1. Given the sequence on the following page, choose forward and reverse primers that will amplify the underlined portion of the aroa gene.

Size: px
Start display at page:

Download "1. Given the sequence on the following page, choose forward and reverse primers that will amplify the underlined portion of the aroa gene."

Transcription

1 Appendix C. Phillips et al. Primer Design Exercise Currently Monsanto owns the patent on glyphosate, which is commonly known as Roundup. It is the most popular herbicide used today because it kills a broad spectrum of weeds and is easily broken down into non-toxic compounds. The catch is that Monsanto also owns the patent on the gene that confers resistance to glyphosate, which they have transformed into several crops such as corn and soybean to make them Round-up Ready, or resistant to glyphosate. Many researchers are trying to find novel genes that will also confer resistance to glyphosate for both evolutionary and economic reasons. Recently, a Chinese group found a bacterium, Pseudomonas putida strain 4G-1, which is naturally resistant to glyphosate 1. They have cloned the novel gene, aroa, that is significantly different in sequence from the previous AroA gene, and are hopeful that it will be another source of glyphosate resistance. The AroA gene encodes the enzyme 3-phosphoshikimate 1-carboxyvinyltransferase, which plays a key role in the biosynthesis of aromatic amino acids. Glyphosate works by disrupting this enzyme and thus the biosynthesis of aromatic amino acids. Resistance is found by mutating the AroA gene such that glyphosate cannot bind to the resulting protein. You have just been hired to identify strains of Pseudomonas putida with the novel aroa gene to provide a new glyphosate resistant cultivar from a glyphosate-rich soil sample. Your first challenge will be to create primer pairs (forward and reverse) that will amplify a portion of the aroa gene that contains the underlined region (see sequence below). 1. Given the sequence on the following page, choose forward and reverse primers that will amplify the underlined portion of the aroa gene. a. Underline the primer sequence on the following page. Then write out your primers below and indicate the 5 and 3 ends. Remember that the 3 or reverse primer is the reverse complement of the template (think about which direction DNA extends). b. What is the size of your target DNA? (Note: each line contains 70 nucleotide bases) 1 Sun, Y. et al Novel AroA with high tolerance to glyphosate, encoded by a gene of Pseudomonas putida 4G-1 isolated from an extremely polluted environment in China. Applied and Environmental Microbiology. 71 (8):

2 >gi emb AJ Pseudomonas putida aroa gene for 3- phosphoshikimate 1-carboxyvinyltransferase 5 - GATCATAAAACATGCTTGTATAAAGGATGCTGCCATGTTCCGTGAACTGGAAGCGAACAATCTTGCGGTA TATCAGAAAAAGCCAAAGCTGATTGCAGTGCTTCTTCAGCGTAATGCTCAGTTAAAAGCGAAGGTTGTTC AGGAGGATGAGTTCGAAAAGTCGGTAAGGCGTTTGTTGAACTTTGGTCATACATTGGGGCATGCCATCGA AAATGAATATGCGTTGATGCATGGCCATGCGGTTGCTATAGGAATGACATACGCGTGTCATATTTCTGAG CAATTGTCTGGATTCAAACAAACAAATCGCGTGGTAGAAGTGTTGGAACAATATGGGTTACCGACTTATA TGGCATTCGATAGGGAAAAGGCTTTTAATCTGTTGAAAATGGACAAGAAGCGTGAAAAAAAGGAAATGAA CTATGTGTTGCTGGAAAAAGTAGGGAAGGGAGTGGTGAAGAGTATTCCACTGGTTCAATTAGAAAAAATC ATTCAAGCATTACCAAAGTGAAAGTAACAATACAGCCCGGAGATCTGACTGGAATTATCCAGTCACCCGC TTCAAAAAGTTCGATGCAGCGAGCTTGTGCTGCTGCACTGGTTGCAAAAGGAATAAGTGAGATCATTAAT CCCGGTCATAGCAATGATGATAAAGCTGCCAGGGATATTGTAAGCCGGCTTGGTGCCAGGCTTGAAGATC AGCCTGATGGTTCTTTGCAGATAACAAGTGAAGGCGTAAAACCTGTCGCTCCTTTTATTGACTGCGGTGA ATCTGGTTTAAGTATCCGGATGTTTACTCCGATTGTTGCGTTGAGTAAAGAAGAGGTGACGATCAAAGGA TCTGGAAGCCTTGTTACAAGACCAATGGATTTCTTTGATGAAATTCTTCCGCATCTCGGTGTAAAAGTTA AATCTAACCAGGGTAAATTGCCTCTCGTTATACAGGGGCCATTGAAACCAGCAGACGTTACGGTTGATGG GTCCTTAAGCTCTCAGTTCCTTACAGGTTTGTTGCTTGCATATGCGGCCGCAGATGCAAGCGATGTTGCG ATAAAAGTAACGAATCTCAAAAGCCGTCCGTATATCGATCTTACACTGGATGTGATGAAGCGGTTTGGTT TGAAGACTCCCGAGAATCGAAACTATGAAGAGTTTTATTTCAAAGCCGGGAATGTATATGATGAAACGAA AATGCAACGATACACCGTAGAAGGCGACTGGAGCGGTGGTGCTTTTTTACTGGTAGCGGGGGCTATTGCC GGGCCGATCACGGTAAGAGGTTTGGATATAGCTTCGACGCAGGCTGATAAAGCGATCGTTCAGGCTTTGA TGAGTGCGAACGCAGGTATTGCGATTGATGCAAAAGAGATCAAACTTCATCCTGCTGATCTCAATGCATT TGAATTTGATGCTACTGATTGCCCGGATCTTTTTCCGCCATTGGTTGCTTTGGCGTCTTATTGCAAAGGA GAAACAAAGATCAAAGGCGTAAGCAGGCTGGCGCATAAAGAAAGTGACAGAGGATTGACGCTGCAGGACG AGTTCGGGAAAATGGGTGTTGAAATCCACCTTGAGGGAGATCTGATGCGCGTGATCGGAGGGAAAGGCGT AAAAGGAGCTGAAGTTAGTTCAAGGCACGATCATCGCATTGCGATGGCTTGCGCGGTGGCTGCTTTAAAA GCTGTGGGTGAAACAACCATCGAACATGCAGAAGCGGTGAATAAATCCTACCCGGATTTTTACAGCGATC TTAAACAACTTGGCGGTGTTGTATCTTTAAACCATCAATTTAATTTCTCATGAATAGCTTCGGCCGCATC TTCAGGGTGCATATTTTTGGCGAATCACATGGTGAATCAGTAGGCATCGTTATTGATGGTTGTCCTGCTG GTCTGTCATTGTCCGAAGAAGATC-3 2. For each primer you designed, use the website and the guidelines on the instruction sheet to determine whether they meet the basic primer requirements. Record the Tm, length, molecular weight, and possibility of secondary structures or primer dimers and use the statistics to qualify your decision to use or not use the primers for a PCR reaction. 3. To determine the specificity of your primer pair to the aroa sequence, run a nucleotide BLAST by following the directions on the instruction page. a. What does the E-value indicate? b. Write down the organism and E-value score from the two highest matches for each primer sequence. Did you get back the sequence you put in? c. How many nucleotides aligned between your sequences and the first match for each?

3 4. Now that you have some experience designing primers and an idea about what makes a good primer, check the CamV35S primers used to determine the presence of a transgene in your food products. Sense (forward) primer: 5 GCT CCT ACA AAT GCC ATC A3 Antisense (reverse) primer: 5 GAT AGT GGG ATT GTG GGT CA3 a. Provide a short summary about the primer pairs including characteristics such as melting temperature, secondary structures, and specificity using this worksheet as a guide. b. Do you think these primers are a good choice to amplify the 35S promoter from your food product? Consider the specificity of your primer pairs to transgenic ingredients as well as other ingredients that may be in your products.

4 Appendix C Continued Phillips et al. Primer Design Instructions The advent of the Polymerase Chain Reaction (PCR) brought about the ability to rapidly make many copies of a segment of DNA. The PCR reaction depends on short pieces of DNA, called primers, to bind to the denatured DNA strands and act as a starting point for replication. Primers are usually nucleotides in length and must be specific to the target DNA. Listed below are some rules and helpful tools that scientists use in designing primers. Finally, there are instructions on how to perform a nucleotide BLAST to check the specificity of each primer. Read through the information and then use these instructions to complete the Primer Design Exercise. Rules for primer sequence design (adapted from Sambrook and Russell, ) 1. To increase specificity, primers should range from nucleotides in length and the forward and reverse primers should not differ by more than 3 base pairs in length from each other. If you consider that there is a ¼ (4-1 ) probability of finding an A, T, C, or G in any given DNA sequence then there is a 1/16 or 4-2 chance of finding any two nucleotide sequence such as AC. Therefore, a specific 16 base pair sequence will statistically occur once in every 4 16 or approximately 4 billion bases. Thus complementary binding of a sequence that is greater than 16 base pairs is an extremely sequence-specific process. 2. The base composition should have 40-60% (G+C) content. GC content is used to determine the annealing temperature of the reaction. A GC content of 40-60% will ensure that the melting temperature is above 50ºC. 3. Melting temperatures (Tm) between 52-62º C are preferred and it is best that the Tm, of the two primers, is within 5º. Melting temperature indicates the stability of the double helix. Tm above 65ºC may form secondary annealing structures and should therefore be avoided. 4. The 3 -ends of primers should not be complementary to any other part of the other primer, otherwise the ends will pair and create a primer dimer preferentially to any other product. If primer dimers are formed early in the PCR, they can reduce the amplification of the target DNA by competing for the DNA polymerase, nucleotides, and primers. i.e. 5 -ACGTCCAAGAGGAAGCG-3 3 -ACTTACGACTTTCGAATGTAA-5 5. Primer self-complementarity should be avoided so that secondary structures are not formed or are very weak. The example below shows how the underlined portions of the primer could pair with itself or another primer molecule. i.e. 5 -AGTCCTAGTCCGAATGTTCTGAC Calculating Melting Temperatures of primers and target DNA (adapted from Sambrook and Russell, ) 1. The Wallace Rule T m (in ºC) = 2(A+T) + 4(C+G) (A+T) = sum of A and T residues in the primer 2 Sambrook, S. and Russell, D. W Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press.

5 (C+G) = sum of C and G residues in the primer 2. DNA calculator This website will allow you to fill in your primer sequence to determine the length, Tm, and molecular weight for your primers and if there will be any secondary structures or possibilities of primer dimers. Determining the uniqueness of the primer sequence: Specificity to the target gene is one of the most important properties of a primer. One way to determine the uniqueness of the primer sequence is to compare the primer to all other sequence data using a bioinformatics tool that is a Basic Local Alignment Search Tool, otherwise known as BLAST. The BLAST tool is maintained by the National Center for Biotechnology Information (NCBI) and can be found at the following link: There are many types of BLASTs, but we will only be dealing with the nucleotide BLAST (blastn) to determine the specificity of the primers. 1. Go to the above website and click on the link in the Nucleotide box titled Nucleotide-nucleotide BLAST (blastn). 2. Type the primer sequence into the text box. 3. If you would like to limit the genomes that are searched, scroll down to the options box and using the drop down box, select your organism of choice. For our purposes we will choose Bacteria as there is not an individual listing for P. putida. 4. Click on the BLAST! icon. 5. A new page will appear entitled, formatting BLAST. Click on the icon Format! and wait for the results of the BLAST. 6. The first figure on the results page provides an overview of the database sequences that are aligned to the query sequence, which is your primer sequence in this case. Following the figure is a list of sequences that are significantly similar to the query sequence. Each matched sequence contains a link to view the entire sequence, the name of the sequence, a score and an E value. The Expect value (E) is a number that describes the number of matches a particular sequence would get by random chance. The lower the E value, the less likely the match would happen by chance and thus making the similarity of the query sequence to another sequence more significant. Scientists will choose their own levels of significance, but often only values smaller than e -100 are considered a significant match. As long as there are not any significant matches in the species you are working in, the primers will amplify only your gene of interest. Conversely, if you are using a primer that has significant alignment in multiple genomes, remember that E-values can only be compared between matches within a single genome. 7. Scroll down and see how the base pairs align with the sequence matches of the same species. If more than 5 matches are found, the primer is not specific enough. After designing the primers and checking the quality, the primer sequence is sent to a DNA synthesis library such as Sigma-Genosys or Integrated DNA Technologies. Primers

6 are synthesized, desiccated, and returned to you. Once you have received the primers, you need to re-hydrate the primers in sterile water or Tris- EDTA buffer.

Recombinant DNA and Biotechnology

Recombinant DNA and Biotechnology Recombinant DNA and Biotechnology Chapter 18 Lecture Objectives What Is Recombinant DNA? How Are New Genes Inserted into Cells? What Sources of DNA Are Used in Cloning? What Other Tools Are Used to Study

More information

Just the Facts: A Basic Introduction to the Science Underlying NCBI Resources

Just the Facts: A Basic Introduction to the Science Underlying NCBI Resources 1 of 8 11/7/2004 11:00 AM National Center for Biotechnology Information About NCBI NCBI at a Glance A Science Primer Human Genome Resources Model Organisms Guide Outreach and Education Databases and Tools

More information

Title : Parallel DNA Synthesis : Two PCR product from one DNA template

Title : Parallel DNA Synthesis : Two PCR product from one DNA template Title : Parallel DNA Synthesis : Two PCR product from one DNA template Bhardwaj Vikash 1 and Sharma Kulbhushan 2 1 Email: vikashbhardwaj@ gmail.com 1 Current address: Government College Sector 14 Gurgaon,

More information

Amazing DNA facts. Hands-on DNA: A Question of Taste Amazing facts and quiz questions

Amazing DNA facts. Hands-on DNA: A Question of Taste Amazing facts and quiz questions Amazing DNA facts These facts can form the basis of a quiz (for example, how many base pairs are there in the human genome?). Students should be familiar with most of this material, so the quiz could be

More information

CCR Biology - Chapter 9 Practice Test - Summer 2012

CCR Biology - Chapter 9 Practice Test - Summer 2012 Name: Class: Date: CCR Biology - Chapter 9 Practice Test - Summer 2012 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Genetic engineering is possible

More information

Replication Study Guide

Replication Study Guide Replication Study Guide This study guide is a written version of the material you have seen presented in the replication unit. Self-reproduction is a function of life that human-engineered systems have

More information

Biotechnology and Recombinant DNA (Chapter 9) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College

Biotechnology and Recombinant DNA (Chapter 9) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Biotechnology and Recombinant DNA (Chapter 9) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Primary Source for figures and content: Eastern Campus Tortora, G.J. Microbiology

More information

Troubleshooting for PCR and multiplex PCR

Troubleshooting for PCR and multiplex PCR Page 1 of 5 Page designed and maintained by Octavian Henegariu (Email: Tavi's Yale email or Tavi's Yahoo email). As I am currently pursuing a new junior faculty position, the Yale URL and email may change

More information

Lecture 13: DNA Technology. DNA Sequencing. DNA Sequencing Genetic Markers - RFLPs polymerase chain reaction (PCR) products of biotechnology

Lecture 13: DNA Technology. DNA Sequencing. DNA Sequencing Genetic Markers - RFLPs polymerase chain reaction (PCR) products of biotechnology Lecture 13: DNA Technology DNA Sequencing Genetic Markers - RFLPs polymerase chain reaction (PCR) products of biotechnology DNA Sequencing determine order of nucleotides in a strand of DNA > bases = A,

More information

2006 7.012 Problem Set 3 KEY

2006 7.012 Problem Set 3 KEY 2006 7.012 Problem Set 3 KEY Due before 5 PM on FRIDAY, October 13, 2006. Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. 1. Which reaction is catalyzed by each

More information

2. The number of different kinds of nucleotides present in any DNA molecule is A) four B) six C) two D) three

2. The number of different kinds of nucleotides present in any DNA molecule is A) four B) six C) two D) three Chem 121 Chapter 22. Nucleic Acids 1. Any given nucleotide in a nucleic acid contains A) two bases and a sugar. B) one sugar, two bases and one phosphate. C) two sugars and one phosphate. D) one sugar,

More information

Genetics Module B, Anchor 3

Genetics Module B, Anchor 3 Genetics Module B, Anchor 3 Key Concepts: - An individual s characteristics are determines by factors that are passed from one parental generation to the next. - During gamete formation, the alleles for

More information

Chapter 6 DNA Replication

Chapter 6 DNA Replication Chapter 6 DNA Replication Each strand of the DNA double helix contains a sequence of nucleotides that is exactly complementary to the nucleotide sequence of its partner strand. Each strand can therefore

More information

First Strand cdna Synthesis

First Strand cdna Synthesis 380PR 01 G-Biosciences 1-800-628-7730 1-314-991-6034 technical@gbiosciences.com A Geno Technology, Inc. (USA) brand name First Strand cdna Synthesis (Cat. # 786 812) think proteins! think G-Biosciences

More information

1. Location matters: Primers should flank the DNA you want to amplify

1. Location matters: Primers should flank the DNA you want to amplify MIT Department of Biology 7.02 Experimental Biology & Communication, Spring 2005 Primer design Where do primers come from? generally purchased from a company, who makes them by chemical synthesis How do

More information

RETRIEVING SEQUENCE INFORMATION. Nucleotide sequence databases. Database search. Sequence alignment and comparison

RETRIEVING SEQUENCE INFORMATION. Nucleotide sequence databases. Database search. Sequence alignment and comparison RETRIEVING SEQUENCE INFORMATION Nucleotide sequence databases Database search Sequence alignment and comparison Biological sequence databases Originally just a storage place for sequences. Currently the

More information

Recombinant DNA & Genetic Engineering. Tools for Genetic Manipulation

Recombinant DNA & Genetic Engineering. Tools for Genetic Manipulation Recombinant DNA & Genetic Engineering g Genetic Manipulation: Tools Kathleen Hill Associate Professor Department of Biology The University of Western Ontario Tools for Genetic Manipulation DNA, RNA, cdna

More information

The Techniques of Molecular Biology: Forensic DNA Fingerprinting

The Techniques of Molecular Biology: Forensic DNA Fingerprinting Revised Fall 2011 The Techniques of Molecular Biology: Forensic DNA Fingerprinting The techniques of molecular biology are used to manipulate the structure and function of molecules such as DNA and proteins

More information

1. Molecular computation uses molecules to represent information and molecular processes to implement information processing.

1. Molecular computation uses molecules to represent information and molecular processes to implement information processing. Chapter IV Molecular Computation These lecture notes are exclusively for the use of students in Prof. MacLennan s Unconventional Computation course. c 2013, B. J. MacLennan, EECS, University of Tennessee,

More information

Genetic Technology. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Genetic Technology. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Genetic Technology Multiple Choice Identify the choice that best completes the statement or answers the question. 1. An application of using DNA technology to help environmental scientists

More information

Computer Programs for PCR Primer Design and Analysis

Computer Programs for PCR Primer Design and Analysis PCR Primer Design 19 2 Computer Programs for PCR Primer Design and Analysis Bing-Yuan Chen, Harry W. Janes, and Steve Chen 1. Introduction 1.1. Core Parameters in Primer Design 1.1.1. T m, Primer Length,

More information

BacReady TM Multiplex PCR System

BacReady TM Multiplex PCR System BacReady TM Multiplex PCR System Technical Manual No. 0191 Version 10112010 I Description.. 1 II Applications 2 III Key Features.. 2 IV Shipping and Storage. 2 V Simplified Procedures. 2 VI Detailed Experimental

More information

GENE CLONING AND RECOMBINANT DNA TECHNOLOGY

GENE CLONING AND RECOMBINANT DNA TECHNOLOGY GENE CLONING AND RECOMBINANT DNA TECHNOLOGY What is recombinant DNA? DNA from 2 different sources (often from 2 different species) are combined together in vitro. Recombinant DNA forms the basis of cloning.

More information

DNA Replication in Prokaryotes

DNA Replication in Prokaryotes OpenStax-CNX module: m44488 1 DNA Replication in Prokaryotes OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this section,

More information

Genetic Engineering and Biotechnology

Genetic Engineering and Biotechnology 1 So, what is biotechnology?? The use of living organisms to carry out defined chemical processes for industrial or commercial application. The office of Technology Assessment of the U.S. Congress defines

More information

A Guide to LAMP primer designing (PrimerExplorer V4)

A Guide to LAMP primer designing (PrimerExplorer V4) A Guide to LAMP primer designing (PrimerExplorer V4) Eiken Chemical Co., Ltd. _ Contents Key factors in designing LAMP primers 1. The LAMP primer 2. 2 Key factors in the LAMP primer design 3. The steps

More information

Co Extra (GM and non GM supply chains: Their CO EXistence and TRAceability) Outcomes of Co Extra

Co Extra (GM and non GM supply chains: Their CO EXistence and TRAceability) Outcomes of Co Extra GM and non GM supply chains: Their CO EXistence and TRAceability Outcomes of Co Extra Comparison of different real time PCR chemistries and their suitability for detection and quantification of genetically

More information

2. True or False? The sequence of nucleotides in the human genome is 90.9% identical from one person to the next. False (it s 99.

2. True or False? The sequence of nucleotides in the human genome is 90.9% identical from one person to the next. False (it s 99. 1. True or False? A typical chromosome can contain several hundred to several thousand genes, arranged in linear order along the DNA molecule present in the chromosome. True 2. True or False? The sequence

More information

DNA Sequencing Troubleshooting Guide

DNA Sequencing Troubleshooting Guide DNA Sequencing Troubleshooting Guide Successful DNA Sequencing Read Peaks are well formed and separated with good quality scores. There is a small area at the beginning of the run before the chemistry

More information

Objectives: Vocabulary:

Objectives: Vocabulary: Introduction to Agarose Gel Electrophoresis: A Precursor to Cornell Institute for Biology Teacher s lab Author: Jennifer Weiser and Laura Austen Date Created: 2010 Subject: Molecular Biology and Genetics

More information

1/12 Dideoxy DNA Sequencing

1/12 Dideoxy DNA Sequencing 1/12 Dideoxy DNA Sequencing Dideoxy DNA sequencing utilizes two steps: PCR (polymerase chain reaction) amplification of DNA using dideoxy nucleoside triphosphates (Figures 1 and 2)and denaturing polyacrylamide

More information

DNA Replication & Protein Synthesis. This isn t a baaaaaaaddd chapter!!!

DNA Replication & Protein Synthesis. This isn t a baaaaaaaddd chapter!!! DNA Replication & Protein Synthesis This isn t a baaaaaaaddd chapter!!! The Discovery of DNA s Structure Watson and Crick s discovery of DNA s structure was based on almost fifty years of research by other

More information

IIID 14. Biotechnology in Fish Disease Diagnostics: Application of the Polymerase Chain Reaction (PCR)

IIID 14. Biotechnology in Fish Disease Diagnostics: Application of the Polymerase Chain Reaction (PCR) IIID 14. Biotechnology in Fish Disease Diagnostics: Application of the Polymerase Chain Reaction (PCR) Background Infectious diseases caused by pathogenic organisms such as bacteria, viruses, protozoa,

More information

Beginner s Guide to Real-Time PCR

Beginner s Guide to Real-Time PCR Beginner s Guide to Real-Time PCR 02 Real-time PCR basic principles PCR or the Polymerase Chain Reaction has become the cornerstone of modern molecular biology the world over. Real-time PCR is an advanced

More information

Basic Concepts of DNA, Proteins, Genes and Genomes

Basic Concepts of DNA, Proteins, Genes and Genomes Basic Concepts of DNA, Proteins, Genes and Genomes Kun-Mao Chao 1,2,3 1 Graduate Institute of Biomedical Electronics and Bioinformatics 2 Department of Computer Science and Information Engineering 3 Graduate

More information

RNA: Transcription and Processing

RNA: Transcription and Processing 8 RNA: Transcription and Processing WORKING WITH THE FIGURES 1. In Figure 8-3, why are the arrows for genes 1 and 2 pointing in opposite directions? The arrows for genes 1 and 2 indicate the direction

More information

GENEWIZ, Inc. DNA Sequencing Service Details for USC Norris Comprehensive Cancer Center DNA Core

GENEWIZ, Inc. DNA Sequencing Service Details for USC Norris Comprehensive Cancer Center DNA Core DNA Sequencing Services Pre-Mixed o Provide template and primer, mixed into the same tube* Pre-Defined o Provide template and primer in separate tubes* Custom o Full-service for samples with unknown concentration

More information

DNA and Forensic Science

DNA and Forensic Science DNA and Forensic Science Micah A. Luftig * Stephen Richey ** I. INTRODUCTION This paper represents a discussion of the fundamental principles of DNA technology as it applies to forensic testing. A brief

More information

FAQs: Gene drives - - What is a gene drive?

FAQs: Gene drives - - What is a gene drive? FAQs: Gene drives - - What is a gene drive? During normal sexual reproduction, each of the two versions of a given gene has a 50 percent chance of being inherited by a particular offspring (Fig 1A). Gene

More information

Genetics Lecture Notes 7.03 2005. Lectures 1 2

Genetics Lecture Notes 7.03 2005. Lectures 1 2 Genetics Lecture Notes 7.03 2005 Lectures 1 2 Lecture 1 We will begin this course with the question: What is a gene? This question will take us four lectures to answer because there are actually several

More information

Bio 3A Lab: DNA Isolation and the Polymerase Chain Reaction

Bio 3A Lab: DNA Isolation and the Polymerase Chain Reaction Bio 3A Lab: DNA Isolation and the Polymerase Chain Reaction Objectives Understand the process of DNA isolation Perform DNA isolation using cheek cells Use thermal cycler and Taq polymerase to perform DNA

More information

RNA & Protein Synthesis

RNA & Protein Synthesis RNA & Protein Synthesis Genes send messages to cellular machinery RNA Plays a major role in process Process has three phases (Genetic) Transcription (Genetic) Translation Protein Synthesis RNA Synthesis

More information

June 09, 2009 Random Mutagenesis

June 09, 2009 Random Mutagenesis Why Mutagenesis? Analysis of protein function June 09, 2009 Random Mutagenesis Analysis of protein structure Protein engineering Analysis of structure-function relationship Analysis of the catalytic center

More information

Data Analysis for Ion Torrent Sequencing

Data Analysis for Ion Torrent Sequencing IFU022 v140202 Research Use Only Instructions For Use Part III Data Analysis for Ion Torrent Sequencing MANUFACTURER: Multiplicom N.V. Galileilaan 18 2845 Niel Belgium Revision date: August 21, 2014 Page

More information

Appendix 2 Molecular Biology Core Curriculum. Websites and Other Resources

Appendix 2 Molecular Biology Core Curriculum. Websites and Other Resources Appendix 2 Molecular Biology Core Curriculum Websites and Other Resources Chapter 1 - The Molecular Basis of Cancer 1. Inside Cancer http://www.insidecancer.org/ From the Dolan DNA Learning Center Cold

More information

Transcription and Translation of DNA

Transcription and Translation of DNA Transcription and Translation of DNA Genotype our genetic constitution ( makeup) is determined (controlled) by the sequence of bases in its genes Phenotype determined by the proteins synthesised when genes

More information

Biological Sciences Initiative. Human Genome

Biological Sciences Initiative. Human Genome Biological Sciences Initiative HHMI Human Genome Introduction In 2000, researchers from around the world published a draft sequence of the entire genome. 20 labs from 6 countries worked on the sequence.

More information

HiPer RT-PCR Teaching Kit

HiPer RT-PCR Teaching Kit HiPer RT-PCR Teaching Kit Product Code: HTBM024 Number of experiments that can be performed: 5 Duration of Experiment: Protocol: 4 hours Agarose Gel Electrophoresis: 45 minutes Storage Instructions: The

More information

PCR & DNA Sequencing. PCR= Polymerase Chain Reaction. PCR applications

PCR & DNA Sequencing. PCR= Polymerase Chain Reaction. PCR applications PCR= Polymerase Chain Reaction PCR & DNA Sequencing Biology 224 Instructor: Tom Peavy March 20, 2006 DNA photocopier integral tool for molecular biologists work horse versatile (many applications) not

More information

Vector NTI Advance 11 Quick Start Guide

Vector NTI Advance 11 Quick Start Guide Vector NTI Advance 11 Quick Start Guide Catalog no. 12605050, 12605099, 12605103 Version 11.0 December 15, 2008 12605022 Published by: Invitrogen Corporation 5791 Van Allen Way Carlsbad, CA 92008 U.S.A.

More information

GenScript BloodReady TM Multiplex PCR System

GenScript BloodReady TM Multiplex PCR System GenScript BloodReady TM Multiplex PCR System Technical Manual No. 0174 Version 20040915 I Description.. 1 II Applications 2 III Key Features.. 2 IV Shipping and Storage. 2 V Simplified Procedures. 2 VI

More information

INTERNATIONAL CONFERENCE ON HARMONISATION OF TECHNICAL REQUIREMENTS FOR REGISTRATION OF PHARMACEUTICALS FOR HUMAN USE Q5B

INTERNATIONAL CONFERENCE ON HARMONISATION OF TECHNICAL REQUIREMENTS FOR REGISTRATION OF PHARMACEUTICALS FOR HUMAN USE Q5B INTERNATIONAL CONFERENCE ON HARMONISATION OF TECHNICAL REQUIREMENTS FOR REGISTRATION OF PHARMACEUTICALS FOR HUMAN USE ICH HARMONISED TRIPARTITE GUIDELINE QUALITY OF BIOTECHNOLOGICAL PRODUCTS: ANALYSIS

More information

Analyzing A DNA Sequence Chromatogram

Analyzing A DNA Sequence Chromatogram LESSON 9 HANDOUT Analyzing A DNA Sequence Chromatogram Student Researcher Background: DNA Analysis and FinchTV DNA sequence data can be used to answer many types of questions. Because DNA sequences differ

More information

European Medicines Agency

European Medicines Agency European Medicines Agency July 1996 CPMP/ICH/139/95 ICH Topic Q 5 B Quality of Biotechnological Products: Analysis of the Expression Construct in Cell Lines Used for Production of r-dna Derived Protein

More information

DNA SEQUENCING SANGER: TECHNICALS SOLUTIONS GUIDE

DNA SEQUENCING SANGER: TECHNICALS SOLUTIONS GUIDE DNA SEQUENCING SANGER: TECHNICALS SOLUTIONS GUIDE We recommend for the sequence visualization the use of software that allows the examination of raw data in order to determine quantitatively how good has

More information

Forensic DNA Testing Terminology

Forensic DNA Testing Terminology Forensic DNA Testing Terminology ABI 310 Genetic Analyzer a capillary electrophoresis instrument used by forensic DNA laboratories to separate short tandem repeat (STR) loci on the basis of their size.

More information

Name Date Period. 2. When a molecule of double-stranded DNA undergoes replication, it results in

Name Date Period. 2. When a molecule of double-stranded DNA undergoes replication, it results in DNA, RNA, Protein Synthesis Keystone 1. During the process shown above, the two strands of one DNA molecule are unwound. Then, DNA polymerases add complementary nucleotides to each strand which results

More information

PRACTICE TEST QUESTIONS

PRACTICE TEST QUESTIONS PART A: MULTIPLE CHOICE QUESTIONS PRACTICE TEST QUESTIONS DNA & PROTEIN SYNTHESIS B 1. One of the functions of DNA is to A. secrete vacuoles. B. make copies of itself. C. join amino acids to each other.

More information

DNA Sample preparation and Submission Guidelines

DNA Sample preparation and Submission Guidelines DNA Sample preparation and Submission Guidelines Requirements: Please submit samples in 1.5ml microcentrifuge tubes. Fill all the required information in the Eurofins DNA sequencing order form and send

More information

Transcription in prokaryotes. Elongation and termination

Transcription in prokaryotes. Elongation and termination Transcription in prokaryotes Elongation and termination After initiation the σ factor leaves the scene. Core polymerase is conducting the elongation of the chain. The core polymerase contains main nucleotide

More information

HCS604.03 Exercise 1 Dr. Jones Spring 2005. Recombinant DNA (Molecular Cloning) exercise:

HCS604.03 Exercise 1 Dr. Jones Spring 2005. Recombinant DNA (Molecular Cloning) exercise: HCS604.03 Exercise 1 Dr. Jones Spring 2005 Recombinant DNA (Molecular Cloning) exercise: The purpose of this exercise is to learn techniques used to create recombinant DNA or clone genes. You will clone

More information

Proteins and Nucleic Acids

Proteins and Nucleic Acids Proteins and Nucleic Acids Chapter 5 Macromolecules: Proteins Proteins Most structurally & functionally diverse group of biomolecules. : o Involved in almost everything o Enzymes o Structure (keratin,

More information

Recombinant DNA Unit Exam

Recombinant DNA Unit Exam Recombinant DNA Unit Exam Question 1 Restriction enzymes are extensively used in molecular biology. Below are the recognition sites of two of these enzymes, BamHI and BclI. a) BamHI, cleaves after the

More information

Translation Study Guide

Translation Study Guide Translation Study Guide This study guide is a written version of the material you have seen presented in the replication unit. In translation, the cell uses the genetic information contained in mrna to

More information

IMBB 2013. Genomic DNA purifica8on

IMBB 2013. Genomic DNA purifica8on IMBB 2013 Genomic DNA purifica8on Why purify DNA? The purpose of DNA purifica8on from the cell/8ssue is to ensure it performs well in subsequent downstream applica8ons, e.g. Polymerase Chain Reac8on (PCR),

More information

Troubleshooting the Single-step PCR Site-directed Mutagenesis Procedure Intended to Create a Non-functional rop Gene in the pbr322 Plasmid

Troubleshooting the Single-step PCR Site-directed Mutagenesis Procedure Intended to Create a Non-functional rop Gene in the pbr322 Plasmid Troubleshooting the Single-step PCR Site-directed Mutagenesis Procedure Intended to Create a Non-functional rop Gene in the pbr322 Plasmid Lina Jew Department of Microbiology & Immunology, University of

More information

Structure and Function of DNA

Structure and Function of DNA Structure and Function of DNA DNA and RNA Structure DNA and RNA are nucleic acids. They consist of chemical units called nucleotides. The nucleotides are joined by a sugar-phosphate backbone. The four

More information

Algorithms in Computational Biology (236522) spring 2007 Lecture #1

Algorithms in Computational Biology (236522) spring 2007 Lecture #1 Algorithms in Computational Biology (236522) spring 2007 Lecture #1 Lecturer: Shlomo Moran, Taub 639, tel 4363 Office hours: Tuesday 11:00-12:00/by appointment TA: Ilan Gronau, Taub 700, tel 4894 Office

More information

pcas-guide System Validation in Genome Editing

pcas-guide System Validation in Genome Editing pcas-guide System Validation in Genome Editing Tagging HSP60 with HA tag genome editing The latest tool in genome editing CRISPR/Cas9 allows for specific genome disruption and replacement in a flexible

More information

Molecular Genetics. RNA, Transcription, & Protein Synthesis

Molecular Genetics. RNA, Transcription, & Protein Synthesis Molecular Genetics RNA, Transcription, & Protein Synthesis Section 1 RNA AND TRANSCRIPTION Objectives Describe the primary functions of RNA Identify how RNA differs from DNA Describe the structure and

More information

DNA, RNA, Protein synthesis, and Mutations. Chapters 12-13.3

DNA, RNA, Protein synthesis, and Mutations. Chapters 12-13.3 DNA, RNA, Protein synthesis, and Mutations Chapters 12-13.3 1A)Identify the components of DNA and explain its role in heredity. DNA s Role in heredity: Contains the genetic information of a cell that can

More information

Illumina TruSeq DNA Adapters De-Mystified James Schiemer

Illumina TruSeq DNA Adapters De-Mystified James Schiemer 1 of 5 Illumina TruSeq DNA Adapters De-Mystified James Schiemer The key to sequencing random fragments of DNA is by the addition of short nucleotide sequences which allow any DNA fragment to: 1) Bind to

More information

DNA Sequencing Overview

DNA Sequencing Overview DNA Sequencing Overview DNA sequencing involves the determination of the sequence of nucleotides in a sample of DNA. It is presently conducted using a modified PCR reaction where both normal and labeled

More information

Module 10: Bioinformatics

Module 10: Bioinformatics Module 10: Bioinformatics 1.) Goal: To understand the general approaches for basic in silico (computer) analysis of DNA- and protein sequences. We are going to discuss sequence formatting required prior

More information

Thymine = orange Adenine = dark green Guanine = purple Cytosine = yellow Uracil = brown

Thymine = orange Adenine = dark green Guanine = purple Cytosine = yellow Uracil = brown 1 DNA Coloring - Transcription & Translation Transcription RNA, Ribonucleic Acid is very similar to DNA. RNA normally exists as a single strand (and not the double stranded double helix of DNA). It contains

More information

VLLM0421c Medical Microbiology I, practical sessions. Protocol to topic J10

VLLM0421c Medical Microbiology I, practical sessions. Protocol to topic J10 Topic J10+11: Molecular-biological methods + Clinical virology I (hepatitis A, B & C, HIV) To study: PCR, ELISA, your own notes from serology reactions Task J10/1: DNA isolation of the etiological agent

More information

Bio 102 Practice Problems Chromosomes and DNA Replication

Bio 102 Practice Problems Chromosomes and DNA Replication Bio 102 Practice Problems Chromosomes and DNA Replication Multiple choice: Unless otherwise directed, circle the one best answer: 1. Which one of the following enzymes is NT a key player in the process

More information

Provincial Exam Questions. 9. Give one role of each of the following nucleic acids in the production of an enzyme.

Provincial Exam Questions. 9. Give one role of each of the following nucleic acids in the production of an enzyme. Provincial Exam Questions Unit: Cell Biology: Protein Synthesis (B7 & B8) 2010 Jan 3. Describe the process of translation. (4 marks) 2009 Sample 8. What is the role of ribosomes in protein synthesis? A.

More information

DNA. Discovery of the DNA double helix

DNA. Discovery of the DNA double helix DNA Replication DNA Discovery of the DNA double helix A. 1950 s B. Rosalind Franklin - X-ray photo of DNA. C. Watson and Crick - described the DNA molecule from Franklin s X-ray. What is DNA? Question:

More information

Taq98 Hot Start 2X Master Mix

Taq98 Hot Start 2X Master Mix Taq98 Hot Start 2X Master Mix Optimized for 98C Denaturation Lucigen Corporation 2905 Parmenter St, Middleton, WI 53562 USA Toll Free: (888) 575-9695 (608) 831-9011 FAX: (608) 831-9012 lucigen@lucigen.com

More information

Exercises for the UCSC Genome Browser Introduction

Exercises for the UCSC Genome Browser Introduction Exercises for the UCSC Genome Browser Introduction 1) Find out if the mouse Brca1 gene has non-synonymous SNPs, color them blue, and get external data about a codon-changing SNP. Skills: basic text search;

More information

Nucleotides and Nucleic Acids

Nucleotides and Nucleic Acids Nucleotides and Nucleic Acids Brief History 1 1869 - Miescher Isolated nuclein from soiled bandages 1902 - Garrod Studied rare genetic disorder: Alkaptonuria; concluded that specific gene is associated

More information

1.5 page 3 DNA Replication S. Preston 1

1.5 page 3 DNA Replication S. Preston 1 AS Unit 1: Basic Biochemistry and Cell Organisation Name: Date: Topic 1.5 Nucleic Acids and their functions Page 3 l. DNA Replication 1. Go through PowerPoint 2. Read notes p2 and then watch the animation

More information

3. About R2oDNA Designer

3. About R2oDNA Designer 3. About R2oDNA Designer Please read these publications for more details: Casini A, Christodoulou G, Freemont PS, Baldwin GS, Ellis T, MacDonald JT. R2oDNA Designer: Computational design of biologically-neutral

More information

Coding sequence the sequence of nucleotide bases on the DNA that are transcribed into RNA which are in turn translated into protein

Coding sequence the sequence of nucleotide bases on the DNA that are transcribed into RNA which are in turn translated into protein Assignment 3 Michele Owens Vocabulary Gene: A sequence of DNA that instructs a cell to produce a particular protein Promoter a control sequence near the start of a gene Coding sequence the sequence of

More information

Introduction to Bioinformatics 3. DNA editing and contig assembly

Introduction to Bioinformatics 3. DNA editing and contig assembly Introduction to Bioinformatics 3. DNA editing and contig assembly Benjamin F. Matthews United States Department of Agriculture Soybean Genomics and Improvement Laboratory Beltsville, MD 20708 matthewb@ba.ars.usda.gov

More information

Name Class Date. Figure 13 1. 2. Which nucleotide in Figure 13 1 indicates the nucleic acid above is RNA? a. uracil c. cytosine b. guanine d.

Name Class Date. Figure 13 1. 2. Which nucleotide in Figure 13 1 indicates the nucleic acid above is RNA? a. uracil c. cytosine b. guanine d. 13 Multiple Choice RNA and Protein Synthesis Chapter Test A Write the letter that best answers the question or completes the statement on the line provided. 1. Which of the following are found in both

More information

Bob Jesberg. Boston, MA April 3, 2014

Bob Jesberg. Boston, MA April 3, 2014 DNA, Replication and Transcription Bob Jesberg NSTA Conference Boston, MA April 3, 2014 1 Workshop Agenda Looking at DNA and Forensics The DNA, Replication i and Transcription i Set DNA Ladder The Double

More information

DNA Fingerprinting. Unless they are identical twins, individuals have unique DNA

DNA Fingerprinting. Unless they are identical twins, individuals have unique DNA DNA Fingerprinting Unless they are identical twins, individuals have unique DNA DNA fingerprinting The name used for the unambiguous identifying technique that takes advantage of differences in DNA sequence

More information

Name: Date: Period: DNA Unit: DNA Webquest

Name: Date: Period: DNA Unit: DNA Webquest Name: Date: Period: DNA Unit: DNA Webquest Part 1 History, DNA Structure, DNA Replication DNA History http://www.dnaftb.org/dnaftb/1/concept/index.html Read the text and answer the following questions.

More information

From DNA to Protein. Proteins. Chapter 13. Prokaryotes and Eukaryotes. The Path From Genes to Proteins. All proteins consist of polypeptide chains

From DNA to Protein. Proteins. Chapter 13. Prokaryotes and Eukaryotes. The Path From Genes to Proteins. All proteins consist of polypeptide chains Proteins From DNA to Protein Chapter 13 All proteins consist of polypeptide chains A linear sequence of amino acids Each chain corresponds to the nucleotide base sequence of a gene The Path From Genes

More information

How is genome sequencing done?

How is genome sequencing done? How is genome sequencing done? Using 454 Sequencing on the Genome Sequencer FLX System, DNA from a genome is converted into sequence data through four primary steps: Step One DNA sample preparation; Step

More information

PicoMaxx High Fidelity PCR System

PicoMaxx High Fidelity PCR System PicoMaxx High Fidelity PCR System Instruction Manual Catalog #600420 (100 U), #600422 (500 U), and #600424 (1000 U) Revision C Research Use Only. Not for Use in Diagnostic Procedures. 600420-12 LIMITED

More information

NetPrimer Manual. PREMIER Biosoft International. 3786 Corina Way, Palo Alto, CA 94303-4504 Tel: 650-856-2703 FAX: 650-618-1773

NetPrimer Manual. PREMIER Biosoft International. 3786 Corina Way, Palo Alto, CA 94303-4504 Tel: 650-856-2703 FAX: 650-618-1773 NetPrimer Manual PREMIER Biosoft International 3786 Corina Way, Palo Alto, CA 94303-4504 Tel: 650-856-2703 FAX: 650-618-1773 E-mail: sales@premierbiosoft.com 1 Copyright 2009 by PREMIER Biosoft International.

More information

Protein Synthesis How Genes Become Constituent Molecules

Protein Synthesis How Genes Become Constituent Molecules Protein Synthesis Protein Synthesis How Genes Become Constituent Molecules Mendel and The Idea of Gene What is a Chromosome? A chromosome is a molecule of DNA 50% 50% 1. True 2. False True False Protein

More information

Central Dogma. Lecture 10. Discussing DNA replication. DNA Replication. DNA mutation and repair. Transcription

Central Dogma. Lecture 10. Discussing DNA replication. DNA Replication. DNA mutation and repair. Transcription Central Dogma transcription translation DNA RNA Protein replication Discussing DNA replication (Nucleus of eukaryote, cytoplasm of prokaryote) Recall Replication is semi-conservative and bidirectional

More information

BioBoot Camp Genetics

BioBoot Camp Genetics BioBoot Camp Genetics BIO.B.1.2.1 Describe how the process of DNA replication results in the transmission and/or conservation of genetic information DNA Replication is the process of DNA being copied before

More information

From DNA to Protein

From DNA to Protein Nucleus Control center of the cell contains the genetic library encoded in the sequences of nucleotides in molecules of DNA code for the amino acid sequences of all proteins determines which specific proteins

More information