Figure 1: A Planar Drawing of K 4. Figure 2: A Planar Drawing of K 5 minus one edge

Size: px
Start display at page:

Download "Figure 1: A Planar Drawing of K 4. Figure 2: A Planar Drawing of K 5 minus one edge"

Transcription

1 1 Planar Graphs 1.1 Plane Drawings A plane drawing of a graph is a drawing of the graph in the plane such that edges only meet and at their endpoints. A graph is planar if it admits a plane drawing. For example, K 4 is planar since it has a plane drawing: Figure 1: A Planar Drawing of K 4 The graph K 5 is non-planar, but if we delete one edge, it becomes planar: Figure 2: A Planar Drawing of K 5 minus one edge The graph K 33 is non-planar. To see this, K 33 has a Hamilton circuit. When drawn in a plane drawing, there would be three edges not on the circuit, and at least two of them would have to be drawn inside the circuit, or two of them must be drawn outside the circuit. Either way, both of the edges must cross. Thus K 33 has no plane drawing and therefore is non-planar. 1

2 Figure 3: K 3,3 has no planar drawing 1.2 Euler s Formula A planar drawing of a graph divides the plane into regions, called faces. F 1 F 2 F 4 F 3 Figure 4: The faces of a planar drawing For a face F i, let f i denote the number of edges bordering F i, where edges which border F i on both sides are counted twice. f i is called the degree of F i. Observation: If a planar drawing has faces F 1, F 2,..., F k, then f 1 + f f k = 2ε where ε is the number of edges in the graph. 1.1 Theorem ( Euler s Formula ) If G is a connected graph having a plane drawing with ν vertices, ε edges, and f faces, then ν ε + f = 2. 2

3 F 4 F 2 F 3 F 1 F 5 ν = 7, ε = 10, f = 5 ν ε + f = = 2 Figure 5: An example of Euler s formula 1.3 Proof of Euler s Formula A tree is a connected graph which has no cycles (simple circuits). Figure 6: A tree Fact: If a tree has ν vertices, then it has ν 1 edges. We shall start by proving Euler s formula for trees. Let T be a tree with ν vertices. Then it has ε = ν 1 edges. Moreover, T is clearly planar and any plane drawing of T has only one face (thus f = 1). Now ν ε + f = ν (ν 1)+ = 2. Thus Euler s formula holds for T. To prove Euler s formula for all planar graphs, we shall use induction on ε. Let G be a planar graph having ν vertices, ε edges, and a plane drawing with f faces. Suppose ε = 1. Then there are only two possibilities for G, shown below. In the first case where G is an edge, we have ν = 2, ε = 1, and f = 1. In the second case, where G is a loop, we have ν = 1, ε = 1, and f = 2. In both cases, we see that Euler s formula holds. Suppose now that ε > 1 and Euler s formula holds for any planar graph G having fewer than ε edges. If G is a tree, then we know Euler s formula holds by our previous argument. So we may assume that G is not a tree. 3

4 Therefore it has a cycle C. Let e be an edges on C. Then e belongs to exactly two faces, say F and F the face F lies inside C, and F lies outside. F e F e F Figure 7: The faces F and F bordering e Let G be the graph obtained from G by deleting e. Then G is planar and inherits a plane drawing from G. Note that the faces F and F become one face in G. The graph G has ν = ν vertices, ε = ε 1 edges, and f = f 1 faces. By assumption, Euler s formula holds for G and therefore ν ε + f = 2 ν (ε 1) + (f 1) = 2 ν ε + f = 2. Thus Euler s formula holds for G. The proof now follows by induction. 1.2 Corollary K 33 is non-planar. Proof. Proof by contradiction. Suppose K 33 can be drawn in the plane with f faces. Then ν ε + f = 2. However, we have ν = 6 and ε = 9, and as such f = 2 ν+ε = = 5. Thus there are f = 5 faces, say F 1,..., F 5. Since all cycles of K 33 have at least 4 edges, each face F i in K 33 must have degree at least 4 (that is, f i 4). Now since 5 i=1 f i = 2ε, and f i 4, i = 1,..., 5, we see that 20 = 5 4 2ε = 18. This gives a contradiction. Thus K 33 is non-planar. 4

5 1.4 Kuratowski s Theorem How do we know when a graph is planar? To start with, we shall give a few simple observations. Observation 1: If a graph is planar, then any subgraph of it will also be planar. A subdivision of a graph G is a graph obtained from G by inserting vertices of degree two into some edges of G. Figure 8: Subdivision of K 3,3 Observation 2: A subdivision of a planar (resp. non-planar) graph is planar (resp. non-planar). Two graphs H and G are homeomorphic if one graph can be obtained from the other by either suppressing vertices of degree two and/or subdividing edges. Figure 9: Homeomorphic Graphs Observation 3: If two graphs are homeomorphic, then one graph is planar iff the other graph is planar. 1.3 Theorem ( Kuratowski s Theorem ) A graph is planar iff it contains no subgraph which is homeomorphic to K 33 or K 5. 5

6 2 Exercises 1. A dodecahedron has 12 faces and 20 vertices. Each face has the same number of edges. Use Euler s Formula to determine what the number must be. 2. Show that the following graph is non-planar. 3. Suppose f is the number of faces in a planar graph G drawn in the plane having ν vertices and ε edges. Find ν ε + f if G has k components. 4. A soccer ball has 32 faces, each of which is a regular pentagon or hexagon. Because of the angles involved, exactly three faces meet at each corner. Without looking at the ball, determine how many of each type of face there are. 5. Let G be a connected planar graph with 3 or more vertices which is drawn in the plane. Let ν, ε, and f be as usual. a) Use i f i = 2ε to show that f 2ε 3. b) Prove that ε 3ν 6. c) Use b) to show that K 5 is not planar. 6. Show that there cannot exist a bipartite planar graph where each vertex has degree four. 7. Show that the graph below (called the Petersen Graph) is nonplanar by finding a a subgraph which is a subdivision of K 3,3 of K 5. 6

7 Figure 10: The Petersen Graph 7

Consequences of Euler s Formula

Consequences of Euler s Formula Consequences of Euler s Formula Theorem 1 If G is a connected planar graph with V, then 2F E V 6 Proof Let G be planar and connected, with or more vertices Case 1 Suppose that G has a face bounded by fewer

More information

MTH 548 Graph Theory Fall 2003

MTH 548 Graph Theory Fall 2003 MTH 548 Graph Theory Fall 2003 Lesson 6 - Planar graphs Planar graph plane drawing - plane graph face length of a face infinite face Thm 12: Euler. Let G be a plane drawing of a connected planar graph.

More information

Planar Graph and Trees

Planar Graph and Trees Dr. Nahid Sultana December 16, 2012 Tree Spanning Trees Minimum Spanning Trees Maps and Regions Eulers Formula Nonplanar graph Dual Maps and the Four Color Theorem Tree Spanning Trees Minimum Spanning

More information

Basic Notions on Graphs. Planar Graphs and Vertex Colourings. Joe Ryan. Presented by

Basic Notions on Graphs. Planar Graphs and Vertex Colourings. Joe Ryan. Presented by Basic Notions on Graphs Planar Graphs and Vertex Colourings Presented by Joe Ryan School of Electrical Engineering and Computer Science University of Newcastle, Australia Planar graphs Graphs may be drawn

More information

Graph Theory. Euler s formula for planar graphs. R. Inkulu

Graph Theory. Euler s formula for planar graphs. R. Inkulu Graph Theory Euler s formula for planar graphs R. Inkulu http://www.iitg.ac.in/rinkulu/ (Euler s formula for planar graphs) 1 / 14 Euler s formula Let G be a connected planar simple graph with e edges

More information

Planarity Planarity

Planarity Planarity Planarity 8.1 71 Planarity Up until now, graphs have been completely abstract. In Topological Graph Theory, it matters how the graphs are drawn. Do the edges cross? Are there knots in the graph structure?

More information

CS 408 Planar Graphs Abhiram Ranade

CS 408 Planar Graphs Abhiram Ranade CS 408 Planar Graphs Abhiram Ranade A graph is planar if it can be drawn in the plane without edges crossing. More formally, a graph is planar if it has an embedding in the plane, in which each vertex

More information

Week 9: Planar and non-planar graphs. 2 and 4, November, 2016

Week 9: Planar and non-planar graphs. 2 and 4, November, 2016 (1/22) MA204/MA284 : Discrete Mathematics Week 9: Planar and non-planar graphs http://www.maths.nuigalway.ie/~niall/ma284/ 2 and 4, November, 2016 1 Definitions (again) 6. Subgraphs Named graphs 2 Planar

More information

Definition A tree is a connected, acyclic graph. Alternately, a tree is a graph in which any two vertices are connected by exactly one simple path.

Definition A tree is a connected, acyclic graph. Alternately, a tree is a graph in which any two vertices are connected by exactly one simple path. 11.5 Trees Examples Definitions Definition A tree is a connected, acyclic graph. Alternately, a tree is a graph in which any two vertices are connected by exactly one simple path. Definition In an undirected

More information

GIRTH SIX CUBIC GRAPHS HAVE PETERSEN MINORS

GIRTH SIX CUBIC GRAPHS HAVE PETERSEN MINORS GIRTH SIX CUBIC GRAPHS HAVE PETERSEN MINORS Neil Robertson 1 Department of Mathematics Ohio State University 231 W. 18th Ave. Columbus, Ohio 43210, USA P. D. Seymour Bellcore 445 South St. Morristown,

More information

Graph Theory. 1 Defining and representing graphs

Graph Theory. 1 Defining and representing graphs Graph Theory 1 Defining and representing graphs A graph is an ordered pair G = (V, E), where V is a finite, non-empty set of objects called vertices, and E is a (possibly empty) set of unordered pairs

More information

GRAPH THEORY: INTRODUCTION

GRAPH THEORY: INTRODUCTION GRAPH THEORY: INTRODUCTION DEFINITION 1: A graph G consists of two finite sets: a set V (G) of vertices a set E(G) of edges, where each edge is associated with a set consisting of either one or two vertices

More information

Chapter 12 and 11.1 Planar graphs, regular polyhedra, and graph colorings

Chapter 12 and 11.1 Planar graphs, regular polyhedra, and graph colorings Chapter 12 and 11.1 Planar graphs, regular polyhedra, and graph colorings Prof. Tesler Math 184A Fall 2014 Prof. Tesler Ch. 12: Planar Graphs Math 184A / Fall 2014 1 / 42 12.1 12.2. Planar graphs Definition

More information

When is a graph planar?

When is a graph planar? When is a graph planar? Theorem(Euler, 1758) If a plane multigraph G with k components has n vertices, e edges, and f faces, then n e + f = 1 + k. Corollary If G is a simple, planar graph with n(g) 3,

More information

MATH 22 PLANAR GRAPHS & EULER S FORMULA. Lecture X: 11/25/2003

MATH 22 PLANAR GRAPHS & EULER S FORMULA. Lecture X: 11/25/2003 MATH 22 Lecture X: 11/25/2003 PLANAR GRAPHS & EULER S FORMULA Regions of sorrow,... where peace and rest can never dwell, hope never comes. Milton, Paradise Lost (on Tufts) Ornate rhetoric taught out of

More information

8 Planarity and Drawings of Graphs

8 Planarity and Drawings of Graphs 8 Planarity and Drawings of Graphs We follow up with a topic which directly relates to the other important aspect of the 4 Colour Problem (Lecture 7) with graph planarity, i.e. studying a possibility to

More information

Graph Theory. Clemens Heuberger and Stephan Wagner. AIMS, January/February 2009

Graph Theory. Clemens Heuberger and Stephan Wagner. AIMS, January/February 2009 Graph Theory Clemens Heuberger and Stephan Wagner AIMS, January/February 2009 1 Basic Definitions Definition 1.1 A graph is a pair G = (V (G),E(G)) of a set of vertices V (G) and a set of edges E(G), where

More information

6. GRAPH AND MAP COLOURING

6. GRAPH AND MAP COLOURING 6. GRAPH AND MAP COLOURING 6.1. Graph Colouring Imagine the task of designing a school timetable. If we ignore the complications of having to find rooms and teachers for the classes we could propose the

More information

2. Determine each of the 11 nonisomorphic graphs of order 4, and give a planar representation of each.

2. Determine each of the 11 nonisomorphic graphs of order 4, and give a planar representation of each. Chapter 11 Homework. Determine each of the 11 nonisomorphic graphs of order 4, and give a planar representation of each. 3. Does there exist a graph of order 5 whose degree sequence equals (4, 4, 3,, )?

More information

Class Five: Embeddings

Class Five: Embeddings Class Five: Embeddings K 3,3 K 5 It many applications of graph theory it is important to determine how one can draw a particular graph with as few edges overlapping as possible. For example, consider the

More information

Planar graphs. Wednesday, April 20, 2011 Math 55, Discrete Mathematics. Recall...

Planar graphs. Wednesday, April 20, 2011 Math 55, Discrete Mathematics. Recall... Planar graphs Wednesday, April 20, 20 Math 55, Discrete Mathematics Recall... Euler s formula face --> portion of the plane cut off by a planar embedding of graph vertices edges faces components 20 4 6

More information

Chapter 6 Planarity. Section 6.1 Euler s Formula

Chapter 6 Planarity. Section 6.1 Euler s Formula Chapter 6 Planarity Section 6.1 Euler s Formula In Chapter 1 we introduced the puzzle of the three houses and the three utilities. The problem was to determine if we could connect each of the three utilities

More information

HOMEWORK #3 SOLUTIONS - MATH 3260

HOMEWORK #3 SOLUTIONS - MATH 3260 HOMEWORK #3 SOLUTIONS - MATH 3260 ASSIGNED: FEBRUARY 26, 2003 DUE: MARCH 12, 2003 AT 2:30PM (1) Show either that each of the following graphs are planar by drawing them in a way that the vertices do not

More information

2. Graph Terminology

2. Graph Terminology 2. GRAPH TERMINOLOGY 186 2. Graph Terminology 2.1. Undirected Graphs. Definitions 2.1.1. Suppose G = (V, E) is an undirected graph. (1) Two vertices u, v V are adjacent or neighbors if there is an edge

More information

1 Plane and Planar Graphs. Definition 1 A graph G(V,E) is called plane if

1 Plane and Planar Graphs. Definition 1 A graph G(V,E) is called plane if Plane and Planar Graphs Definition A graph G(V,E) is called plane if V is a set of points in the plane; E is a set of curves in the plane such that. every curve contains at most two vertices and these

More information

Planar Graphs and Graph Coloring

Planar Graphs and Graph Coloring Planar Graphs and Graph Coloring Margaret M. Fleck 1 December 2010 These notes cover facts about graph colorings and planar graphs (sections 9.7 and 9.8 of Rosen) 1 Introduction So far, we ve been looking

More information

The Four Color Theorem

The Four Color Theorem The Four Color Theorem Yuriy Brun Abstract. In this paper, we introduce graph theory, and discuss the Four Color Theorem. Then we prove several theorems, including Euler s formula and the Five Color Theorem.

More information

V. Adamchik : Concepts of Mathematics. Graph Theory. Victor Adamchik. Fall of 2005

V. Adamchik : Concepts of Mathematics. Graph Theory. Victor Adamchik. Fall of 2005 Graph Theory Victor Adamchik Fall of 2005 Plan 1. Euler Cycles 2. Hamiltonian Cycles Euler Cycles Definition. An Euler cycle (or circuit) is a cycle that traverses every edge of a graph exactly once. If

More information

6. Planarity. Fig Fig. 6.2

6. Planarity. Fig Fig. 6.2 6. Planarity Let G(V, E) be a graph with V = {v 1, v 2,..., v n } and E = {e 1, e 2,..., e m }. Let S be any surface (like the plane, sphere) and P = {p 1, p 2,..., p n } be a set of n distinct points

More information

MAD 3105 PRACTICE TEST 2 SOLUTIONS

MAD 3105 PRACTICE TEST 2 SOLUTIONS MAD 3105 PRACTICE TEST 2 SOLUTIONS 1. Define a graph G with V (G) = {a, b, c, d, e}, E(G) = {r, s, t, u, v, w, x, y, z} and γ, the function defining the edges, is given by the table ɛ r s t u v w x y z

More information

1.5 Problems and solutions

1.5 Problems and solutions 15 PROBLEMS AND SOLUTIONS 11 15 Problems and solutions Homework 1: 01 Show by induction that n 1 + 2 2 + + n 2 = n(n + 1)(2n + 1) 01 Show by induction that n 1 + 2 2 + + n 2 = n(n + 1)(2n + 1) We ve already

More information

Chapter 6 GRAPH COLORING

Chapter 6 GRAPH COLORING Chapter 6 GRAPH COLORING A k-coloring of (the vertex set of) a graph G is a function c : V (G) {1,,..., k} such that c (u) c (v) whenever u is adjacent to v. Ifak-coloring of G exists, then G is called

More information

MATH 2420 Discrete Mathematics Lecture notes

MATH 2420 Discrete Mathematics Lecture notes MATH 2420 Discrete Mathematics Lecture notes Graphs Objectives Graphs 1. Identify loops, parallel edges, etc. in a graph. 2. Draw the complete graph on n vertices, and the complete bipartite graph on (m,n)

More information

Sum of Degrees of Vertices Theorem

Sum of Degrees of Vertices Theorem Sum of Degrees of Vertices Theorem Theorem (Sum of Degrees of Vertices Theorem) Suppose a graph has n vertices with degrees d 1, d 2, d 3,...,d n. Add together all degrees to get a new number d 1 + d 2

More information

6. GRAPH AND MAP COLOURING

6. GRAPH AND MAP COLOURING 6. GRPH ND MP COLOURING 6.1. Graph Colouring Imagine the task of designing a school timetable. If we ignore the complications of having to find rooms and teachers for the classes we could propose the following

More information

Graphs. Discrete Mathematics (MA 2333) Faculty of Science Telkom Institute of Technology Bandung - Indonesia

Graphs. Discrete Mathematics (MA 2333) Faculty of Science Telkom Institute of Technology Bandung - Indonesia Graphs Discrete Mathematics (MA 2333) Faculty of Science Telkom Institute of Technology Bandung - Indonesia Introduction Graph theory is an old subject with many modern applications. Its basic idea were

More information

Thus a digraph is a graph with oriented edges. D is strict if there are no loops or repeated edges.

Thus a digraph is a graph with oriented edges. D is strict if there are no loops or repeated edges. Directed graphs Digraph D = (V, A). V ={vertices}, A={arcs} a g f e b h c d V={a,b,...,h}, A={(a,b),(b,a),...} (2 arcs with endpoints (c,d)) Thus a digraph is a graph with oriented edges. D is strict if

More information

Problem 1: Show that every planar graph has a vertex of degree at most 5.

Problem 1: Show that every planar graph has a vertex of degree at most 5. Problem 1: Show that every planar graph has a vertex of degree at most 5. Proof. We will prove this statement by using a proof by contradiction. We will assume that G is planar and that all vertices of

More information

Three applications of Euler s formula. Chapter 12

Three applications of Euler s formula. Chapter 12 Three applications of Euler s formula Chapter 1 From: Aigner, Martin; Ziegler, Günter (009). Proofs from THE BOOK (4th ed.). Berlin, New York: Springer-Verlag. A graph is planar if it can be drawn in the

More information

Planar Graphs I. Margaret M. Fleck. 1 May 2009

Planar Graphs I. Margaret M. Fleck. 1 May 2009 Planar Graphs I Margaret M. Fleck May 2009 This lecture surveys facts about graphs that can be drawn in the plane without any edges crossing (first half of section 9.7 of Rosen). Planar graphs So far,

More information

Graph Theory Lecture 3: Sum of Degrees Formulas, Planar Graphs, and Euler s Theorem Spring 2014 Morgan Schreffler Office: POT 902

Graph Theory Lecture 3: Sum of Degrees Formulas, Planar Graphs, and Euler s Theorem Spring 2014 Morgan Schreffler Office: POT 902 Graph Theory Lecture 3: Sum of Degrees Formulas, Planar Graphs, and Euler s Theorem Spring 2014 Morgan Schreffler Office: POT 902 http://www.ms.uky.edu/~mschreffler Different Graphs, Similar Properties

More information

Graph theory. Po-Shen Loh. June 2012

Graph theory. Po-Shen Loh. June 2012 Graph theory Po-Shen Loh June 2012 At first, graph theory may seem to be an ad hoc subject, and in fact the elementary results have proofs of that nature. The methods recur, however, and the way to learn

More information

Ma/CS 6b Class 9: Euler s Formula

Ma/CS 6b Class 9: Euler s Formula Ma/CS 6b Class 9: Euler s Formula By Adam Sheffer Plane Graphs A plane graph is a drawing of a graph in the plane such that the edges are noncrossing curves. 1 Planar Graphs The drawing on the left is

More information

Discrete Mathematics (Math 510) Fall Definitions and Theorems

Discrete Mathematics (Math 510) Fall Definitions and Theorems Discrete Mathematics (Math 510) Fall 2014 Definitions and Theorems Gerald Hoehn October 12, 2014 Chapter 1 Graph Theory 1.1 Basics Definition 1.1. A graph G is an ordered pair (V,E) of disjoint finite

More information

1.7. Isomorphic Graphs

1.7. Isomorphic Graphs 1.7. Isomorphic Graphs Example: Consider the following graphs, are they the isomorphic, i.e. the same? No. The left-hand graph has 5 edges; the right hand graph has 6 edges. WUCT121 Graphs 25 Firstly,

More information

Introduction to Graph Theory

Introduction to Graph Theory Introduction to Graph Theory Allen Dickson October 2006 1 The Königsberg Bridge Problem The city of Königsberg was located on the Pregel river in Prussia. The river divided the city into four separate

More information

Euler's Formula & Platonic Solids

Euler's Formula & Platonic Solids Euler's Formula & Platonic Solids Introduction: Basic Terms Vertices/Nodes: The common endpoint of two or more rays or line segments. Edges: the line segments where two surfaces meet Faces/Regions: Interior:

More information

Honours Graph Theory

Honours Graph Theory University of Zimbabwe HMTH215 Graph Theory Honours Graph Theory Author: P. Mafuta Department: Mathematics April 6, 2016 Chapter 1 Introduction: Basic Graph Theory This course serves to answer many questions

More information

Vertex colouring and chromatic polynomials

Vertex colouring and chromatic polynomials Vertex colouring and chromatic polynomials for Master Course MSM380 Dong Fengming National Institute of Education Nanyang Technological University Contents 1 Vertex Colourings 1 1.1 Definition...............................

More information

Line Segment Intersection

Line Segment Intersection Line Segment Intersection The intersection problem: 1 Given 2 object (in 2/3D), find out whether they intersect, and if so, what is the point of intersection. The objects may be complex, like circles.

More information

MAP363 Combinatorics Answers 1

MAP363 Combinatorics Answers 1 MAP6 Combinatorics Answers Guidance on notation: graphs may have multiple edges, but may not have loops. A graph is simple if it has no multiple edges.. (a) Show that if two graphs have the same degree

More information

Connectivity. 5.1 Cut Vertices. Handout #Ch5 San Skulrattanakulchai Gustavus Adolphus College Oct 27, MCS-236: Graph Theory

Connectivity. 5.1 Cut Vertices. Handout #Ch5 San Skulrattanakulchai Gustavus Adolphus College Oct 27, MCS-236: Graph Theory MCS-236: Graph Theory Handout #Ch5 San Skulrattanakulchai Gustavus Adolphus College Oct 27, 2010 Connectivity 5.1 Cut Vertices Definition 1. A vertex v in a connected graph G is a cut vertex if G v is

More information

V. Adamchik 1. Graph Theory. Victor Adamchik. Fall of There are different ways to draw the same graph. Consiser the following two graphs.

V. Adamchik 1. Graph Theory. Victor Adamchik. Fall of There are different ways to draw the same graph. Consiser the following two graphs. V. Adamchik 1 Graph Theory Victor Adamchik Fall of 2005 Plan 1. Graph Isomorphism 2. Graph Enumeration 3. Planar Graphs Graphs Isomorphism There are different ways to draw the same graph. Consiser the

More information

Subgraphs and Paths and Cycles

Subgraphs and Paths and Cycles 15 October, 2015 Subgraphs Definition Let G = (V, E) be a graph. Graph H = (V, E ) is a subgraph of G if V V and E E. Subgraphs Definition Let G = (V, E) be a graph. Graph H = (V, E ) is a subgraph of

More information

MTH 548 Graph Theory Fall 2003 Lesson 4 - Paths and Cycles Walk, Trail, Path length= number of edges Connected graph, components circuit=closed

MTH 548 Graph Theory Fall 2003 Lesson 4 - Paths and Cycles Walk, Trail, Path length= number of edges Connected graph, components circuit=closed MTH 548 Graph Theory Fall 2003 Lesson 4 - Paths and Cycles Walk, Trail, Path length= number of edges Connected graph, components circuit=closed trail, cycle=closed path Thm 3: u, v-walk implies u, v-path.

More information

Graph Theory Final Exam

Graph Theory Final Exam Graph Theory Final Exam May 2, 2004 Directions. Solve the five problems below. Ask questions whenever it is not clear what is being asked of you. Each problem is worth 20 points. Notation. For a positive

More information

(Vertex) Colorings. We can properly color W 6 with. colors and no fewer. Of interest: What is the fewest colors necessary to properly color G?

(Vertex) Colorings. We can properly color W 6 with. colors and no fewer. Of interest: What is the fewest colors necessary to properly color G? Vertex Coloring 2.1 37 (Vertex) Colorings Definition: A coloring of a graph G is a labeling of the vertices of G with colors. [Technically, it is a function f : V (G) {1, 2,..., c}.] Definition: A proper

More information

MT4514: Graph Theory. Colva M. Roney-Dougal

MT4514: Graph Theory. Colva M. Roney-Dougal MT4514: Graph Theory Colva M. Roney-Dougal February 5, 2009 Contents 1 Introduction 3 1 About the course............................. 3 2 Some introductory examples....................... 3 2 Basic definitions

More information

Graph Theory - Day 2: Isomorphism & Planarity

Graph Theory - Day 2: Isomorphism & Planarity Graph Theory - Day 2: Isomorphism & Planarity MA 111: Intro to Contemporary Math November 22, 2013 Graph Theory Basics Definition A Graph is a set of points called Vertices (singular Vertex) and lines

More information

5.3 Planar Graphs and Euler s Formula

5.3 Planar Graphs and Euler s Formula 5.3 Planar Graphs and Euler s Formula Among the most ubiquitous graphs that arise in applications are those that can be drawn in the plane without edges crossing. For example, let s revisit the example

More information

How to make a soccer ball

How to make a soccer ball How to make a soccer ball Euler s relation for polyhedra and planar graphs Bogdan Enescu 1 Introduction The Germany national soccer team reached the World Cup nal in 1982 but they were defeated by Italy

More information

Fall 2015 Midterm 1 24/09/15 Time Limit: 80 Minutes

Fall 2015 Midterm 1 24/09/15 Time Limit: 80 Minutes Math 340 Fall 2015 Midterm 1 24/09/15 Time Limit: 80 Minutes Name (Print): This exam contains 6 pages (including this cover page) and 5 problems. Enter all requested information on the top of this page,

More information

Toroidal Embeddings of Right Groups

Toroidal Embeddings of Right Groups Toroidal Embeddings of Right Groups Kolja Knauer, Ulrich Knauer knauer@{math.tu-berlin.de, uni-oldenburg.de} September 5, 9 Abstract In this note we study embeddings of Cayley graphs of right groups on

More information

GRAPH THEORY STUDY GUIDE

GRAPH THEORY STUDY GUIDE GRAPH THEORY STUDY GUIDE 1. Definitions Definition 1 (Partition of A). A set A = A 1,..., A k of disjoint subsets of a set A is a partition of A if A of all the sets A i A and A i for every i. Definition

More information

VARIATIONS ON VERTICES AND VORTICES

VARIATIONS ON VERTICES AND VORTICES VARIATIONS ON VERTICES AND VORTICES Norm Do The University of Melbourne 5 August 2011 Have you ever tried to count how many panels there are on a soccer ball? Have you ever wondered what the hairy ball

More information

CS 2336 Discrete Mathematics

CS 2336 Discrete Mathematics CS 2336 Discrete Mathematics Lecture 16 Trees: Introduction 1 What is a Tree? Rooted Trees Properties of Trees Decision Trees Outline 2 What is a Tree? A path or a circuit is simple if it does not contain

More information

MATH /2003. Assignment (1 pt) 7.3 #6 Represent the graph in Exercise 2 with an adjacency matrix. Solution:

MATH /2003. Assignment (1 pt) 7.3 #6 Represent the graph in Exercise 2 with an adjacency matrix. Solution: MATH260 2002/2003 Assignment 7 All answers must be justified. Show your work. 1. (1 pt) 7.3 #6 Represent the graph in Exercise 2 with an adjacency matrix. Solution: 0 1 0 1 0 1 0 0 1 1 0 0 0 1 1 1 1 1

More information

CS311H. Prof: Peter Stone. Department of Computer Science The University of Texas at Austin

CS311H. Prof: Peter Stone. Department of Computer Science The University of Texas at Austin CS311H Prof: Department of Computer Science The University of Texas at Austin Good Morning, Colleagues Good Morning, Colleagues Are there any questions? Logistics Class survey Logistics Class survey Homework

More information

In this section, we shall assume (except where noted) that graphs are loopless.

In this section, we shall assume (except where noted) that graphs are loopless. 6 Graph Colouring In this section, we shall assume (except where noted) that graphs are loopless. Upper and Lower Bounds Colouring: A k-colouring of a graph G is a map φ : V (G) S where S = k with the

More information

3. Euler and Hamilton Paths

3. Euler and Hamilton Paths 3. EULER AND HAMILTON PATHS 82 3. Euler and Hamilton Paths 3.1. Euler and Hamilton Paths. Definitions 3.1.1. (1) An Euler Circuit in a graph G is a path in G that uses every edge exactly once and begins

More information

The maximum number of tangencies among convex regions with a triangle-free intersection graph

The maximum number of tangencies among convex regions with a triangle-free intersection graph The maximum number of tangencies among convex regions with a triangle-free intersection graph Eyal Ackerman Abstract Let t(c) be the number of tangent pairs among a set C of n Jordan regions in the plane.

More information

5. GRAPHS ON SURFACES

5. GRAPHS ON SURFACES . GRPHS ON SURCS.. Graphs graph, by itself, is a combinatorial object rather than a topological one. But when we relate a graph to a surface through the process of embedding we move into the realm of topology.

More information

Chapter 5: Connectivity Section 5.1: Vertex- and Edge-Connectivity

Chapter 5: Connectivity Section 5.1: Vertex- and Edge-Connectivity Chapter 5: Connectivity Section 5.1: Vertex- and Edge-Connectivity Let G be a connected graph. We want to measure how connected G is. Vertex cut: V 0 V such that G V 0 is not connected Edge cut: E 0 E

More information

Euler Paths and Euler Circuits

Euler Paths and Euler Circuits Euler Paths and Euler Circuits An Euler path is a path that uses every edge of a graph exactly once. An Euler circuit is a circuit that uses every edge of a graph exactly once. An Euler path starts and

More information

MATH 239 Notes. Spring Gabriel Wong From lectures by Peter Nelson

MATH 239 Notes. Spring Gabriel Wong From lectures by Peter Nelson MATH 239 Notes Spring 2015 Gabriel Wong me@gabrielwong.net From lectures by Peter Nelson Contents 1 Some Concepts 3 1.1 Binomial Theorem................................ 3 1.2 Product of Polynomial..............................

More information

Polyhedra Seminar on Euclidean Geometry

Polyhedra Seminar on Euclidean Geometry Seminar on Euclidean Geometry Fabian Frei May 28, 2015 Of course, defining something is no guarantee of its existence (think of a unicorn, for example) (Hartshorne) Figure 1: The five Platonic solids identified

More information

PLANAR SEPARATOR AND GEOMETRIC EXTENSIONS. Presented by Himanshu Dutta

PLANAR SEPARATOR AND GEOMETRIC EXTENSIONS. Presented by Himanshu Dutta PLANAR SEPARATOR AND GEOMETRIC EXTENSIONS Presented by Himanshu Dutta Preliminaries: Why Study Separation: Separation is a fundamental tool in problem solving using divide and conquer paradigm. Good separators

More information

CS173 Lecture B, November 17, 2015

CS173 Lecture B, November 17, 2015 CS173 Lecture B, November 17, 2015 Tandy Warnow November 17, 2015 CS 173, Lecture B November 17, 2015 Tandy Warnow Today s material Adjacency matrices and adjacency lists (and a class exercise) Depth-first

More information

VARIATIONS ON VERTICES AND VORTICES

VARIATIONS ON VERTICES AND VORTICES VARIATIONS ON VERTICES AND VORTICES LunchMaths seminar 18 March 2013 Norm Do Monash University Have you ever tried to count how many panels there are on a soccer ball? Have you ever wondered what the hairy

More information

(Vertex) Colorings. We can properly color W 6 with. colors and no fewer. Of interest: What is the fewest colors necessary to properly color G?

(Vertex) Colorings. We can properly color W 6 with. colors and no fewer. Of interest: What is the fewest colors necessary to properly color G? Vertex Coloring 2.1 33 (Vertex) Colorings Definition: A coloring of a graph G is a labeling of the vertices of G with colors. [Technically, it is a function f : V (G) {1, 2,...,l}.] Definition: A proper

More information

CHAPTER 2 GRAPHS F G C D

CHAPTER 2 GRAPHS F G C D page 1 of Section 2.1 HPTR 2 GRPHS STION 1 INTROUTION basic terminology graph is a set of finitely many points called vertices which may be connected by edges. igs 1 3 show three assorted graphs. v1 v2

More information

DO NOT RE-DISTRIBUTE THIS SOLUTION FILE

DO NOT RE-DISTRIBUTE THIS SOLUTION FILE Professor Kindred Math 04 Graph Theory Homework 7 Solutions April 3, 03 Introduction to Graph Theory, West Section 5. 0, variation of 5, 39 Section 5. 9 Section 5.3 3, 8, 3 Section 7. Problems you should

More information

Connections Between the Matching and Chromatic Polynomials

Connections Between the Matching and Chromatic Polynomials Connections Between the Matching and Chromatic Polynomials E.J. Farrell Earl Glen Whitehead JR Presented by Doron Tiferet Outline The following presentation will focus on two main results: 1. The connection

More information

Examination paper for MA0301 Elementær diskret matematikk

Examination paper for MA0301 Elementær diskret matematikk Department of Mathematical Sciences Examination paper for MA0301 Elementær diskret matematikk Academic contact during examination: Iris Marjan Smit a, Sverre Olaf Smalø b Phone: a 9285 0781, b 7359 1750

More information

Fig. 2. A Simple Graph

Fig. 2. A Simple Graph Indian Institute of Information Technology Design and Manufacturing, Kancheepuram Chennai 00 7, India An Autonomous Institute under MHRD, Govt of India An Institute of National Importance www.iiitdm.ac.in

More information

Graph. Graph Theory. Adjacent, Nonadjacent, Incident. Degree of Graph

Graph. Graph Theory. Adjacent, Nonadjacent, Incident. Degree of Graph Graph Graph Theory Peter Lo A Graph (or undirected graph) G consists of a set V of vertices (or nodes) and a set E of edges (or arcs) such that each edge e E is associated with an unordered pair of vertices.

More information

Graph theory. Po-Shen Loh. June We begin by collecting some basic facts which can be proved via bare-hands techniques.

Graph theory. Po-Shen Loh. June We begin by collecting some basic facts which can be proved via bare-hands techniques. Graph theory Po-Shen Loh June 011 1 Well-known results We begin by collecting some basic facts which can be proved via bare-hands techniques. 1. The sum of all of the degrees is equal to twice the number

More information

Nonseparable Graphs. March 18, 2010

Nonseparable Graphs. March 18, 2010 Nonseparable Graphs March 18, 2010 1 Cut Vertices A cut ertex of graph G is a ertex such that when the ertex and the edges incident with are remoed, the number of connected components are increased, i.e.,

More information

Graph Theory. Problems Booklet. (Math415) dr. j. preen

Graph Theory. Problems Booklet. (Math415) dr. j. preen Graph Theory (Math415) Problems Booklet dr. j. preen University College of Cape Breton Math415 Graph Theory Summer 2003 Time : at least 12 hours Q1. Draw the following graph: V (G) := {t, u, v, w, x, y,

More information

Colouring maps on impossible surfaces. Chris Wetherell Radford College / ANU Secondary College CMA Conference 2014

Colouring maps on impossible surfaces. Chris Wetherell Radford College / ANU Secondary College CMA Conference 2014 Colouring maps on impossible surfaces Chris Wetherell Radford College / ANU Secondary College CMA Conference 2014 Colouring rules To colour a map means assigning a colour to each region (country, state,

More information

1.2 Convex polygons (continued)

1.2 Convex polygons (continued) Geometric methods in shape and pattern recognition Lecture: 3 Date: 0-0-006 Lecturer: Prof. dr. H. Alt Location: UU Utrecht Recorder: Mark Bouts 050761 1. Convex polygons (continued) Additional remark

More information

Euler s Formula. Then v e + f =2. Check the planar graphs on the previous slide: Cube v e + f = = 2

Euler s Formula. Then v e + f =2. Check the planar graphs on the previous slide: Cube v e + f = = 2 Euler s Formula Theorem (Euler s Formula) Take any connected planar graph drawn with no intersecting edges. Let v be the number of vertices in the graph. Let e be the number of edges in the graph. Let

More information

Graph Theory - Day 4: Colorability

Graph Theory - Day 4: Colorability Graph Theory - Day 4: Colorability MA 111: Intro to Contemporary Math December 2, 2013 Counting Faces and Degrees - Review C A B D E F How many faces does this graph have? What is the degree of each face?

More information

Graph Algorithms. Vertex Coloring. Graph Algorithms

Graph Algorithms. Vertex Coloring. Graph Algorithms Graph Algorithms Vertex Coloring Graph Algorithms The Input Graph G = (V, E) a simple and undirected graph: V : a set of n vertices. E: a set of m edges. A A B C D E F C F D E B A 0 1 1 1 0 0 B 1 0 1 0

More information

MATH 215B. SOLUTIONS TO HOMEWORK 3

MATH 215B. SOLUTIONS TO HOMEWORK 3 MATH 215B. SOLUTIONS TO HOMEWORK 3 1. (6 marks) Show that if a path-connected, locally path-connected space X has π 1 (X) finite, then every map X S 1 is nullhomotopic. [Use the covering space R S 1.]

More information

Week 10: Polyhedra and graph-colouring. 9 and 11 November, 2016

Week 10: Polyhedra and graph-colouring. 9 and 11 November, 2016 (1/24) MA204/MA284 : Discrete Mathematics Week 10: Polyhedra and graph-colouring http://www.maths.nuigalway.ie/~niall/ma284/ 1 Recall from last week... 2 How many Platonic solids are there? 3 Colouring

More information

Solutions to Exercises Chapter 11: Graphs

Solutions to Exercises Chapter 11: Graphs Solutions to Exercises Chapter 11: Graphs 1 There are 34 non-isomorphic graphs on 5 vertices (compare Exercise 6 of Chapter 2). How many of these are (a) connected, (b) forests, (c) trees, (d) Eulerian,

More information

Dedicated to Milo Marjanović, my topology teacher and friend, on the occasion of his 80th birthday

Dedicated to Milo Marjanović, my topology teacher and friend, on the occasion of his 80th birthday THE TEACHING OF MATHEMATICS 2011, Vol. XIV, 2, pp. 107 117 EULER FORMULA AND MAPS ON SURFACES Siniša T. Vrećica Dedicated to Milo Marjanović, my topology teacher and friend, on the occasion of his 80th

More information

STRUCTURAL PROPERTIES OF FULLERENES

STRUCTURAL PROPERTIES OF FULLERENES Klavdija Kutnar University of Primorska, Slovenia July, 2010 Fullerenes In chemistry: carbon sphere -shaped molecules In mathematics: cubic planar graphs, all of whose faces are pentagons and hexagons.

More information

CHAPTER 2. Graphs. 1. Introduction to Graphs and Graph Isomorphism

CHAPTER 2. Graphs. 1. Introduction to Graphs and Graph Isomorphism CHAPTER 2 Graphs 1. Introduction to Graphs and Graph Isomorphism 1.1. The Graph Menagerie. Definition 1.1.1. A simple graph G = (V, E) consists of a set V of vertices and a set E of edges, represented

More information