Introduction. Prerequisites. Learning Outcomes Solution by Inverse Matrix Method 8.2 Introduction The power of matrix algebra is seen in the representation of a system of simultaneous linear equations as a matrix equation. Matrix algebra allows us

More information

by the matrix A results in a vector which is a reflection of the given

by the matrix A results in a vector which is a reflection of the given Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the y-axis We observe that

More information

Solving Systems of Linear Equations

Solving Systems of Linear Equations LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how

More information

K80TTQ1EP-??,VO.L,XU0H5BY,_71ZVPKOE678_X,N2Y-8HI4VS,,6Z28DDW5N7ADY013

K80TTQ1EP-??,VO.L,XU0H5BY,_71ZVPKOE678_X,N2Y-8HI4VS,,6Z28DDW5N7ADY013 Hill Cipher Project K80TTQ1EP-??,VO.L,XU0H5BY,_71ZVPKOE678_X,N2Y-8HI4VS,,6Z28DDW5N7ADY013 Directions: Answer all numbered questions completely. Show non-trivial work in the space provided. Non-computational

More information

8 Square matrices continued: Determinants

8 Square matrices continued: Determinants 8 Square matrices continued: Determinants 8. Introduction Determinants give us important information about square matrices, and, as we ll soon see, are essential for the computation of eigenvalues. You

More information

Elementary Matrices and The LU Factorization

Elementary Matrices and The LU Factorization lementary Matrices and The LU Factorization Definition: ny matrix obtained by performing a single elementary row operation (RO) on the identity (unit) matrix is called an elementary matrix. There are three

More information

Excel supplement: Chapter 7 Matrix and vector algebra

Excel supplement: Chapter 7 Matrix and vector algebra Excel supplement: Chapter 7 atrix and vector algebra any models in economics lead to large systems of linear equations. These problems are particularly suited for computers. The main purpose of this chapter

More information

How To Understand And Solve A Linear Programming Problem

How To Understand And Solve A Linear Programming Problem At the end of the lesson, you should be able to: Chapter 2: Systems of Linear Equations and Matrices: 2.1: Solutions of Linear Systems by the Echelon Method Define linear systems, unique solution, inconsistent,

More information

Notes on Determinant

Notes on Determinant ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 9-18/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without

More information

7.4. The Inverse of a Matrix. Introduction. Prerequisites. Learning Style. Learning Outcomes

7.4. The Inverse of a Matrix. Introduction. Prerequisites. Learning Style. Learning Outcomes The Inverse of a Matrix 7.4 Introduction In number arithmetic every number a 0 has a reciprocal b written as a or such that a ba = ab =. Similarly a square matrix A may have an inverse B = A where AB =

More information

Lecture Notes 2: Matrices as Systems of Linear Equations

Lecture Notes 2: Matrices as Systems of Linear Equations 2: Matrices as Systems of Linear Equations 33A Linear Algebra, Puck Rombach Last updated: April 13, 2016 Systems of Linear Equations Systems of linear equations can represent many things You have probably

More information

Addition and Subtraction of Vectors

Addition and Subtraction of Vectors ddition and Subtraction of Vectors 1 ppendi ddition and Subtraction of Vectors In this appendi the basic elements of vector algebra are eplored. Vectors are treated as geometric entities represented b

More information

7.3 Solving Systems by Elimination

7.3 Solving Systems by Elimination 7. Solving Sstems b Elimination In the last section we saw the Substitution Method. It turns out there is another method for solving a sstem of linear equations that is also ver good. First, we will need

More information

RULE 1: Additive Identity Property

RULE 1: Additive Identity Property RULE 1: Additive Identity Property Additive Identity Property a + 0 = a x + 0 = x If we add 0 to any number, we will end up with the same number. Zero is represented through the the green vortex. When

More information

A Concrete Introduction. to the Abstract Concepts. of Integers and Algebra using Algebra Tiles

A Concrete Introduction. to the Abstract Concepts. of Integers and Algebra using Algebra Tiles A Concrete Introduction to the Abstract Concepts of Integers and Algebra using Algebra Tiles Table of Contents Introduction... 1 page Integers 1: Introduction to Integers... 3 2: Working with Algebra Tiles...

More information

Linear Algebra Review. Vectors

Linear Algebra Review. Vectors Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka kosecka@cs.gmu.edu http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa Cogsci 8F Linear Algebra review UCSD Vectors The length

More information

[1] Diagonal factorization

[1] Diagonal factorization 8.03 LA.6: Diagonalization and Orthogonal Matrices [ Diagonal factorization [2 Solving systems of first order differential equations [3 Symmetric and Orthonormal Matrices [ Diagonal factorization Recall:

More information

DETERMINANTS TERRY A. LORING

DETERMINANTS TERRY A. LORING DETERMINANTS TERRY A. LORING 1. Determinants: a Row Operation By-Product The determinant is best understood in terms of row operations, in my opinion. Most books start by defining the determinant via formulas

More information

( ) which must be a vector

( ) which must be a vector MATH 37 Linear Transformations from Rn to Rm Dr. Neal, WKU Let T : R n R m be a function which maps vectors from R n to R m. Then T is called a linear transformation if the following two properties are

More information

15.062 Data Mining: Algorithms and Applications Matrix Math Review

15.062 Data Mining: Algorithms and Applications Matrix Math Review .6 Data Mining: Algorithms and Applications Matrix Math Review The purpose of this document is to give a brief review of selected linear algebra concepts that will be useful for the course and to develop

More information

Matrix Algebra. Some Basic Matrix Laws. Before reading the text or the following notes glance at the following list of basic matrix algebra laws.

Matrix Algebra. Some Basic Matrix Laws. Before reading the text or the following notes glance at the following list of basic matrix algebra laws. Matrix Algebra A. Doerr Before reading the text or the following notes glance at the following list of basic matrix algebra laws. Some Basic Matrix Laws Assume the orders of the matrices are such that

More information

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued). MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0

More information

2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system

2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system 1. Systems of linear equations We are interested in the solutions to systems of linear equations. A linear equation is of the form 3x 5y + 2z + w = 3. The key thing is that we don t multiply the variables

More information

Solving simultaneous equations using the inverse matrix

Solving simultaneous equations using the inverse matrix Solving simultaneous equations using the inverse matrix 8.2 Introduction The power of matrix algebra is seen in the representation of a system of simultaneous linear equations as a matrix equation. Matrix

More information

Reduced echelon form: Add the following conditions to conditions 1, 2, and 3 above:

Reduced echelon form: Add the following conditions to conditions 1, 2, and 3 above: Section 1.2: Row Reduction and Echelon Forms Echelon form (or row echelon form): 1. All nonzero rows are above any rows of all zeros. 2. Each leading entry (i.e. left most nonzero entry) of a row is in

More information

1 Determinants and the Solvability of Linear Systems

1 Determinants and the Solvability of Linear Systems 1 Determinants and the Solvability of Linear Systems In the last section we learned how to use Gaussian elimination to solve linear systems of n equations in n unknowns The section completely side-stepped

More information

Unit 18 Determinants

Unit 18 Determinants Unit 18 Determinants Every square matrix has a number associated with it, called its determinant. In this section, we determine how to calculate this number, and also look at some of the properties of

More information

CAHSEE on Target UC Davis, School and University Partnerships

CAHSEE on Target UC Davis, School and University Partnerships UC Davis, School and University Partnerships CAHSEE on Target Mathematics Curriculum Published by The University of California, Davis, School/University Partnerships Program 006 Director Sarah R. Martinez,

More information

Properties of Real Numbers

Properties of Real Numbers 16 Chapter P Prerequisites P.2 Properties of Real Numbers What you should learn: Identify and use the basic properties of real numbers Develop and use additional properties of real numbers Why you should

More information

Downloaded from www.heinemann.co.uk/ib. equations. 2.4 The reciprocal function x 1 x

Downloaded from www.heinemann.co.uk/ib. equations. 2.4 The reciprocal function x 1 x Functions and equations Assessment statements. Concept of function f : f (); domain, range, image (value). Composite functions (f g); identit function. Inverse function f.. The graph of a function; its

More information

Linear Programming. March 14, 2014

Linear Programming. March 14, 2014 Linear Programming March 1, 01 Parts of this introduction to linear programming were adapted from Chapter 9 of Introduction to Algorithms, Second Edition, by Cormen, Leiserson, Rivest and Stein [1]. 1

More information

Chapter 6. Linear Programming: The Simplex Method. Introduction to the Big M Method. Section 4 Maximization and Minimization with Problem Constraints

Chapter 6. Linear Programming: The Simplex Method. Introduction to the Big M Method. Section 4 Maximization and Minimization with Problem Constraints Chapter 6 Linear Programming: The Simplex Method Introduction to the Big M Method In this section, we will present a generalized version of the simplex method that t will solve both maximization i and

More information

Linearly Independent Sets and Linearly Dependent Sets

Linearly Independent Sets and Linearly Dependent Sets These notes closely follow the presentation of the material given in David C. Lay s textbook Linear Algebra and its Applications (3rd edition). These notes are intended primarily for in-class presentation

More information

AIP Factoring Practice/Help

AIP Factoring Practice/Help The following pages include many problems to practice factoring skills. There are also several activities with examples to help you with factoring if you feel like you are not proficient with it. There

More information

EQUATIONS and INEQUALITIES

EQUATIONS and INEQUALITIES EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line

More information

Linear Algebra Notes

Linear Algebra Notes Linear Algebra Notes Chapter 19 KERNEL AND IMAGE OF A MATRIX Take an n m matrix a 11 a 12 a 1m a 21 a 22 a 2m a n1 a n2 a nm and think of it as a function A : R m R n The kernel of A is defined as Note

More information

Some Lecture Notes and In-Class Examples for Pre-Calculus:

Some Lecture Notes and In-Class Examples for Pre-Calculus: Some Lecture Notes and In-Class Examples for Pre-Calculus: Section.7 Definition of a Quadratic Inequality A quadratic inequality is any inequality that can be put in one of the forms ax + bx + c < 0 ax

More information

5.3 The Cross Product in R 3

5.3 The Cross Product in R 3 53 The Cross Product in R 3 Definition 531 Let u = [u 1, u 2, u 3 ] and v = [v 1, v 2, v 3 ] Then the vector given by [u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3, u 1 v 2 u 2 v 1 ] is called the cross product (or

More information

Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively.

Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively. Chapter 7 Eigenvalues and Eigenvectors In this last chapter of our exploration of Linear Algebra we will revisit eigenvalues and eigenvectors of matrices, concepts that were already introduced in Geometry

More information

9 MATRICES AND TRANSFORMATIONS

9 MATRICES AND TRANSFORMATIONS 9 MATRICES AND TRANSFORMATIONS Chapter 9 Matrices and Transformations Objectives After studying this chapter you should be able to handle matrix (and vector) algebra with confidence, and understand the

More information

Solution of Linear Systems

Solution of Linear Systems Chapter 3 Solution of Linear Systems In this chapter we study algorithms for possibly the most commonly occurring problem in scientific computing, the solution of linear systems of equations. We start

More information

MAT 200, Midterm Exam Solution. a. (5 points) Compute the determinant of the matrix A =

MAT 200, Midterm Exam Solution. a. (5 points) Compute the determinant of the matrix A = MAT 200, Midterm Exam Solution. (0 points total) a. (5 points) Compute the determinant of the matrix 2 2 0 A = 0 3 0 3 0 Answer: det A = 3. The most efficient way is to develop the determinant along the

More information

Linear Algebra Notes for Marsden and Tromba Vector Calculus

Linear Algebra Notes for Marsden and Tromba Vector Calculus Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of

More information

Torgerson s Classical MDS derivation: 1: Determining Coordinates from Euclidean Distances

Torgerson s Classical MDS derivation: 1: Determining Coordinates from Euclidean Distances Torgerson s Classical MDS derivation: 1: Determining Coordinates from Euclidean Distances It is possible to construct a matrix X of Cartesian coordinates of points in Euclidean space when we know the Euclidean

More information

Lecture notes on linear algebra

Lecture notes on linear algebra Lecture notes on linear algebra David Lerner Department of Mathematics University of Kansas These are notes of a course given in Fall, 2007 and 2008 to the Honors sections of our elementary linear algebra

More information

13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.

13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions. 3 MATH FACTS 0 3 MATH FACTS 3. Vectors 3.. Definition We use the overhead arrow to denote a column vector, i.e., a linear segment with a direction. For example, in three-space, we write a vector in terms

More information

2.3. Finding polynomial functions. An Introduction:

2.3. Finding polynomial functions. An Introduction: 2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned

More information

Systems of Linear Equations

Systems of Linear Equations Chapter 1 Systems of Linear Equations 1.1 Intro. to systems of linear equations Homework: [Textbook, Ex. 13, 15, 41, 47, 49, 51, 65, 73; page 11-]. Main points in this section: 1. Definition of Linear

More information

Linear Algebra and TI 89

Linear Algebra and TI 89 Linear Algebra and TI 89 Abdul Hassen and Jay Schiffman This short manual is a quick guide to the use of TI89 for Linear Algebra. We do this in two sections. In the first section, we will go over the editing

More information

Vectors Math 122 Calculus III D Joyce, Fall 2012

Vectors Math 122 Calculus III D Joyce, Fall 2012 Vectors Math 122 Calculus III D Joyce, Fall 2012 Vectors in the plane R 2. A vector v can be interpreted as an arro in the plane R 2 ith a certain length and a certain direction. The same vector can be

More information

Linear Equations in One Variable

Linear Equations in One Variable Linear Equations in One Variable MATH 101 College Algebra J. Robert Buchanan Department of Mathematics Summer 2012 Objectives In this section we will learn how to: Recognize and combine like terms. Solve

More information

4-5 Matrix Inverses and Solving Systems. Warm Up Lesson Presentation Lesson Quiz

4-5 Matrix Inverses and Solving Systems. Warm Up Lesson Presentation Lesson Quiz Warm Up Lesson Presentation Lesson Quiz Holt Holt Algebra 2 2 Warm Up Find the determinant and the inverse. Warm Up Find the determinant. How To Find the Inverse Matrix Warm Up Find the inverse. 1. Find

More information

COMPONENTS OF VECTORS

COMPONENTS OF VECTORS COMPONENTS OF VECTORS To describe motion in two dimensions we need a coordinate sstem with two perpendicular aes, and. In such a coordinate sstem, an vector A can be uniquel decomposed into a sum of two

More information

Click on the links below to jump directly to the relevant section

Click on the links below to jump directly to the relevant section Click on the links below to jump directly to the relevant section What is algebra? Operations with algebraic terms Mathematical properties of real numbers Order of operations What is Algebra? Algebra is

More information

A Utility Maximization Example

A Utility Maximization Example A Utilit Maximization Example Charlie Gibbons Universit of California, Berkele September 17, 2007 Since we couldn t finish the utilit maximization problem in section, here it is solved from the beginning.

More information

So, using the new notation, P X,Y (0,1) =.08 This is the value which the joint probability function for X and Y takes when X=0 and Y=1.

So, using the new notation, P X,Y (0,1) =.08 This is the value which the joint probability function for X and Y takes when X=0 and Y=1. Joint probabilit is the probabilit that the RVs & Y take values &. like the PDF of the two events, and. We will denote a joint probabilit function as P,Y (,) = P(= Y=) Marginal probabilit of is the probabilit

More information

Prentice Hall Mathematics: Algebra 2 2007 Correlated to: Utah Core Curriculum for Math, Intermediate Algebra (Secondary)

Prentice Hall Mathematics: Algebra 2 2007 Correlated to: Utah Core Curriculum for Math, Intermediate Algebra (Secondary) Core Standards of the Course Standard 1 Students will acquire number sense and perform operations with real and complex numbers. Objective 1.1 Compute fluently and make reasonable estimates. 1. Simplify

More information

Systems of Linear Equations: Solving by Substitution

Systems of Linear Equations: Solving by Substitution 8.3 Sstems of Linear Equations: Solving b Substitution 8.3 OBJECTIVES 1. Solve sstems using the substitution method 2. Solve applications of sstems of equations In Sections 8.1 and 8.2, we looked at graphing

More information

Chapter 7. Matrices. Definition. An m n matrix is an array of numbers set out in m rows and n columns. Examples. ( 1 1 5 2 0 6

Chapter 7. Matrices. Definition. An m n matrix is an array of numbers set out in m rows and n columns. Examples. ( 1 1 5 2 0 6 Chapter 7 Matrices Definition An m n matrix is an array of numbers set out in m rows and n columns Examples (i ( 1 1 5 2 0 6 has 2 rows and 3 columns and so it is a 2 3 matrix (ii 1 0 7 1 2 3 3 1 is a

More information

SECTION 7-4 Algebraic Vectors

SECTION 7-4 Algebraic Vectors 7-4 lgebraic Vectors 531 SECTIN 7-4 lgebraic Vectors From Geometric Vectors to lgebraic Vectors Vector ddition and Scalar Multiplication Unit Vectors lgebraic Properties Static Equilibrium Geometric vectors

More information

Matrix Algebra in R A Minimal Introduction

Matrix Algebra in R A Minimal Introduction A Minimal Introduction James H. Steiger Department of Psychology and Human Development Vanderbilt University Regression Modeling, 2009 1 Defining a Matrix in R Entering by Columns Entering by Rows Entering

More information

MATH 551 - APPLIED MATRIX THEORY

MATH 551 - APPLIED MATRIX THEORY MATH 55 - APPLIED MATRIX THEORY FINAL TEST: SAMPLE with SOLUTIONS (25 points NAME: PROBLEM (3 points A web of 5 pages is described by a directed graph whose matrix is given by A Do the following ( points

More information