CS 5104 course notes March 22, 2006

Size: px
Start display at page:

Download "CS 5104 course notes March 22, 2006"

Transcription

1 CS 5104 course notes March 22, 2006 The Halting Problem A TM = { M, w M is a TM and M accepts w } U = On input M, w, where M is a TM and w is a string: 1. Simulate M on input w. 2. If M ever enters its accept state, accept; if M ever enters its reject state, reject. [ U recognizes A TM, but does not decide it, because if M loops forever, so does U ] [ A TM is not decidable, but how do we prove it? ] Diagonalization Definition A set A is countable if it is finite or there is a one-to-one correspondence between all the elements of A and N [ If there is a one-to-one correspondence between all the elements of any two sets, we say they have the same cardinality (or size) ] [ show that the even numbers are countable ] [ show that the rational numbers are countable ] R is uncountable It s sufficient to show that [0, 1] is uncountable. Let f: N [0, 1] be one-to-one and onto. [ one-to-one: f(47) and f(635) can t map to the same real number ] [ onto: every real is included in the mapping ] f(1) = 0.b 1,1 b 1,2 b 1,3 b 1,4 b 1,5 f(2) = 0.b 2,1 b 2,2 b 2,3 b 2,4 b 2,5 f(3) = 0.b 3,1 b 3,2 b 3,3 b 3,4 b 3,5 f(4) = 0.b 4,1 b 4,2 b 4,3 b 4,4 b 4,5 f(5) = 0.b 5,1 b 5,2 b 5,3 b 5,4 b 5,5 where each b i,j is a binary digit (0 or 1)

2 CS 5104 course notes March 22, 2006 We construct a real number a = 0.a 1 a 2 a 3 that is not included in this mapping. a 1 b 1,1 ( if b 1,1 is 0, a 1 is 1; if b 1,1 is 1, a 1 is 0 ) a 2 b 2,2 a 3 b 3,3 a 4 b 4,4 a 5 b 5,5 Suppose a is in the mapping. Then f(n) = a for some n. The n-th digit in f(n) is b n,n The n-th digit in a is a n But by construction a n b n,n [ why can t we have 1 = , 2 = , 3 = , ] A TM is undecidable ( recall that A TM = { M, w M is a TM and M accepts w } ) Suppose A TM is decidable Let H be a decider for A TM " accept Then H = reject if M accepts w if M rejects or loops on w Construct D = On input M : [ M is a TM ] 1. Run H on input M, M [ ex: Pascal compiler written in Pascal ] 2. Output the opposite of what H outputs (if H accepts, reject; if H rejects, accept) Running H on input D, D yields a contradiction: Case A: H accepts D, D ( meaning that D accepts D ) Therefore we reject ( meaning D rejects D ) Case B: H rejects D, D ( meaning that D rejects D ) Therefore we accept ( meaning D accepts D ) In both case, we get a contradiction, therefore A TM is not decidable. [ the book shows how this proof can be viewed as a diagonalization proof ]

3 CS 5104 course notes March 22, 2006 Definition A language is co-turing-recognizable if its complement in Turingrecognizable. A language is decidable iff it is Turing-recognizable and co-turing-recognizable. ( ) Assume A is decidable Then L is Turing-recognizable And L is decidable So L is Turing-recognizable Therefore, A is decidable A and A are both Turing-recognizable ( ) Assume both A and A are Turing-recognizable Let M 1 be a TM that recognizes A Let M 2 be a TM that recognizes A Construct M = On input w: 1. Run both M 1 and M 2 on input w in parallel 2. If M 1 accepts, accept; if M 2 accepts, reject w A M 1 halts & accepts M halts & accepts w A M 2 halts & rejects M halts & rejects Therefore, M decides A Therefore, A & A are Turing-recognizable A is decidable Corollary A TM is not Turing-recognizable If it were, ATM would be decidable (which is isn t)

4 CS 5104 course notes March 22, 2006 Reducibility HALT TM = { M, w TM M halts on input w } is undecidable Suppose HALT TM is decidable Let R be a decider for HALT TM HALT TM is undecidable 1. Run R on M, w 2. If R rejects (M does not halt on w), reject 3. If R accepts (M halts on w), run M on w 4. If M accepts, accept 5. If M rejects, reject E TM = { M M is a TM and L(M) = } is undecidable Suppose E TM is decidable Let R be a decider for E TM E TM is undecidable 1. Construct M 1 that rejects all strings that are not w, and accepts w only if M accepts w. ( M1 = On x: if x w, reject else Run M on w; if M accepts, accept ) [ M 1 is not a decider] [ we are not running it, we are merely constructing it ] 2. Run R on M 1 3. R rejects M 1 L(M 1 ) M 1 accepts w M accept w; accept M, w 4. R accepts M1 L(M 1 ) = M 1 does not accepts w M does not accept w (it reject or loops on w); reject M, w REGULAR TM = { M M is a TM and L(M) is regular } is undecidable Suppose REGULAR TM is decidable Let R be a decider for REGULAR TM REGULAR TM is undecidable

5 CS 5104 course notes March 22, Construct M 2 that accepts all string in the non-regular language 0 n 1 n, and accepts all other string only if M accepts w. [ therefore if M accepts w, M 2 recognizes Σ*, which is regular ] ( M 2 = On x: if x has form 0 n 1 n, accept else Run M on w; if M accepts, accept ) [ M 2 is not a decider] [ we are not running it, we are merely constructing it ] 6. Run R on M 2 7. R rejects M 2 L(M 2 ) is regular M 2 accepts all strings M accepts w; accept M, w 8. R accepts M1 L(M 1 ) is not regular M 2 only accepts string of form 0 n 1 n M does not accept w (it reject or loops on w); reject M, w EQ TM = { M 1, M 2 L(M 1 ) = L(M 2 ) } is undecidable ( show that if EQ TM is decidable, so is E TM ) [ fairly easy ] ALL CFG = { G G is a CFG and L(G) = Σ* } [ proof is in book; non-trivial ] The Domino Problem (PCP) [ describe the domino problem, state that its undecidable ] " a % A single domino: ' A set of dominos: (" b % ca& ', " a % ', " ca % a & ', " abc % + ) c & ', * - Problem: write a program that list the dominos (repeats OK) so that: top string of symbols = bottom string of symbols (if such a listing exists) " a %" For example: ' b %" ca & ' ca %" a & ' a %" ' abc % c & ' is a solution to the set above. Impossible! [ Not that it takes to long you can t do it on a computer ] [ next week : mapping reducibility ]

CSE 135: Introduction to Theory of Computation Decidability and Recognizability

CSE 135: Introduction to Theory of Computation Decidability and Recognizability CSE 135: Introduction to Theory of Computation Decidability and Recognizability Sungjin Im University of California, Merced 04-28, 30-2014 High-Level Descriptions of Computation Instead of giving a Turing

More information

CS 3719 (Theory of Computation and Algorithms) Lecture 4

CS 3719 (Theory of Computation and Algorithms) Lecture 4 CS 3719 (Theory of Computation and Algorithms) Lecture 4 Antonina Kolokolova January 18, 2012 1 Undecidable languages 1.1 Church-Turing thesis Let s recap how it all started. In 1990, Hilbert stated a

More information

Computational Models Lecture 8, Spring 2009

Computational Models Lecture 8, Spring 2009 Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. p. 1 Computational Models Lecture 8, Spring 2009 Encoding of TMs Universal Turing Machines The Halting/Acceptance

More information

CS154. Turing Machines. Turing Machine. Turing Machines versus DFAs FINITE STATE CONTROL AI N P U T INFINITE TAPE. read write move.

CS154. Turing Machines. Turing Machine. Turing Machines versus DFAs FINITE STATE CONTROL AI N P U T INFINITE TAPE. read write move. CS54 Turing Machines Turing Machine q 0 AI N P U T IN TAPE read write move read write move Language = {0} q This Turing machine recognizes the language {0} Turing Machines versus DFAs TM can both write

More information

Lecture 2: Universality

Lecture 2: Universality CS 710: Complexity Theory 1/21/2010 Lecture 2: Universality Instructor: Dieter van Melkebeek Scribe: Tyson Williams In this lecture, we introduce the notion of a universal machine, develop efficient universal

More information

The Halting Problem is Undecidable

The Halting Problem is Undecidable 185 Corollary G = { M, w w L(M) } is not Turing-recognizable. Proof. = ERR, where ERR is the easy to decide language: ERR = { x { 0, 1 }* x does not have a prefix that is a valid code for a Turing machine

More information

Cardinality. The set of all finite strings over the alphabet of lowercase letters is countable. The set of real numbers R is an uncountable set.

Cardinality. The set of all finite strings over the alphabet of lowercase letters is countable. The set of real numbers R is an uncountable set. Section 2.5 Cardinality (another) Definition: The cardinality of a set A is equal to the cardinality of a set B, denoted A = B, if and only if there is a bijection from A to B. If there is an injection

More information

Automata and Computability. Solutions to Exercises

Automata and Computability. Solutions to Exercises Automata and Computability Solutions to Exercises Fall 25 Alexis Maciel Department of Computer Science Clarkson University Copyright c 25 Alexis Maciel ii Contents Preface vii Introduction 2 Finite Automata

More information

(IALC, Chapters 8 and 9) Introduction to Turing s life, Turing machines, universal machines, unsolvable problems.

(IALC, Chapters 8 and 9) Introduction to Turing s life, Turing machines, universal machines, unsolvable problems. 3130CIT: Theory of Computation Turing machines and undecidability (IALC, Chapters 8 and 9) Introduction to Turing s life, Turing machines, universal machines, unsolvable problems. An undecidable problem

More information

THE TURING DEGREES AND THEIR LACK OF LINEAR ORDER

THE TURING DEGREES AND THEIR LACK OF LINEAR ORDER THE TURING DEGREES AND THEIR LACK OF LINEAR ORDER JASPER DEANTONIO Abstract. This paper is a study of the Turing Degrees, which are levels of incomputability naturally arising from sets of natural numbers.

More information

Chapter 7 Uncomputability

Chapter 7 Uncomputability Chapter 7 Uncomputability 190 7.1 Introduction Undecidability of concrete problems. First undecidable problem obtained by diagonalisation. Other undecidable problems obtained by means of the reduction

More information

6.080 / 6.089 Great Ideas in Theoretical Computer Science Spring 2008

6.080 / 6.089 Great Ideas in Theoretical Computer Science Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 6.080 / 6.089 Great Ideas in Theoretical Computer Science Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

24 Uses of Turing Machines

24 Uses of Turing Machines Formal Language and Automata Theory: CS2004 24 Uses of Turing Machines 24 Introduction We have previously covered the application of Turing Machine as a recognizer and decider In this lecture we will discuss

More information

1 Definition of a Turing machine

1 Definition of a Turing machine Introduction to Algorithms Notes on Turing Machines CS 4820, Spring 2012 April 2-16, 2012 1 Definition of a Turing machine Turing machines are an abstract model of computation. They provide a precise,

More information

CAs and Turing Machines. The Basis for Universal Computation

CAs and Turing Machines. The Basis for Universal Computation CAs and Turing Machines The Basis for Universal Computation What We Mean By Universal When we claim universal computation we mean that the CA is capable of calculating anything that could possibly be calculated*.

More information

Notes on Complexity Theory Last updated: August, 2011. Lecture 1

Notes on Complexity Theory Last updated: August, 2011. Lecture 1 Notes on Complexity Theory Last updated: August, 2011 Jonathan Katz Lecture 1 1 Turing Machines I assume that most students have encountered Turing machines before. (Students who have not may want to look

More information

Introduction to Theory of Computation

Introduction to Theory of Computation Introduction to Theory of Computation Prof. (Dr.) K.R. Chowdhary Email: kr.chowdhary@iitj.ac.in Formerly at department of Computer Science and Engineering MBM Engineering College, Jodhpur Tuesday 28 th

More information

Computability Theory

Computability Theory CSC 438F/2404F Notes (S. Cook and T. Pitassi) Fall, 2014 Computability Theory This section is partly inspired by the material in A Course in Mathematical Logic by Bell and Machover, Chap 6, sections 1-10.

More information

Diagonalization. Ahto Buldas. Lecture 3 of Complexity Theory October 8, 2009. Slides based on S.Aurora, B.Barak. Complexity Theory: A Modern Approach.

Diagonalization. Ahto Buldas. Lecture 3 of Complexity Theory October 8, 2009. Slides based on S.Aurora, B.Barak. Complexity Theory: A Modern Approach. Diagonalization Slides based on S.Aurora, B.Barak. Complexity Theory: A Modern Approach. Ahto Buldas Ahto.Buldas@ut.ee Background One basic goal in complexity theory is to separate interesting complexity

More information

Introduction to Automata Theory. Reading: Chapter 1

Introduction to Automata Theory. Reading: Chapter 1 Introduction to Automata Theory Reading: Chapter 1 1 What is Automata Theory? Study of abstract computing devices, or machines Automaton = an abstract computing device Note: A device need not even be a

More information

THE SEARCH FOR NATURAL DEFINABILITY IN THE TURING DEGREES

THE SEARCH FOR NATURAL DEFINABILITY IN THE TURING DEGREES THE SEARCH FOR NATURAL DEFINABILITY IN THE TURING DEGREES ANDREW E.M. LEWIS 1. Introduction This will be a course on the Turing degrees. We shall assume very little background knowledge: familiarity with

More information

INTRODUCTORY SET THEORY

INTRODUCTORY SET THEORY M.Sc. program in mathematics INTRODUCTORY SET THEORY Katalin Károlyi Department of Applied Analysis, Eötvös Loránd University H-1088 Budapest, Múzeum krt. 6-8. CONTENTS 1. SETS Set, equal sets, subset,

More information

An example of a computable

An example of a computable An example of a computable absolutely normal number Verónica Becher Santiago Figueira Abstract The first example of an absolutely normal number was given by Sierpinski in 96, twenty years before the concept

More information

Turing Machines: An Introduction

Turing Machines: An Introduction CIT 596 Theory of Computation 1 We have seen several abstract models of computing devices: Deterministic Finite Automata, Nondeterministic Finite Automata, Nondeterministic Finite Automata with ɛ-transitions,

More information

6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010. Class 4 Nancy Lynch

6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010. Class 4 Nancy Lynch 6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010 Class 4 Nancy Lynch Today Two more models of computation: Nondeterministic Finite Automata (NFAs)

More information

CS 301 Course Information

CS 301 Course Information CS 301: Languages and Automata January 9, 2009 CS 301 Course Information Prof. Robert H. Sloan Handout 1 Lecture: Tuesday Thursday, 2:00 3:15, LC A5 Weekly Problem Session: Wednesday, 4:00 4:50 p.m., LC

More information

3515ICT Theory of Computation Turing Machines

3515ICT Theory of Computation Turing Machines Griffith University 3515ICT Theory of Computation Turing Machines (Based loosely on slides by Harald Søndergaard of The University of Melbourne) 9-0 Overview Turing machines: a general model of computation

More information

Graph Theory Problems and Solutions

Graph Theory Problems and Solutions raph Theory Problems and Solutions Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles November, 005 Problems. Prove that the sum of the degrees of the vertices of any finite graph is

More information

3. Mathematical Induction

3. Mathematical Induction 3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)

More information

How To Compare A Markov Algorithm To A Turing Machine

How To Compare A Markov Algorithm To A Turing Machine Markov Algorithm CHEN Yuanmi December 18, 2007 1 Abstract Markov Algorithm can be understood as a priority string rewriting system. In this short paper we give the definition of Markov algorithm and also

More information

Theory of Computation Chapter 2: Turing Machines

Theory of Computation Chapter 2: Turing Machines Theory of Computation Chapter 2: Turing Machines Guan-Shieng Huang Feb. 24, 2003 Feb. 19, 2006 0-0 Turing Machine δ K 0111000a 01bb 1 Definition of TMs A Turing Machine is a quadruple M = (K, Σ, δ, s),

More information

This chapter is all about cardinality of sets. At first this looks like a

This chapter is all about cardinality of sets. At first this looks like a CHAPTER Cardinality of Sets This chapter is all about cardinality of sets At first this looks like a very simple concept To find the cardinality of a set, just count its elements If A = { a, b, c, d },

More information

1. Prove that the empty set is a subset of every set.

1. Prove that the empty set is a subset of every set. 1. Prove that the empty set is a subset of every set. Basic Topology Written by Men-Gen Tsai email: b89902089@ntu.edu.tw Proof: For any element x of the empty set, x is also an element of every set since

More information

How To Understand The Theory Of Computer Science

How To Understand The Theory Of Computer Science Theory of Computation Lecture Notes Abhijat Vichare August 2005 Contents 1 Introduction 2 What is Computation? 3 The λ Calculus 3.1 Conversions: 3.2 The calculus in use 3.3 Few Important Theorems 3.4 Worked

More information

Oracle Turing machines faced with the verification problem

Oracle Turing machines faced with the verification problem Oracle Turing machines faced with the verification problem 1 Introduction Alan Turing is widely known in logic and computer science to have devised the computing model today named Turing machine. In computer

More information

Cartesian Products and Relations

Cartesian Products and Relations Cartesian Products and Relations Definition (Cartesian product) If A and B are sets, the Cartesian product of A and B is the set A B = {(a, b) :(a A) and (b B)}. The following points are worth special

More information

1. Give the 16 bit signed (twos complement) representation of the following decimal numbers, and convert to hexadecimal:

1. Give the 16 bit signed (twos complement) representation of the following decimal numbers, and convert to hexadecimal: Exercises 1 - number representations Questions 1. Give the 16 bit signed (twos complement) representation of the following decimal numbers, and convert to hexadecimal: (a) 3012 (b) - 435 2. For each of

More information

Notes on Complexity Theory Last updated: August, 2011. Lecture 1

Notes on Complexity Theory Last updated: August, 2011. Lecture 1 Notes on Complexity Theory Last updated: August, 2011 Jonathan Katz Lecture 1 1 Turing Machines I assume that most students have encountered Turing machines before. (Students who have not may want to look

More information

Today s Topics. Primes & Greatest Common Divisors

Today s Topics. Primes & Greatest Common Divisors Today s Topics Primes & Greatest Common Divisors Prime representations Important theorems about primality Greatest Common Divisors Least Common Multiples Euclid s algorithm Once and for all, what are prime

More information

(Teams removed to preserve email address privacy)

(Teams removed to preserve email address privacy) (Teams removed to preserve email address privacy) Prizes The Millennium Problems: The Seven Greatest Unsolved Mathematical Puzzles Of Our Time Keith J. Devlin Your Inner Fish: A Journey into the 3.5-Billion-Year

More information

Introduction to Turing Machines

Introduction to Turing Machines Automata Theory, Languages and Computation - Mírian Halfeld-Ferrari p. 1/2 Introduction to Turing Machines SITE : http://www.sir.blois.univ-tours.fr/ mirian/ Automata Theory, Languages and Computation

More information

GENERIC COMPUTABILITY, TURING DEGREES, AND ASYMPTOTIC DENSITY

GENERIC COMPUTABILITY, TURING DEGREES, AND ASYMPTOTIC DENSITY GENERIC COMPUTABILITY, TURING DEGREES, AND ASYMPTOTIC DENSITY CARL G. JOCKUSCH, JR. AND PAUL E. SCHUPP Abstract. Generic decidability has been extensively studied in group theory, and we now study it in

More information

Lecture 1: Oracle Turing Machines

Lecture 1: Oracle Turing Machines Computational Complexity Theory, Fall 2008 September 10 Lecture 1: Oracle Turing Machines Lecturer: Kristoffer Arnsfelt Hansen Scribe: Casper Kejlberg-Rasmussen Oracle TM Definition 1 Let A Σ. Then a Oracle

More information

Algebraic Computation Models. Algebraic Computation Models

Algebraic Computation Models. Algebraic Computation Models Algebraic Computation Models Ζυγομήτρος Ευάγγελος ΜΠΛΑ 201118 Φεβρουάριος, 2013 Reasons for using algebraic models of computation The Turing machine model captures computations on bits. Many algorithms

More information

Automata and Formal Languages

Automata and Formal Languages Automata and Formal Languages Winter 2009-2010 Yacov Hel-Or 1 What this course is all about This course is about mathematical models of computation We ll study different machine models (finite automata,

More information

Properties of Stabilizing Computations

Properties of Stabilizing Computations Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 71 93 Properties of Stabilizing Computations Mark Burgin a a University of California, Los Angeles 405 Hilgard Ave. Los Angeles, CA

More information

Turing Machines, Busy Beavers, and Big Questions about Computing

Turing Machines, Busy Beavers, and Big Questions about Computing Turing Machines, usy eavers, and ig Questions about Computing My Research Group Computer Security: computing in the presence of adversaries Last summer student projects: Privacy in Social Networks (drienne

More information

4.6 The Primitive Recursive Functions

4.6 The Primitive Recursive Functions 4.6. THE PRIMITIVE RECURSIVE FUNCTIONS 309 4.6 The Primitive Recursive Functions The class of primitive recursive functions is defined in terms of base functions and closure operations. Definition 4.6.1

More information

Automata Theory. Şubat 2006 Tuğrul Yılmaz Ankara Üniversitesi

Automata Theory. Şubat 2006 Tuğrul Yılmaz Ankara Üniversitesi Automata Theory Automata theory is the study of abstract computing devices. A. M. Turing studied an abstract machine that had all the capabilities of today s computers. Turing s goal was to describe the

More information

Pushdown Automata. place the input head on the leftmost input symbol. while symbol read = b and pile contains discs advance head remove disc from pile

Pushdown Automata. place the input head on the leftmost input symbol. while symbol read = b and pile contains discs advance head remove disc from pile Pushdown Automata In the last section we found that restricting the computational power of computing devices produced solvable decision problems for the class of sets accepted by finite automata. But along

More information

The Classes P and NP

The Classes P and NP The Classes P and NP We now shift gears slightly and restrict our attention to the examination of two families of problems which are very important to computer scientists. These families constitute the

More information

Embeddability and Decidability in the Turing Degrees

Embeddability and Decidability in the Turing Degrees ASL Summer Meeting Logic Colloquium 06. Embeddability and Decidability in the Turing Degrees Antonio Montalbán. University of Chicago Nijmegen, Netherlands, 27 July- 2 Aug. of 2006 1 Jump upper semilattice

More information

COMMUTATIVE RINGS. Definition: A domain is a commutative ring R that satisfies the cancellation law for multiplication:

COMMUTATIVE RINGS. Definition: A domain is a commutative ring R that satisfies the cancellation law for multiplication: COMMUTATIVE RINGS Definition: A commutative ring R is a set with two operations, addition and multiplication, such that: (i) R is an abelian group under addition; (ii) ab = ba for all a, b R (commutative

More information

Turing Machines, Part I

Turing Machines, Part I Turing Machines, Part I Languages The $64,000 Question What is a language? What is a class of languages? Computer Science Theory 2 1 Now our picture looks like Context Free Languages Deterministic Context

More information

Computability Classes for Enforcement Mechanisms*

Computability Classes for Enforcement Mechanisms* Computability Classes for Enforcement Mechanisms* KEVIN W. HAMLEN Cornell University GREG MORRISETT Harvard University and FRED B. SCHNEIDER Cornell University A precise characterization of those security

More information

Lecture 3: Finding integer solutions to systems of linear equations

Lecture 3: Finding integer solutions to systems of linear equations Lecture 3: Finding integer solutions to systems of linear equations Algorithmic Number Theory (Fall 2014) Rutgers University Swastik Kopparty Scribe: Abhishek Bhrushundi 1 Overview The goal of this lecture

More information

Proseminar on Semantic Theory Fall 2013 Ling 720. Problem Set on the Formal Preliminaries : Answers and Notes

Proseminar on Semantic Theory Fall 2013 Ling 720. Problem Set on the Formal Preliminaries : Answers and Notes 1. Notes on the Answers Problem Set on the Formal Preliminaries : Answers and Notes In the pages that follow, I have copied some illustrative answers from the problem sets submitted to me. In this section,

More information

Georg Cantor (1845-1918):

Georg Cantor (1845-1918): Georg Cantor (845-98): The man who tamed infinity lecture by Eric Schechter Associate Professor of Mathematics Vanderbilt University http://www.math.vanderbilt.edu/ schectex/ In papers of 873 and 874,

More information

God created the integers and the rest is the work of man. (Leopold Kronecker, in an after-dinner speech at a conference, Berlin, 1886)

God created the integers and the rest is the work of man. (Leopold Kronecker, in an after-dinner speech at a conference, Berlin, 1886) Chapter 2 Numbers God created the integers and the rest is the work of man. (Leopold Kronecker, in an after-dinner speech at a conference, Berlin, 1886) God created the integers and the rest is the work

More information

ON FUNCTIONAL SYMBOL-FREE LOGIC PROGRAMS

ON FUNCTIONAL SYMBOL-FREE LOGIC PROGRAMS PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical and Mathematical Sciences 2012 1 p. 43 48 ON FUNCTIONAL SYMBOL-FREE LOGIC PROGRAMS I nf or m at i cs L. A. HAYKAZYAN * Chair of Programming and Information

More information

SECTION 10-2 Mathematical Induction

SECTION 10-2 Mathematical Induction 73 0 Sequences and Series 6. Approximate e 0. using the first five terms of the series. Compare this approximation with your calculator evaluation of e 0.. 6. Approximate e 0.5 using the first five terms

More information

Finite Automata. Reading: Chapter 2

Finite Automata. Reading: Chapter 2 Finite Automata Reading: Chapter 2 1 Finite Automaton (FA) Informally, a state diagram that comprehensively captures all possible states and transitions that a machine can take while responding to a stream

More information

This asserts two sets are equal iff they have the same elements, that is, a set is determined by its elements.

This asserts two sets are equal iff they have the same elements, that is, a set is determined by its elements. 3. Axioms of Set theory Before presenting the axioms of set theory, we first make a few basic comments about the relevant first order logic. We will give a somewhat more detailed discussion later, but

More information

On strong fairness in UNITY

On strong fairness in UNITY On strong fairness in UNITY H.P.Gumm, D.Zhukov Fachbereich Mathematik und Informatik Philipps Universität Marburg {gumm,shukov}@mathematik.uni-marburg.de Abstract. In [6] Tsay and Bagrodia present a correct

More information

CS473 - Algorithms I

CS473 - Algorithms I CS473 - Algorithms I Lecture 4 The Divide-and-Conquer Design Paradigm View in slide-show mode 1 Reminder: Merge Sort Input array A sort this half sort this half Divide Conquer merge two sorted halves Combine

More information

Degrees that are not degrees of categoricity

Degrees that are not degrees of categoricity Degrees that are not degrees of categoricity Bernard A. Anderson Department of Mathematics and Physical Sciences Gordon State College banderson@gordonstate.edu www.gordonstate.edu/faculty/banderson Barbara

More information

x < y iff x < y, or x and y are incomparable and x χ(x,y) < y χ(x,y).

x < y iff x < y, or x and y are incomparable and x χ(x,y) < y χ(x,y). 12. Large cardinals The study, or use, of large cardinals is one of the most active areas of research in set theory currently. There are many provably different kinds of large cardinals whose descriptions

More information

n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +...

n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +... 6 Series We call a normed space (X, ) a Banach space provided that every Cauchy sequence (x n ) in X converges. For example, R with the norm = is an example of Banach space. Now let (x n ) be a sequence

More information

Overview of E0222: Automata and Computability

Overview of E0222: Automata and Computability Overview of E0222: Automata and Computability Deepak D Souza Department of Computer Science and Automation Indian Institute of Science, Bangalore. August 3, 2011 What this course is about What we study

More information

Introduction to computer science

Introduction to computer science Introduction to computer science Michael A. Nielsen University of Queensland Goals: 1. Introduce the notion of the computational complexity of a problem, and define the major computational complexity classes.

More information

Reading 13 : Finite State Automata and Regular Expressions

Reading 13 : Finite State Automata and Regular Expressions CS/Math 24: Introduction to Discrete Mathematics Fall 25 Reading 3 : Finite State Automata and Regular Expressions Instructors: Beck Hasti, Gautam Prakriya In this reading we study a mathematical model

More information

Why? A central concept in Computer Science. Algorithms are ubiquitous.

Why? A central concept in Computer Science. Algorithms are ubiquitous. Analysis of Algorithms: A Brief Introduction Why? A central concept in Computer Science. Algorithms are ubiquitous. Using the Internet (sending email, transferring files, use of search engines, online

More information

3. SETS, FUNCTIONS & RELATIONS

3. SETS, FUNCTIONS & RELATIONS 3. SETS, FUNCTIONS & RELATIONS If I see the moon, then the moon sees me 'Cos seeing's symmetric as you can see. If I tell Aunt Maude and Maude tells the nation Then I've told the nation 'cos the gossiping

More information

The Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors.

The Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors. The Prime Numbers Before starting our study of primes, we record the following important lemma. Recall that integers a, b are said to be relatively prime if gcd(a, b) = 1. Lemma (Euclid s Lemma). If gcd(a,

More information

Formal Languages and Automata Theory - Regular Expressions and Finite Automata -

Formal Languages and Automata Theory - Regular Expressions and Finite Automata - Formal Languages and Automata Theory - Regular Expressions and Finite Automata - Samarjit Chakraborty Computer Engineering and Networks Laboratory Swiss Federal Institute of Technology (ETH) Zürich March

More information

Simulation-Based Security with Inexhaustible Interactive Turing Machines

Simulation-Based Security with Inexhaustible Interactive Turing Machines Simulation-Based Security with Inexhaustible Interactive Turing Machines Ralf Küsters Institut für Informatik Christian-Albrechts-Universität zu Kiel 24098 Kiel, Germany kuesters@ti.informatik.uni-kiel.de

More information

Handout #1: Mathematical Reasoning

Handout #1: Mathematical Reasoning Math 101 Rumbos Spring 2010 1 Handout #1: Mathematical Reasoning 1 Propositional Logic A proposition is a mathematical statement that it is either true or false; that is, a statement whose certainty or

More information

MATH10040 Chapter 2: Prime and relatively prime numbers

MATH10040 Chapter 2: Prime and relatively prime numbers MATH10040 Chapter 2: Prime and relatively prime numbers Recall the basic definition: 1. Prime numbers Definition 1.1. Recall that a positive integer is said to be prime if it has precisely two positive

More information

Factoring Polynomials

Factoring Polynomials Factoring Polynomials Sue Geller June 19, 2006 Factoring polynomials over the rational numbers, real numbers, and complex numbers has long been a standard topic of high school algebra. With the advent

More information

Welcome to... Problem Analysis and Complexity Theory 716.054, 3 VU

Welcome to... Problem Analysis and Complexity Theory 716.054, 3 VU Welcome to... Problem Analysis and Complexity Theory 716.054, 3 VU Birgit Vogtenhuber Institute for Software Technology email: bvogt@ist.tugraz.at office hour: Tuesday 10:30 11:30 slides: http://www.ist.tugraz.at/pact.html

More information

Math 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i.

Math 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i. Math 5A HW4 Solutions September 5, 202 University of California, Los Angeles Problem 4..3b Calculate the determinant, 5 2i 6 + 4i 3 + i 7i Solution: The textbook s instructions give us, (5 2i)7i (6 + 4i)(

More information

Super Turing-Machines

Super Turing-Machines 1 This preprint differs from the published version. Do not quote or photocopy. Super Turing-Machines B. Jack Copeland 2 1. Universal Turing Machines A universal Turing machine is an idealised computing

More information

Introduction to NP-Completeness Written and copyright c by Jie Wang 1

Introduction to NP-Completeness Written and copyright c by Jie Wang 1 91.502 Foundations of Comuter Science 1 Introduction to Written and coyright c by Jie Wang 1 We use time-bounded (deterministic and nondeterministic) Turing machines to study comutational comlexity of

More information

Randomized algorithms

Randomized algorithms Randomized algorithms March 10, 2005 1 What are randomized algorithms? Algorithms which use random numbers to make decisions during the executions of the algorithm. Why would we want to do this?? Deterministic

More information

On the Structure of Turing Universe: The Non-Linear Ordering of Turing Degrees

On the Structure of Turing Universe: The Non-Linear Ordering of Turing Degrees On the Structure of Turing Universe: The Non-Linear Ordering of Turing Degrees Yazan Boshmaf November 22, 2010 Abstract Turing Universe: the final frontier. These are the voyages of five mathematicians.

More information

o-minimality and Uniformity in n 1 Graphs

o-minimality and Uniformity in n 1 Graphs o-minimality and Uniformity in n 1 Graphs Reid Dale July 10, 2013 Contents 1 Introduction 2 2 Languages and Structures 2 3 Definability and Tame Geometry 4 4 Applications to n 1 Graphs 6 5 Further Directions

More information

1. (First passage/hitting times/gambler s ruin problem:) Suppose that X has a discrete state space and let i be a fixed state. Let

1. (First passage/hitting times/gambler s ruin problem:) Suppose that X has a discrete state space and let i be a fixed state. Let Copyright c 2009 by Karl Sigman 1 Stopping Times 1.1 Stopping Times: Definition Given a stochastic process X = {X n : n 0}, a random time τ is a discrete random variable on the same probability space as

More information

A brief introduction to the theory of computation

A brief introduction to the theory of computation Chapter 3 A brief introduction to the theory of computation It might surprise younger readers that there could even be questions that are undecidable, problems for which there can be no standardized procedure,

More information

Model 2.4 Faculty member + student

Model 2.4 Faculty member + student Model 2.4 Faculty member + student Course syllabus for Formal languages and Automata Theory. Faculty member information: Name of faculty member responsible for the course Office Hours Office Number Email

More information

Lecture summary for Theory of Computation

Lecture summary for Theory of Computation Lecture summary for Theory of Computation Sandeep Sen 1 January 8, 2015 1 Department of Computer Science and Engineering, IIT Delhi, New Delhi 110016, India. E- mail:ssen@cse.iitd.ernet.in Contents 1 The

More information

A Course in Discrete Structures. Rafael Pass Wei-Lung Dustin Tseng

A Course in Discrete Structures. Rafael Pass Wei-Lung Dustin Tseng A Course in Discrete Structures Rafael Pass Wei-Lung Dustin Tseng Preface Discrete mathematics deals with objects that come in discrete bundles, e.g., 1 or 2 babies. In contrast, continuous mathematics

More information

1.2 Solving a System of Linear Equations

1.2 Solving a System of Linear Equations 1.. SOLVING A SYSTEM OF LINEAR EQUATIONS 1. Solving a System of Linear Equations 1..1 Simple Systems - Basic De nitions As noticed above, the general form of a linear system of m equations in n variables

More information

Models of Sequential Computation

Models of Sequential Computation Models of Sequential Computation 13 C H A P T E R Programming is often considered as an art, but it raises mostly practical questions like which language should I choose, which algorithm is adequate, and

More information

Automata on Infinite Words and Trees

Automata on Infinite Words and Trees Automata on Infinite Words and Trees Course notes for the course Automata on Infinite Words and Trees given by Dr. Meghyn Bienvenu at Universität Bremen in the 2009-2010 winter semester Last modified:

More information

Mathematical Methods of Engineering Analysis

Mathematical Methods of Engineering Analysis Mathematical Methods of Engineering Analysis Erhan Çinlar Robert J. Vanderbei February 2, 2000 Contents Sets and Functions 1 1 Sets................................... 1 Subsets.............................

More information

4: EIGENVALUES, EIGENVECTORS, DIAGONALIZATION

4: EIGENVALUES, EIGENVECTORS, DIAGONALIZATION 4: EIGENVALUES, EIGENVECTORS, DIAGONALIZATION STEVEN HEILMAN Contents 1. Review 1 2. Diagonal Matrices 1 3. Eigenvectors and Eigenvalues 2 4. Characteristic Polynomial 4 5. Diagonalizability 6 6. Appendix:

More information

The Graphical Method: An Example

The Graphical Method: An Example The Graphical Method: An Example Consider the following linear program: Maximize 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2 0, where, for ease of reference,

More information

CHAPTER 7 GENERAL PROOF SYSTEMS

CHAPTER 7 GENERAL PROOF SYSTEMS CHAPTER 7 GENERAL PROOF SYSTEMS 1 Introduction Proof systems are built to prove statements. They can be thought as an inference machine with special statements, called provable statements, or sometimes

More information

Basic Probability Concepts

Basic Probability Concepts page 1 Chapter 1 Basic Probability Concepts 1.1 Sample and Event Spaces 1.1.1 Sample Space A probabilistic (or statistical) experiment has the following characteristics: (a) the set of all possible outcomes

More information

COFINAL MAXIMAL CHAINS IN THE TURING DEGREES

COFINAL MAXIMAL CHAINS IN THE TURING DEGREES COFINA MAXIMA CHAINS IN THE TURING DEGREES WEI WANG, IUZHEN WU, AND IANG YU Abstract. Assuming ZF C, we prove that CH holds if and only if there exists a cofinal maximal chain of order type ω 1 in the

More information