Six-Port Reflectometer: an Alternative Network Analyzer for THz Region. Guoguang Wu

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Six-Port Reflectometer: an Alternative Network Analyzer for THz Region. Guoguang Wu"

Transcription

1 Six-Port Reflectometer: an Alternative Network Analyzer for THz Region Guoguang Wu

2 Outline General Background of Network Analyzer Principles of Six-Port Reflectometer WR-15 Six-port Reflectometer Design, Measurement Setup Results as Network Analyzer Results as an Embedded Sensor into other Systems Other Potential Applications (beyond network analyzer) 3/19/2009 2

3 What is Network Analyzer? not about computer networks referred to electrical networks used to analyze the properties of them especially to measure reflection and transmission operating frequencies range from 9 khz to 500 GHz 3/19/2009 3

4 Why Test Components? Verify specifications of building blocks for more complex radio-frequency (RF) system Ensure distortionless transmission of communications signals Linear behavior: input and output frequency are the same output frequency only undergoes magnitude and phase change Nonlinear behavior: output frequency may undergo frequency shift (e.g. with mixers) additional frequencies created (harmonics) Ensure good match when absorbing power (e.g. an anteanna) 3/19/2009 4

5 How Commercial Network Analyzer Works? (Signal Separation) 3/19/2009 5

6 Outline General Background of Network Analyzer Principles of Six-Port Reflectometer WR-15 Six-port Reflectometer Design, Measurement Setup, and Initial Data Results as Network Analyzer Results as an Embedded Sensor into other Systems: measuring mismatch between two adjacent stages in a frequency multiplier chain. Other Potential Applications (beyond Network Analyzer) 3/19/2009 6

7 Overview of Six-port Technique Engen invented six-port technique in 1977 *. Six-port technique is a method of network analysis. Six-port reflectometer (SPR): measure only reflection coefficient. Six-port network analyzer (SPNA): measure both reflection and transmission. * IEEE MTT-25(12), pp1075, /19/2009 7

8 Network Analysis Methodology Comparison Conventional (commercial, four-port) NA: signal separation method Six-port VNA (reflectometer): signal interference method 3/19/2009 8

9 Calibration Procedure Comparison b Commercial VNA a 2 3, b4 ( Γ) b2 Six-port reflectometer 2 b3 a2 Pi ( bi ) ( w) Γ( ) b b 4 2 = Γ Γ 1 1 K ζ 1 M ρ b 5 b 4 b 2 6 b 4 2 b w 3 wl 2 b 4 K 1 b 3 w b 4 N M w 2 2 3/19/ w = b 3 b 4

10 Six-Port Theory: Determination of w and Γ Intersection of Circles determines ratio b 3 /b 4 true Γ related by bilinear transform: requires four-port calibration First step of six-port calibration is to get the value of five network constants: 1. w 1 (real) 2. w 2 (complex) 3. ρ (scalar) 4. ζ (scalar) 3/19/

11 Determining the Network Constants Sliding Termination Method Γ = c (constant) Γ = f ( x), where x is the sliding position Six-port detection port Reference plane 3/19/

12 First Step of Six-Port Calibration Sliding Termination Method Quadratic Surface in P-space maps out an ellipse: P P A 3 3 P 5 P + 2 B + C + 2 D + 2 E 5 + F = 0 ( ) 2 ( ) ( P 5 ) 2 ( P 3 ) 2 P 4 P 4 P 4 P 4 ( ) P 4 Where, A = a B = ζ (c a b)/2 C = ζ 2 b D = [R 2 (b a c) + a(a b c)]/2 E = ζ [R 2 (a b c) + b(b a c)]/2 F = [R 4 + R 2 (c a b) + ab] a = w 1 R 2 c b = R 2 c c = w 2 1 P5/P4 ζ = 1/ K P3/P4 3/19/

13 General Six-Port Calibration Strategy Measure Response of Power Detectors to Sliding Load Plot Power Ratios Against One-Another Ellipse in P-plane Determine Five Coefficients via Least-Squares Fit, A, B, C, D, E F F F F F Algebraically Determine Six-Port Network Constants Calibrated Effective Four-Port Using One of Several Standard Methods 3/19/

14 Comparing Six-port Reflectometer to Conventional Network Analyzer Advantage Simpler structure; fewer components Less expensive Easily embedded to other systems No need for phase-locked signal sources Drawbacks (mainly due to broadband nature of signal detection) Limited dynamic range, typically limited to db Sensitive to spurious signals (e.g. harmonics) 3/19/

15 Outline General Background of Network Analyzer Principles of Six-Port Reflectometer WR-15 (V-Band, GHz) Six-port Reflectometer Design, Measurement Setup and Initial Data Results as Network Analyzer Results as an Embedded Sensor into other Systems: measuring mismatch between two adjacent stages in a frequency multiplier chain. Other Potential Applications (beyond Network Analyzer) 3/19/

16 Block Design Low Pass Filter Probe 3/19/ Diode

17 Basic Measurement Setup Configuration Six-port source Isolator DUT DUT s include fixed load, short, sliding shorts, sliding loads: for calibration; various WR15 components: as network analyzer; frequency multiplier (doubler) D124 B63: as embedded sensor. 3/19/

18 Measurement Setup 3/19/

19 Initial Data (Standing Wave by Sliding Short) 67 GHz as an Example Voltage Response (mv) Position (a.u.) V1 V2 V3 3/19/

20 Outline General Background of Network Analyzer Principles of Six-Port Reflectometer WR-15 Six-port Reflectometer Design, Measurement Setup, and Initial Data Results as Network Analyzer (measured 7 different components) Results as an Embedded Sensor into other Systems: measuring mismatch between two adjacent stages in a frequency multiplier chain. Other Potential Applications (beyond Network Analyzer) 3/19/

21 Six-Port Calibration Results Compared to Commercial Network Analyzer for Four Couplers 0-5 Coupler #1 0 Coupler # Gamma(dB) Gamma(dB) Gamma(dB) from HP Gamma from six-port reflectometer Gamma(dB) from HP8510 Gamma from six-port Frequency(GHz) Frequency(GHz) 0 Coupler #3 0-5 Coupler # Gamma(dB) Gamma(dB) from HP8510 Gamma from six-port reflectometer Frequency(GHz) Gamma(dB) Gamma(dB) from HP Gamma from Six-port reflectometer Frequency(GHz) 3/19/

22 Six-Port Calibration Results Compared to Commercial Network Analyzer for Horn Antenna and Two Low Pass Filters 0 Low Pass Filter #1 Gamma(dB) Horn Antenna Gamma(dB) from HP8510 Gamma from six-port reflectometer Gamma(dB) Gamma(dB) from HP8510 Gamma from six-port reflectometer Frequency(GHz) Low Pass Filter # Frequency(GHz) Gamma(dB) Gamma(dB) from HP Gamma from six-port reflectometer Frequency(GHz) 3/19/

23 Outline General Background of Network Analyzer Principles of Six-Port Reflectometer WR-15 Six-port Reflectometer Design, Measurement Setup, and Initial Data Results as Network Analyzer Results as an Embedded Sensor into other Systems: measuring mismatch between two adjacent stages in a frequency multiplier chain. Other Potential Applications (beyond Network Analyzer) 3/19/

24 Why Study a Frequency Multiplier Chain? (THz Gap) Source: Virginia Diodes, Inc. Source: Virginia Diodes, Inc Power Available (dbm) dbm mw Source: Virginia Diodes, Inc /19/ Frequency(GHz)

25 How Output Power Changed by Introducing Six-Port Reflectometer V1 V1 V2 Output Power(mW) S D60 D Frequency (GHz) v1=10v; v2=24v; without six-port v1=17v;v2=24v;without six-port v1=10v;v2=24v;with six-port v1=17v;v2=24v;with six-port 3/19/

26 Γ Magnitude Results at V1=24V 10 S11 Magnitude, db Frequency, GHz V2=8v V2=10v V2=12v V2=14v V2=17v 3/19/

27 Γ Phase Results at V1=24V Phase(Degree) v24 10v24 12v24 14v24 17v Frequency(GHz) 3/19/

28 Comparison of Γ and Output Power at Input Bias of V 1 =24 V S11 Magnitude, db V2=8v V2=10v -30 V2=12v V2=14v V2=17v Frequency, GHz Power(mV) V2=8v V2=10v V2=12v V2=14v V2=17v Frequency (GHz) 3/19/

29 Outline General Background of Network Analyzer Principles of Six-Port Reflectometer WR-15 Six-port Reflectometer Design, Measurement Setup, and Initial Data Results as Network Analyzer Results as an Embedded Sensor into other Systems: measuring mismatch between two adjacent stages in a frequency multiplier chain. Other Potential Applications (beyond Network Analyzer) 3/19/

30 Potential Application I: Near-Field Imaging 3/19/

31 Potential Application II: Dielectric Measurements on Fluids fluids 3/19/

32 Summary Introduced a general background of network analyzer Explained principles of Six-Port Reflectometer Demonstrated a WR-15 Six-port Reflectometer the results are in great agreement with commercial network analyzer when measuring variant components. used as an embedded sensor into a frequency multiplier chain and measured the mismatch between two adjacent stages Proposed other potential applications THz near-field imaging dielectric measurements on polar liquids 3/19/

33 Thank You!

34 Research Motivation In-situ monitoring of the performance and operation of adjacent stages in a frequency multiplier chain. Directly measure the impedance mismatch between adjacent stages using an embedded sensing circuit (sixport reflectometer). Use it for studying the behavior of multipliers and as a guide for adjusting external operating parameters that impact performance of the entire chain. 3/19/

35 Appendix I: How to Get Ellipse Eqs. 3/19/

36 Appendix I: How to Get Ellipse Eqs. (continued) 3/19/

37 Appendix I: How to Get Ellipse Eqs. (continued 2) 3/19/

38 First Step of Six-Port Calibration (Engen s Sliding Termination Method) Constraining Relation between b 3, b 4, b 5, and b 6 : ( P 3 ) 2 ( P 5 ) 2 a + b ζ + c ρ + (c a b) ζ + (b a c) ρ P P 6 P 4 P 4 ( ) 2 ( P 3 P 5 ) 2 P 4 P 3 P 6 ( ) 2 P 4 + (a b c) ζ ρ ( P 5 P 6 ) P + a(a b c) + b(b a c) ζ 5 2 P 4 P 6 P 4 + c(c a b) ρ + abc = 0 P 4 P 3 P 4 Where, a = w 1 w 2 2 b = w 2 2 c = w 1 2 3/19/

39 First Step of Six-Port Calibration continued Constrain Γ to lie on a circle (i.e., sliding termination) maps into circle in w-plane w R R 2 2 c = and recall Quadratic Surface in P-space maps out an ellipse: P w w2 = ρ P 2 6 P P A 3 3 P 5 P + 2 B + C + 2 D + 2 E 5 + F = 0 ( ) 2 ( ) ( P 5 ) 2 ( P 3 ) 2 P 4 P 4 Where, A = a B = ζ (c a b)/2 C = ζ 2 b D = [R 2 (b a c) + a(a b c)]/2 E = ζ [R 2 (a b c) + b(b a c)]/2 F = [R 4 + R 2 (c a b) + ab] P 4 3/19/ P 4 a = w 1 R c 2 b = R c 2 c = w 1 2 ζ = 1/ K 2 P5/P ( ) P P3/P4

40 Reflection Coefficient(dB) Appendix II: More Examples of log( Γ kl ) 20 log( ΓΓ kkl ) 20 log( Γ ks ) 20 log( ΓΓ kks ) Calibration Standard Results 52 GHz Sliding Loads from SDDOew Sliding Loads from SDDL Sliding Shorts from SDDOew Sliding Shorts from SDDL Reflection Coefficient(dB) log( Γ kl ) 20 log( ΓΓ kkl ) 20 log( Γ ks ) 20 log( ΓΓ kks ) GHz Sliding Loads from SDDOew Sliding Loads from SDDL Sliding Shorts from SDDOew Sliding Shorts from SDDL kl 27, kkl 27, ks, kks Sling positions 0 kl 27, kkl 27, ks, kks Sling positions GHz 60 GHz Sliding Loads from SDDOew Sliding Loads from SDDL Sliding Shorts from SDDOew Sliding Shorts from SDDL Sliding Loads from SDDOew Sliding Loads from SDDL Sliding Shorts from SDDOew Sliding Shorts from SDDL Reflection Coefficient(dB) 20 log( Γ kl ) 20 log( ΓΓ kkl ) 20 log( Γ ks ) 20 log( ΓΓ kks ) Reflection Coefficient(dB) 20 log( Γ kl ) 20 log( ΓΓ kkl ) 20 log( Γ ks ) 20 log( ΓΓ kks ) kl 27, kkl 27, ks, kks Sling positions kl 27, kkl 27, ks, kks Sling positions 23 3/19/

41 Basic Probe Simulation Model Waveguide size: 148*74 (WR15, 50~75GHz) Channel size: 20*13 Channel distance: 40 Microstrip width: 6 MLine characteristic impedance Z 0 : Ohm Substrate width:19 Substrate thickness:3 Unit: mils S Parameters (db) S11 S21 S31 S41 S /19/ Frequency (GHz)

RF Network Analyzer Basics

RF Network Analyzer Basics RF Network Analyzer Basics A tutorial, information and overview about the basics of the RF Network Analyzer. What is a Network Analyzer and how to use them, to include the Scalar Network Analyzer (SNA),

More information

1. The Slotted Line. ECE 584 Microwave Engineering Laboratory Experiments. Introduction:

1. The Slotted Line. ECE 584 Microwave Engineering Laboratory Experiments. Introduction: ECE 584 Microwave Engineering Laboratory Experiments 1. The Slotted Line Introduction: In this experiment we will use a waveguide slotted line to study the basic behavior of standing waves and to measure

More information

Experiment 7: Familiarization with the Network Analyzer

Experiment 7: Familiarization with the Network Analyzer Experiment 7: Familiarization with the Network Analyzer Measurements to characterize networks at high frequencies (RF and microwave frequencies) are usually done in terms of scattering parameters (S parameters).

More information

UNDERSTANDING NOISE PARAMETER MEASUREMENTS (AN-60-040)

UNDERSTANDING NOISE PARAMETER MEASUREMENTS (AN-60-040) UNDERSTANDING NOISE PARAMETER MEASUREMENTS (AN-60-040 Overview This application note reviews noise theory & measurements and S-parameter measurements used to characterize transistors and amplifiers at

More information

Ultra Wideband Microwave Multi-Port Reflectometer in Microstrip-Slot Technology: Operation, Design and Applications

Ultra Wideband Microwave Multi-Port Reflectometer in Microstrip-Slot Technology: Operation, Design and Applications Ultra Wideband Microwave Multi-Port Relectometer in Microstrip-Slot Technology: Operation, Design and Applications 339 16 x Ultra Wideband Microwave Multi-Port Reflectometer in Microstrip-Slot Technology:

More information

Keysight Technologies Understanding the Fundamental Principles of Vector Network Analysis. Application Note

Keysight Technologies Understanding the Fundamental Principles of Vector Network Analysis. Application Note Keysight Technologies Understanding the Fundamental Principles of Vector Network Analysis Application Note Introduction Network analysis is the process by which designers and manufacturers measure the

More information

POWER DIVIDERS AND DIRECTIONAL COUPLERS

POWER DIVIDERS AND DIRECTIONAL COUPLERS POWER DIVIDERS AND DIRECTIONAL COUPLERS A directional coupler is a passive device which couples part of the transmission power by a known amount out through another port, often by using two transmission

More information

Engineering Sciences 151. Electromagnetic Communication Laboratory Assignment 3 Fall Term 1998-99

Engineering Sciences 151. Electromagnetic Communication Laboratory Assignment 3 Fall Term 1998-99 Engineering Sciences 151 Electromagnetic Communication Laboratory Assignment 3 Fall Term 1998-99 WAVE PROPAGATION II: HIGH FREQUENCY SLOTTED LINE AND REFLECTOMETER MEASUREMENTS OBJECTIVES: To build greater

More information

FieldFox Handheld Education Series Part 4: Techniques for Precise Time Domain Measurements in the Field

FieldFox Handheld Education Series Part 4: Techniques for Precise Time Domain Measurements in the Field FieldFox Handheld Education Series Part 4: Techniques for Precise Time Domain Measurements in the Field FieldFox Handheld Education Series Interference Testing Cable and Antenna Measurements Calibration

More information

Characterization of Spatial Power Waveguide Amplifiers

Characterization of Spatial Power Waveguide Amplifiers Characterization of Spatial Power Waveguide Amplifiers Authored by: Matthew H. Commens Ansoft Corporation Ansoft 003 / Global Seminars: Delivering Performance Presentation # Outline What is a Spatial Waveguide

More information

Microwave Circuit Design and Measurements Lab. INTRODUCTION TO MICROWAVE MEASUREMENTS: DETECTION OF RF POWER AND STANDING WAVES Lab #2

Microwave Circuit Design and Measurements Lab. INTRODUCTION TO MICROWAVE MEASUREMENTS: DETECTION OF RF POWER AND STANDING WAVES Lab #2 EE 458/558 Microwave Circuit Design and Measurements Lab INTRODUCTION TO MICROWAVE MEASUREMENTS: DETECTION OF RF POWER AND STANDING WAVES Lab #2 The purpose of this lab is to gain a basic understanding

More information

Agilent PN 8753-1 RF Component Measurements: Amplifier Measurements Using the Agilent 8753 Network Analyzer. Product Note

Agilent PN 8753-1 RF Component Measurements: Amplifier Measurements Using the Agilent 8753 Network Analyzer. Product Note Agilent PN 8753-1 RF Component Measurements: Amplifier Measurements Using the Agilent 8753 Network Analyzer Product Note 2 3 4 4 4 4 6 7 8 8 10 10 11 12 12 12 13 15 15 Introduction Table of contents Introduction

More information

A New Concept of PTP Vector Network Analyzer

A New Concept of PTP Vector Network Analyzer A New Concept of PTP Vector Network Analyzer Vadim Závodný, Karel Hoffmann and Zbynek Skvor Department of Electromagnetic Field, Faculty of Electrical Engineering, Czech Technical University, Technická,

More information

Understanding the Fundamental Principles of Vector Network Analysis. Application Note 1287-1. Table of Contents. Page

Understanding the Fundamental Principles of Vector Network Analysis. Application Note 1287-1. Table of Contents. Page Understanding the Fundamental Principles of Vector Network Analysis Application Note 1287-1 Table of Contents Page Introduction 2 Measurements in Communications Systems 2 Importance of Vector Measurements

More information

RF Energy Harvesting from Cell Phone in GSM900 Band

RF Energy Harvesting from Cell Phone in GSM900 Band RF Energy Harvesting from Cell Phone in GSM900 Band B.Hridayeta 1, P.K.Singhal 2 1, 2 Department of Electronics, Madhav Institute of Technology and Science, Gwalior-474005 ---------------------------------------------------------------------***---------------------------------------------------------------------

More information

Introduction to Network Analyzer Measurements

Introduction to Network Analyzer Measurements Introduction to Network Analyzer Measurements Introduction to Network Analyzer Measurements 1 Table of Contents 1. Introduction to Network Analyzer Measurements... 3 VNA Basics...3 Applications for Network

More information

Michael Hiebel. Fundamentals of Vector Network Analysis

Michael Hiebel. Fundamentals of Vector Network Analysis Michael Hiebel Fundamentals of Vector Network Analysis TABIH OF CONTENTS Table of contents 1 Introduction 12 1.1 What is a network analyzer? 12 1.2 Wave quantities and S-parameters 13 1.3 Why vector network

More information

MILLIMETER WAVE TESTS AND INSTRUMENTATION

MILLIMETER WAVE TESTS AND INSTRUMENTATION MILLIMETER WAVE TESTS AND INSTRUMENTATION Mohamed M. Sayed, Microwave and Millimeter Wave Solutions Santa Rosa, CA 95404 E-mail: mmsayed@sbcglobal.net Phone: (707) 318-5255 Abstract The recent growth in

More information

February 2010 Number 201001. Vector Network Analyzer upgrade to SureCAL Power Sensor and RF Components Packages

February 2010 Number 201001. Vector Network Analyzer upgrade to SureCAL Power Sensor and RF Components Packages February 2010 Number 201001 Vector Network Analyzer upgrade to SureCAL Power Sensor and RF Components Packages Overview: This Technical Note describes the addition of Vector Network Analyzer (VNA) measurement

More information

9 Measurements on Transmission Lines

9 Measurements on Transmission Lines Measurements on Transmission Lines Power and Attenuation Measurements Although a variety of instruments measure power, the most accurate instrument is a power meter and a power sensor. The sensor is an

More information

Antennas and Propagation. Chapter 3: Antenna Parameters

Antennas and Propagation. Chapter 3: Antenna Parameters Antennas and Propagation : Antenna Parameters Introduction Purpose Introduce standard terms and definitions for antennas Need a common language to specify performance Two types of parameters 1. Radiation

More information

Agilent De-embedding and Embedding S-Parameter Networks Using a Vector Network Analyzer. Application Note 1364-1

Agilent De-embedding and Embedding S-Parameter Networks Using a Vector Network Analyzer. Application Note 1364-1 Agilent De-embedding and Embedding S-Parameter Networks Using a Vector Network Analyzer Application Note 1364-1 Introduction Traditionally RF and microwave components have been designed in packages with

More information

Performing Amplifier Measurements with the Vector Network Analyzer ZVB

Performing Amplifier Measurements with the Vector Network Analyzer ZVB Product: Vector Network Analyzer R&S ZVB Performing Amplifier Measurements with the Vector Network Analyzer ZVB Application Note This document describes typical measurements that are required to be made

More information

Impedance 50 (75 connectors via adapters)

Impedance 50 (75 connectors via adapters) VECTOR NETWORK ANALYZER PLANAR TR1300/1 DATA SHEET Frequency range: 300 khz to 1.3 GHz Measured parameters: S11, S21 Dynamic range of transmission measurement magnitude: 130 db Measurement time per point:

More information

S-PARAMETER MEASUREMENTS OF MEMS SWITCHES

S-PARAMETER MEASUREMENTS OF MEMS SWITCHES Radant MEMS employs adaptations of the JMicroTechnology test fixture depicted in Figure 1 to measure MEMS switch s-parameters. RF probeable JMicroTechnology microstrip-to-coplanar waveguide adapter substrates

More information

Output Standing Wave Ratio (SWR) Test Using the TEGAM 1830A RF Power Meter

Output Standing Wave Ratio (SWR) Test Using the TEGAM 1830A RF Power Meter Application Note 219 Output Standing Wave Ratio (SWR) Test Using the TEGAM 1830A RF Power Meter When using a power meter that references to a 50 MHz, 1 mw output power reference it is important to know

More information

Probes and Setup for Measuring Power-Plane Impedances with Vector Network Analyzer

Probes and Setup for Measuring Power-Plane Impedances with Vector Network Analyzer Probes and Setup for Measuring Power-Plane Impedances with Vector Network Analyzer Plane impedance measurement with VNA 1 Outline Introduction, Y, and S parameters Self and transfer impedances VNA One-port

More information

Improving Network Analyzer Measurements of Frequency-translating Devices Application Note 1287-7

Improving Network Analyzer Measurements of Frequency-translating Devices Application Note 1287-7 Improving Network Analyzer Measurements of Frequency-translating Devices Application Note 1287-7 - + - + - + - + Table of Contents Page Introduction......................................................................

More information

Considerations when Selecting a RF Power Sensor

Considerations when Selecting a RF Power Sensor Considerations when Selecting a RF Power Sensor Richard R Hawkins, President LLC RF Power Sensor Types Most power sensors now available fall into one of three design categories: thermistor, thermocouple,

More information

Cable Impedance and Structural Return Loss Measurement Methodologies

Cable Impedance and Structural Return Loss Measurement Methodologies Cable Impedance and Structural Return Loss Measurement Methodologies Introduction Joe Rowell Joel Dunsmore and Les Brabetz Hewlett Packard Company Santa Rosa, California Two critical electrical specifications

More information

Measuring RF Parameters of Networks Bill Leonard NØCU

Measuring RF Parameters of Networks Bill Leonard NØCU Measuring RF Parameters of Networks Bill Leonard NØCU NAØTC - 285 TechConnect Radio Club http://www.naøtc.org/ What is a Network? A Network is a group of electrical components connected is a specific way

More information

0HDVXULQJWKHHOHFWULFDOSHUIRUPDQFH FKDUDFWHULVWLFVRI5),)DQGPLFURZDYHVLJQDO SURFHVVLQJFRPSRQHQWV

0HDVXULQJWKHHOHFWULFDOSHUIRUPDQFH FKDUDFWHULVWLFVRI5),)DQGPLFURZDYHVLJQDO SURFHVVLQJFRPSRQHQWV 0HDVXULQJWKHHOHFWULFDOSHUIRUPDQFH FKDUDFWHULVWLFVRI5),)DQGPLFURZDYHVLJQDO SURFHVVLQJFRPSRQHQWV The treatment given here is introductory, and will assist the reader who wishes to consult the standard texts

More information

MEASUREMENT UNCERTAINTY IN VECTOR NETWORK ANALYZER

MEASUREMENT UNCERTAINTY IN VECTOR NETWORK ANALYZER MEASUREMENT UNCERTAINTY IN VECTOR NETWORK ANALYZER W. Li, J. Vandewege Department of Information Technology (INTEC) University of Gent, St.Pietersnieuwstaat 41, B-9000, Gent, Belgium Abstract: Precision

More information

Understanding Mixers Terms Defined, and Measuring Performance

Understanding Mixers Terms Defined, and Measuring Performance Understanding Mixers Terms Defined, and Measuring Performance Mixer Terms Defined Statistical Processing Applied to Mixers Today's stringent demands for precise electronic systems place a heavy burden

More information

A Network Analyzer For Active Components

A Network Analyzer For Active Components A Network Analyzer For Active Components EEEfCom 29-30 Juni ULM Marc Vanden Bossche, NMDG Engineering Remi Tuijtelaars, BSW Copyright 2005 NMDG Engineering Version 2 Outline Review of S-parameters Theory

More information

2 Port Parameters I 1. ECE145A/218A Notes Set #4 1. Two-ways of describing device: A. Equivalent - Circuit-Model

2 Port Parameters I 1. ECE145A/218A Notes Set #4 1. Two-ways of describing device: A. Equivalent - Circuit-Model ECE45A/8A Notes et #4 Port Parameters Two-ways of describing device: A. Equivalent - Circuit-Model Physically based Includes bias dependence Includes frequency dependence Includes size dependence - scalability

More information

Welcome to this presentation which helps to highlight the capability of Genesys in the design of power amplifiers for LTE applications

Welcome to this presentation which helps to highlight the capability of Genesys in the design of power amplifiers for LTE applications Welcome to this presentation which helps to highlight the capability of Genesys in the design of power amplifiers for LTE applications 1 2 3 4 5 Linearity is compromised due to the obvious output waveform.

More information

Using Simple Calibration Load Models to Improve Accuracy of Vector Network Analyzer Measurements

Using Simple Calibration Load Models to Improve Accuracy of Vector Network Analyzer Measurements Using Simple Calibration Load Models to Improve Accuracy of Vector Network Analyzer Measurements Nick M. Ridler 1 and Nils Nazoa 2 1 National Physical Laboratory, UK (www.npl.co.uk) 2 LA Techniques Ltd,

More information

Pairing Mixers with Reflectionless Filters to Improve System Performance

Pairing Mixers with Reflectionless Filters to Improve System Performance Pairing Mixers with Reflectionless Filters to Improve System Performance (AN-75-007) I. INTRODUCTION Traditional filter designs employ circuits which reject undesired signals by reflecting them back to

More information

Optimizing IP3 and ACPR Measurements

Optimizing IP3 and ACPR Measurements Optimizing IP3 and ACPR Measurements Table of Contents 1. Overview... 2 2. Theory of Intermodulation Distortion... 2 3. Optimizing IP3 Measurements... 4 4. Theory of Adjacent Channel Power Ratio... 9 5.

More information

Shielding Effectiveness Test Method. Harbour s LL, SB, and SS Coaxial Cables. Designs for Improved Shielding Effectiveness

Shielding Effectiveness Test Method. Harbour s LL, SB, and SS Coaxial Cables. Designs for Improved Shielding Effectiveness Shielding Effectiveness Test Method Harbour s LL, SB, and SS Coaxial Cables Designs for Improved Shielding Effectiveness Harbour Industries 4744 Shelburne Road Shelburne Vermont 05482 USA 802-985-3311

More information

Equation 2 details the relationship between the S-parameters and impedance: Stephane Wloczysiak ED Online ID #22407 February 2010

Equation 2 details the relationship between the S-parameters and impedance: Stephane Wloczysiak ED Online ID #22407 February 2010 Match The Ports Of Differential Devices This straightforward approach shows how to match the impedances of high-frequency, differential devices both with discrete components and microstrip circuit elements.

More information

Scalar Network Analysis with U2000 Series USB Power Sensors

Scalar Network Analysis with U2000 Series USB Power Sensors Scalar Network Analysis with U2000 Series USB Power Sensors Application Note Overview The Agilent U2000 Series USB power sensor is a compact, light weight instrument that performs accurate RF and microwave

More information

The Design & Test of Broadband Launches up to 50 GHz on Thin & Thick Substrates

The Design & Test of Broadband Launches up to 50 GHz on Thin & Thick Substrates The Performance Leader in Microwave Connectors The Design & Test of Broadband Launches up to 50 GHz on Thin & Thick Substrates Thin Substrate: 8 mil Rogers R04003 Substrate Thick Substrate: 30 mil Rogers

More information

Agilent Network Analyzer Basics

Agilent Network Analyzer Basics Agilent Network Analyzer Basics 2 Abstract This presentation covers the principles of measuring high-frequency electrical networks with network analyzers. You will learn what kinds of measurements are

More information

Radiofrequency Measurements. Mixers

Radiofrequency Measurements. Mixers Radiofrequency Measurements Mixers Mixer A mixer is a circuit used for frequency conersion, needful for telecommunications, but also for radiofrequency measurements. The typical operations of a mixer are

More information

R3765/67 CG Network Analyzer

R3765/67 CG Network Analyzer R3765/67 CG Network Analyzer RSE 05.03.02 1 R376XG Series Overview R3765 300kHz ~ 3.8 GHz R3767 300kHz ~ 8 GHz AG BG Basic model Built-in Bridge A/R & B/R Transmission Reflection CG Built-in S-parameter

More information

Antenna Deployment Technical Brief

Antenna Deployment Technical Brief ProCurve Networking Antenna Deployment Technical Brief Introduction... 2 Antenna types... 2 Omni directional antennas... 2 Directional antennas... 2 Diversity antennas... 3 High gain directional antennas...

More information

Making Spectrum Measurements with Rohde & Schwarz Network Analyzers

Making Spectrum Measurements with Rohde & Schwarz Network Analyzers Making Spectrum Measurements with Rohde & Schwarz Network Analyzers Application Note Products: R&S ZVA R&S ZVB R&S ZVT R&S ZNB This application note describes how to configure a Rohde & Schwarz Network

More information

The purpose of this paper is as follows: Examine the architectures of modern vector network analyzers (VNAs) Provide insight into nonlinear

The purpose of this paper is as follows: Examine the architectures of modern vector network analyzers (VNAs) Provide insight into nonlinear 1 The purpose of this paper is as follows: Examine the architectures of modern vector network analyzers (VNAs) Provide insight into nonlinear characterizations of amplifiers, mixers, and converters using

More information

Antenna Properties and their impact on Wireless System Performance. Dr. Steven R. Best. Cushcraft Corporation 48 Perimeter Road Manchester, NH 03013

Antenna Properties and their impact on Wireless System Performance. Dr. Steven R. Best. Cushcraft Corporation 48 Perimeter Road Manchester, NH 03013 Antenna Properties and their impact on Wireless System Performance Dr. Steven R. Best Cushcraft Corporation 48 Perimeter Road Manchester, NH 03013 Phone (603) 627-7877 FAX: (603) 627-1764 Email: sbest@cushcraft.com

More information

ECE 584 Microwave Engineering Laboratory Notebook

ECE 584 Microwave Engineering Laboratory Notebook ECE 584 Microwave Engineering Laboratory Notebook D. M. Pozar E. J. Knapp 2004 Electrical and Computer Engineering University of Massachusetts at Amherst Contents I. Introduction 1. General Comments 2.

More information

TSEK03: Radio Frequency Integrated Circuits (RFIC)

TSEK03: Radio Frequency Integrated Circuits (RFIC) TSEK03: Radio Frequency Integrated Circuits (RFIC) Lecture 6: Mixers (cont) Ted Johansson, EKS, ISY ted.johansson@liu.se Overview 2 Razavi: Chapter 6.1-6.3, pp. 343-398. Lee: Chapter 13. 6.1 Mixers general

More information

Power Amplifier Gain Compression Measurements

Power Amplifier Gain Compression Measurements Technical Brief Power Amplifier Gain Compression Measurements GPIB Private Bus Sweep Out Sweep In Pulse In AC Mod Out Blank/Marker Out Blanking In Overview The 1 db gain compression of an amplifier describes

More information

Basic of Load Pull Measurements Active and Passive load pull & Harmonic load pull testbench

Basic of Load Pull Measurements Active and Passive load pull & Harmonic load pull testbench Basic of Load Pull Measurements Active and Passive load pull & Harmonic load pull testbench credits to Prof. Andrea Ferrero, Politecnico di Torino Basics of load-pull Definitions Load-pull Controlling

More information

FCC CFR47 PART 15 SUBPART C CERTIFICATION TEST REPORT FOR. MODEL NUMBER: WRT54G v7 FCC ID: Q87-WT54GV70 REPORT NUMBER: 06U

FCC CFR47 PART 15 SUBPART C CERTIFICATION TEST REPORT FOR. MODEL NUMBER: WRT54G v7 FCC ID: Q87-WT54GV70 REPORT NUMBER: 06U FCC CFR47 PART 15 SUBPART C CERTIFICATION TEST REPORT FOR WIRELESS-G BROADBAND ROUTER WITH 4-PORT SWITCH MODEL NUMBER: WRT54G v7 FCC ID: Q87-WT54GV70 REPORT NUMBER: 06U10091-1 ISSUE DATE: FEBRUARY 21,

More information

VDI Mixer/Amplifier/Multiplier Chains (MixAMCs)

VDI Mixer/Amplifier/Multiplier Chains (MixAMCs) VDI Mixer/Amplifier/Multiplier Chains (MixAMCs) VDI s MixAMCs provide high performance broadband downconversion and frequency extension of microwave spectrum analyzers into the THz range. Models are currently

More information

Welcome. Rulon VanDyke RF System Architect, Agilent Technologies. David Leiss Senior RF Simulation Consultant, Agilent Technologies

Welcome. Rulon VanDyke RF System Architect, Agilent Technologies. David Leiss Senior RF Simulation Consultant, Agilent Technologies Welcome Rulon VanDyke RF System Architect, Agilent Technologies David Leiss Senior RF Simulation Consultant, Agilent Technologies January 12, 2012 Agenda RF Architecture Definition Costs of Poor Architecture

More information

Accuracy assessment of the scalar network analyzer using sliding termination techniques

Accuracy assessment of the scalar network analyzer using sliding termination techniques Downloaded from orbit.dtu.dk on: Jan 04, 2016 Accuracy assessment of the scalar network analyzer using sliding termination techniques Knudsen, Bent; Engen, Glenn F.; Guldbrsen, Birthe Published in: I E

More information

Part 2: Receiver and Demodulator

Part 2: Receiver and Demodulator University of Pennsylvania Department of Electrical and Systems Engineering ESE06: Electrical Circuits and Systems II Lab Amplitude Modulated Radio Frequency Transmission System Mini-Project Part : Receiver

More information

Sweep-able sub-millimeter sources and detectors for THz Vector Network Analyzers and Applications

Sweep-able sub-millimeter sources and detectors for THz Vector Network Analyzers and Applications AFFILIATION LOGO Sweep-able sub-millimeter sources and detectors for THz Vector Network Analyzers and Applications Presenter: Philippe GOY, AB MILLIMETRE, Paris, France, tel:+33 1 47077100 abmillimetre@wanadoo.fr,

More information

The Smith chart. Smith chart components. The normalized impedance line CHAPTER

The Smith chart. Smith chart components. The normalized impedance line CHAPTER 26 CHAPTER The Smith chart The mathematics of transmission lines, and certain other devices, becomes cumbersome at times, especially when dealing with complex impedances and nonstandard situations. In

More information

Technical Datasheet Scalar Network Analyzer Model 8003-10 MHz to 40 GHz

Technical Datasheet Scalar Network Analyzer Model 8003-10 MHz to 40 GHz Technical Datasheet Scalar Network Analyzer Model 8003-10 MHz to 40 GHz The Giga-tronics Model 8003 Precision Scalar Network Analyzer combines a 90 db wide dynamic range with the accuracy and linearity

More information

R&S FSW signal and spectrum analyzer: best in class now up to 50 GHz

R&S FSW signal and spectrum analyzer: best in class now up to 50 GHz R&S FSW signal and spectrum analyzer: best in class now up to 50 GHz The new R&S FSW 43 and R&S FSW 50 signal and spectrum analyzers make the outstanding features of the R&S FSW family available now also

More information

Agilent 8757D Scalar Network Analyzer 10 MHz to 110 GHz

Agilent 8757D Scalar Network Analyzer 10 MHz to 110 GHz Agilent 8757D Scalar Network Analyzer 10 MHz to 110 GHz Data Sheet Accurate measurement of transmission and reflection characteristics is a key requirement in your selection of a scalar network analyzer.

More information

Advanced Nonlinear Device Characterization Utilizing New Nonlinear Vector Network Analyzer and X-parameters

Advanced Nonlinear Device Characterization Utilizing New Nonlinear Vector Network Analyzer and X-parameters Advanced Nonlinear Device Characterization Utilizing New Nonlinear Vector Network Analyzer and X-parameters presented by: Loren Betts Research Scientist Presentation Outline Nonlinear Vector Network Analyzer

More information

Microwave Measurements. 3rd Edition. Edited by RJ. Collier and A.D. Skinner. The Institution of Engineering and Technology

Microwave Measurements. 3rd Edition. Edited by RJ. Collier and A.D. Skinner. The Institution of Engineering and Technology Microwave Measurements 3rd Edition Edited by RJ. Collier and A.D. Skinner The Institution of Engineering and Technology Contents List of contributors Preface xvii xix 1 Transmission lines - basic principles

More information

MUTUAL COUPLING REDUCTION USING DUMBBELL DEFECTED GROUND STRUCTURE FOR MULTIBAND MICROSTRIP ANTENNA ARRAY

MUTUAL COUPLING REDUCTION USING DUMBBELL DEFECTED GROUND STRUCTURE FOR MULTIBAND MICROSTRIP ANTENNA ARRAY Progress In Electromagnetics Research Letters, Vol. 13, 29 40, 2010 MUTUAL COUPLING REDUCTION USING DUMBBELL DEFECTED GROUND STRUCTURE FOR MULTIBAND MICROSTRIP ANTENNA ARRAY F. Y. Zulkifli, E. T. Rahardjo,

More information

RF-Microwaves formulas - 1-port systems

RF-Microwaves formulas - 1-port systems RF-Microwaves formulas - -port systems s-parameters: Considering a voltage source feeding into the DUT with a source impedance of. E i E r DUT The voltage into the DUT is composed of 2 parts, an incident

More information

Agilent EEsof EDA. www.agilent.com/find/eesof

Agilent EEsof EDA. www.agilent.com/find/eesof Agilent EEsof EDA This document is owned by Agilent Technologies, but is no longer kept current and may contain obsolete or inaccurate references. We regret any inconenience this may cause. For the latest

More information

ProCurve Networking Antenna Deployment

ProCurve Networking Antenna Deployment ProCurve Networking Antenna Deployment Technical Brief Introduction... 2 Antenna types... 2 Omni directional antennas... 2 Directional antennas... 2 Diversity antennas... 3 High gain directional antennas...

More information

Reflection Coefficient Applications in Test Measurements Bernhart A. Gebs Senior Product Development Engineer Belden Electronics Division. Rho.

Reflection Coefficient Applications in Test Measurements Bernhart A. Gebs Senior Product Development Engineer Belden Electronics Division. Rho. Reflection Coefficient Applications in Test Measurements Bernhart A. Gebs Senior Product Development Engineer Belden Electronics Division Reflection coefficient is the basis of several measurements common

More information

Lecture 27: Mixers. Gilbert Cell

Lecture 27: Mixers. Gilbert Cell Whites, EE 322 Lecture 27 Page 1 of 9 Lecture 27: Mixers. Gilbert Cell Mixers shift the frequency spectrum of an input signal. This is an essential component in electrical communications (wireless or otherwise)

More information

Network Analyzer Basics- EE142 Fall 07

Network Analyzer Basics- EE142 Fall 07 - EE142 Fall 07 Lightwave Analogy to RF Energy Incident Transmitted Reflected Lightwave DUT RF Why Do We Need to Test Components? Verify specifications of building blocks for more complex RF systems Create

More information

VNA Basics. VNA Basics Errors and Calibration Examples. Spectrum Analyzer

VNA Basics. VNA Basics Errors and Calibration Examples. Spectrum Analyzer 2 Spectrum Spectrum 1 Measures S-parameters of a Device Under Test (DUT) For further reading: Agilent application note Network Basics, available at wwwagilentcom Spectrum 4 Motivation: Why Measure Amplitude?

More information

Experiments Using the HP8714 RF Network Analyzer

Experiments Using the HP8714 RF Network Analyzer Experiments Using the HP8714 RF Network Analyzer Purpose: The purpose of this set of experiments is two folded: to get familiar with the basic operation of a RF network analyzer, and to gain a physical

More information

MEASUREMENT OF GAIN COMPRESSION IN SIS MIXER RECEIVERS

MEASUREMENT OF GAIN COMPRESSION IN SIS MIXER RECEIVERS MEASUREMENT OF GAIN COMPRESSION IN SIS MIXER RECEIVERS A. R. Kerr 1, J. Effland 1, S.-K. Pan 1, G. Lauria 1, A. W. Lichtenberger 2 and R. Groves 1 1 National Radio Astronomy Observatory * Charlottesville,

More information

Experimental results for the focal waveform and beam width in the focusing lens with a 100 ps filter

Experimental results for the focal waveform and beam width in the focusing lens with a 100 ps filter EM Implosion Memos Memo 51 July, 2010 Experimental results for the focal waveform and beam width in the focusing lens with a 100 ps filter Prashanth Kumar, Carl E. Baum, Serhat Altunc, Christos G. Christodoulou

More information

Features. Applications. Transmitter. Receiver. General Description MINIATURE MODULE. QM MODULATION OPTIMAL RANGE 1000m

Features. Applications. Transmitter. Receiver. General Description MINIATURE MODULE. QM MODULATION OPTIMAL RANGE 1000m Features MINIATURE MODULE QM MODULATION OPTIMAL RANGE 1000m 433.05 434.79 ISM BAND 34 CHANNELS AVAILABLE SINGLE SUPPLY VOLTAGE Applications IN VEHICLE TELEMETRY SYSTEMS WIRELESS NETWORKING DOMESTIC AND

More information

Standex-Meder Electronics. Custom Engineered Solutions for Tomorrow

Standex-Meder Electronics. Custom Engineered Solutions for Tomorrow Standex-Meder Electronics Custom Engineered Solutions for Tomorrow RF Reed Relays Part II Product Training Copyright 2013 Standex-Meder Electronics. All rights reserved. Introduction Purpose Designing

More information

T9 / R9. Long Range RF Modules. Features. Applications. General Description

T9 / R9. Long Range RF Modules. Features. Applications. General Description T9 / R9 Long Range RF Modules Features FM Narrow Band Crystal Stabilised Range up to 1,000 Metres 868MHz / 433MHz Versions 4 channel versions 434.075MHz 433.920MHz 434.225MHz 434.525MHz Miniature SIL Package

More information

Analysis on the Balanced Class-E Power Amplifier for the Load Mismatch Condition

Analysis on the Balanced Class-E Power Amplifier for the Load Mismatch Condition Analysis on the Class-E Power Amplifier for the Load Mismatch Condition Inoh Jung 1,1, Mincheol Seo 1, Jeongbae Jeon 1, Hyungchul Kim 1, Minwoo Cho 1, Hwiseob Lee 1 and Youngoo Yang 1 Sungkyunkwan University,

More information

Jeff Thomas Tom Holmes Terri Hightower. Learn RF Spectrum Analysis Basics

Jeff Thomas Tom Holmes Terri Hightower. Learn RF Spectrum Analysis Basics Jeff Thomas Tom Holmes Terri Hightower Learn RF Spectrum Analysis Basics Learning Objectives Name the major measurement strengths of a swept-tuned spectrum analyzer Explain the importance of frequency

More information

HOMER Analyzer ISM 2.45 GHz, R-26 Waveguide

HOMER Analyzer ISM 2.45 GHz, R-26 Waveguide HOMER Analyzer ISM 2.45 GHz, R-26 Waveguide Basic Description The HOMER-Series STH 2.45-GHz Analyzer is an automatic impedance and power measurement system based on R-26 (WR-340) waveguide. The system

More information

The N2PK Vector Network Analyzer (N2PK VNA) Original by Paul Kiciak, N2PK, 2007 * (*Pages edited or added by VE7WRS, 2009)

The N2PK Vector Network Analyzer (N2PK VNA) Original by Paul Kiciak, N2PK, 2007 * (*Pages edited or added by VE7WRS, 2009) The N2PK Vector Network Analyzer (N2PK VNA) Original by Paul Kiciak, N2PK, 2007 * (*Pages edited or added by VE7WRS, 2009) What Does Vector Mean?! Vector: magnitude & direction (angle) 01/22/07 N2PK *

More information

Time and Frequency Domain Analysis for Right Angle Corners on Printed Circuit Board Traces

Time and Frequency Domain Analysis for Right Angle Corners on Printed Circuit Board Traces Time and Frequency Domain Analysis for Right Angle Corners on Printed Circuit Board Traces Mark I. Montrose Montrose Compliance Services 2353 Mission Glen Dr. Santa Clara, CA 95051-1214 Abstract: For years,

More information

Extended spectral coverage of BWO combined with frequency multipliers

Extended spectral coverage of BWO combined with frequency multipliers Extended spectral coverage of BWO combined with frequency multipliers Walter C. Hurlbut, Vladimir G. Kozlov, Microtech Instruments, Inc. (United States) Abstract: Solid state frequency multipliers extend

More information

CLASSIFICATION OF SERVICES IN ELECTRICITY AND MAGNETISM

CLASSIFICATION OF SERVICES IN ELECTRICITY AND MAGNETISM CLASSIFICATION OF SERVICES IN ELECTRICITY AND MAGNETISM Version No 7.6 (dated 17 March 2011) METROLOGY AREA: ELECTRICITY AND MAGNETISM BRANCH: DC VOLTAGE, CURRENT, AND RESISTANCE 1. DC voltage (up to 1100

More information

Comparison of Vector Network Analyzer and TDA Systems IConnect Generated S-Parameters

Comparison of Vector Network Analyzer and TDA Systems IConnect Generated S-Parameters Comparison of Vector Network Analyzer and TDA Systems IConnect Generated S-Parameters Purpose: This technical note presents single-ended insertion loss ( SE IL) and return loss ( SE RL) data generated

More information

RF and Microwave Accessories. CD-ROM Catalog. Find the right component for your Rohde & Schwarz test & measurement equipment

RF and Microwave Accessories. CD-ROM Catalog. Find the right component for your Rohde & Schwarz test & measurement equipment RF and Microwave Accessories CD-ROM Catalog Find the right component for your Rohde & Schwarz test & measurement equipment Product group Typical applications Adapters Interchanging of various connector

More information

EMC Near-field Probes + Wideband Amplifier

EMC Near-field Probes + Wideband Amplifier 1 Introduction The H20, H10, H5 and E5 are magnetic field (H) and electric field (E) probes for radiated emissions EMC precompliance measurements. The probes are used in the near field of sources of electromagnetic

More information

Projects. Objective To gain hands-on design and measurement experience with real-world applications. Contents

Projects. Objective To gain hands-on design and measurement experience with real-world applications. Contents Projects Contents 9-1 INTRODUCTION...................... 43 9-2 PROJECTS......................... 43 9-2.1 Alarm Radar Sensor................ 43 9-2.2 Microwave FM Communication Link....... 46 9-2.3 Optical

More information

CAS: Network Analysis (Part 2)

CAS: Network Analysis (Part 2) CAS: Network Analysis (Part 2) F. Caspers CERN, Geneva, Switzerland Abstract The network analyzer has become an absolutely indispensable tool for RF signal analysis. In this lecture, the operating principles

More information

EMC Near-field Probes + Wideband Amplifier

EMC Near-field Probes + Wideband Amplifier 1 Introduction The H20, H10, H5 and E5 are magnetic field (H) and electric field (E) probes for radiated emissions EMC precompliance measurements. The probes are used in the near field of sources of electromagnetic

More information

Application Note, AN-7

Application Note, AN-7 Application Note, AN-7 Conducted emissions is a measure of the amount of Electromagnetic Interference (EMI) that is conducted from a unit under test (EUT) to the outside world via the power cables. A Line

More information

W-band vector network analyzer based on an audio lock-in amplifier * Abstract

W-band vector network analyzer based on an audio lock-in amplifier * Abstract ARDB 179 SLAC PUB 7884 July 1998 W-band vector network analyzer based on an audio lock-in amplifier * R. H. Siemann Stanford Linear Accelerator Center, Stanford University, Stanford CA 94309 Abstract The

More information

A Low Frequency Adapter for your Vector Network Analyzer (VNA)

A Low Frequency Adapter for your Vector Network Analyzer (VNA) Jacques Audet, VE2AZX 7525 Madrid St, Brossard, QC, Canada J4Y G3: jacaudet@videotron.ca A Low Frequency Adapter for your Vector Network Analyzer (VNA) This compact and versatile unit extends low frequency

More information

Design the prototype (Week 2 3) 2010 Oregon State University ECE 323 Manual Page 15

Design the prototype (Week 2 3) 2010 Oregon State University ECE 323 Manual Page 15 SECTION TWO Design the prototype (Week 2 3) 2010 Oregon State University ECE 323 Manual Page 15 SECTION OVERVIEW In this section, you will design the schematic for your prototype USB powered audio amplifier.

More information

Designing the NEWCARD Connector Interface to Extend PCI Express Serial Architecture to the PC Card Modular Form Factor

Designing the NEWCARD Connector Interface to Extend PCI Express Serial Architecture to the PC Card Modular Form Factor Designing the NEWCARD Connector Interface to Extend PCI Express Serial Architecture to the PC Card Modular Form Factor Abstract This paper provides information about the NEWCARD connector and board design

More information

Hardware Design Considerations for MCR20A IEEE Devices

Hardware Design Considerations for MCR20A IEEE Devices Freescale Semiconductor Application Note Document Number: AN5003 Rev. 0, 07/2015 Hardware Design Considerations for MCR20A IEEE 802.15.4 Devices 1 Introduction This application note describes Printed Circuit

More information