Graphing Module II. Table of Contents. UCCS Physics Labs


 Barrie Casey
 1 years ago
 Views:
Transcription
1 Graphing Module II UCCS Physics Labs Table of Contents Error bars 2 Equation of Straight line 3 Bestfit line with error bars 7 Plotting an equation 7 FYI FYI On average, 100 people choke to death on ballpoint pens every year. Graphing Module II  1
2 Error in Graphs  Error bars We have already talked about how to record an error inherent with any measurement. Now the question is how do we graphically represent the error? The point on a graph is the data itself. We also need a way to graphically show the uncertainty in that data point. The solution is error bars. Error bars are the lines that extend from the data point a distance equal to the value of the uncertainty. A data point is made up of two parts, the x coordinate and y coordinates. Both coordinates can contain uncertainty. Therefore, error bars can extend away from the data point in both directions. Any point within the error bars is a valid value for the data point. Below is a sample set of data with error and the resulting graph. Closeup of error bars extending from a data point. Only an example. Each situation will be different. Graphing Module II  2
3 The Equation of a Straight Line At this point all you know is how to plot data points. For a graph to become truly useful we need to find the function that interrelates the data points. The simplest functional relationship is the linear relationship. A linear relationship will produce data that lie along a straight line. The data points will most likely not lie perfectly along a straight line because of error in the measurements. We will need to make a line that bestfits the data, which is called a bestfit line, surprise! Let s try an example now. Examine the following graph: y These two lines are other possible bestfit lines for this data. They don t appear to do as good of a job representing all the data as the solid black line. This line divides the data points evenly. The line also gives the general trend the data is following. data points 0 x Drawing a bestfit line is an art form that you will quickly learn. Just remember that the bestfit line should be as close as possible to all the data points. Graphing Module II  3
4 Equation of the bestfit line Once we have a bestfit line, we need to know how to represent it mathematically. A line is a functional relationship between the two variables plotted on the vertical and horizontal axis. The equation of a line is as follows: y = m x + b y the variable located on the vertical axis. m the slope of the line. (Explained below, wait for it!) x the variable located on the horizontal axis. b yintercept. (Also explained below, try to be more patient!) To find the equation of any line is to find the value of the slope and the yintercept. The slope (m) represents how rapidly the line will rise or fall, the larger the value for the slope the steeper the line. If the value of the slope is positive, then the line will be increasing in y as x is increasing. If the slope is negative, the line will be decreasing in y as x is increasing. If the slope is zero the line will not increase or decrease but will stay at a constant value of y no matter the value of x. The yintercept (b) is the value of the vertical axis where the line intersects that axis. If the line does not reach the vertical axis, then simply extend the line until it does and record the value. The slope is defined by the ratio rise over the run, which is how many vertical units the line will rise or fall divided by the number of units the line will run in the horizontal direction. A more mathematical way of looking at the slope is: The change in the y coordinate ( y) divided by the change in the x coordinate ( x) as you travel along the line. Graphing Module II  4
5 Let s try calculating the slope of a straight line: To find the rise or the y, just take the difference between the two y coordinates: rise = 3.8 m m = 2.3 m To find the run or the x, just do the same difference calculation for the x coordinates: run = 4.3 s  1 s = 3.3 s Now to find the slope divide these two numbers: "rise" 2.3 m slope = = = 0.7 m "run" 3.3s s Graphing Module II  5
6 Some tips and tricks for calculating the slope Try to spread out the two points you are using to calculate the slope over the length of the line. This will give a more accurate slope calculation. Remember you are measuring the slope of the line, so use the x and y coordinates of the line. If it is possible use the coordinates of data points that lie on the line. This will reduce any extra error gained in reading coordinates off the line because you already have the exact coordinates from the data. We now have a value for the slope of our line. All we need to complete the equation of this line is to find the value of the yintercept (b). This should be a simple task. The line crosses the yaxis at a value of about 0.8 m, so b = 0.8 m. The equation of a line is: y = m x + b Filling in the values for the slope and the yintercept from our example gives: y = (0.7 m ) x m That s it! s Graphing Module II  6
7 Find the bestfit line with error bars If your data contains a known error, finding the bestfit line isn t any different. You still have to draw a line so that it is as close as possible to all the data points, or at least the error bars. Error bars represent all the possible values for that data point, so you have a little bigger target for the bestfit line. Example: The line comes as close as possible to all the data points and/or error bars. Plotting an equation In many cases, once you have the equation of the bestfit line, you will need something for comparison. What we would like to compare our bestfit line to is the expected result (theoretical function). For an easier comparison we need to plot this function on the same graph as our data. What we have at this point is the theoretical function, but no data, and therefore no way to plot a line. To generate data, assign a value to one of the variables and then get out your calculator and algebra book and solve for the remaining variable. Repeat this process until you have enough data points to draw a line connecting the data points. Graphing Module II  7
8 Let s try graphing this theoretical equation: y = 2 x + 4 Let s assign values to x and solve for y. This will limit the amount of math steps needed to get the data. You can assign y values and solve for x. This will give the same results, but it will just be more work. assign x calculate y 0 y = 2(0) + 4 = 4 1 y = 2(1) + 4 = 6 2 y = 2(2) + 4 = 8 4 y = 2(4) + 4 = y = 2(10.2) + 4 = 24.4 You can assign any value you want to x, but integers seem to make the math easier! y x Your bestfit line should lie exactly over the data points. Remember, it was an equation of a straight line you were graphing in the first place! Graphing Module II  8
PLOTTING DATA AND INTERPRETING GRAPHS
PLOTTING DATA AND INTERPRETING GRAPHS Fundamentals of Graphing One of the most important sets of skills in science and mathematics is the ability to construct graphs and to interpret the information they
More informationThe slope m of the line passes through the points (x 1,y 1 ) and (x 2,y 2 ) e) (1, 3) and (4, 6) = 1 2. f) (3, 6) and (1, 6) m= 6 6
Lines and Linear Equations Slopes Consider walking on a line from left to right. The slope of a line is a measure of its steepness. A positive slope rises and a negative slope falls. A slope of zero means
More informationGraphing Linear Equations
Graphing Linear Equations I. Graphing Linear Equations a. The graphs of first degree (linear) equations will always be straight lines. b. Graphs of lines can have Positive Slope Negative Slope Zero slope
More informationGRAPHING LINEAR EQUATIONS IN TWO VARIABLES
GRAPHING LINEAR EQUATIONS IN TWO VARIABLES The graphs of linear equations in two variables are straight lines. Linear equations may be written in several forms: SlopeIntercept Form: y = mx+ b In an equation
More informationLINEAR FUNCTIONS. Form Equation Note Standard Ax + By = C A and B are not 0. A > 0
LINEAR FUNCTIONS As previousl described, a linear equation can be defined as an equation in which the highest eponent of the equation variable is one. A linear function is a function of the form f ( )
More informationWhat does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b.
PRIMARY CONTENT MODULE Algebra  Linear Equations & Inequalities T37/H37 What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of
More informationGraphical Presentation of Data
Graphical Presentation of Data Guidelines for Making Graphs Titles should tell the reader exactly what is graphed Remove stray lines, legends, points, and any other unintended additions by the computer
More informationSect The SlopeIntercept Form
Concepts # and # Sect.  The SlopeIntercept Form SlopeIntercept Form of a line Recall the following definition from the beginning of the chapter: Let a, b, and c be real numbers where a and b are not
More informationEdExcel Decision Mathematics 1
EdExcel Decision Mathematics 1 Linear Programming Section 1: Formulating and solving graphically Notes and Examples These notes contain subsections on: Formulating LP problems Solving LP problems Minimisation
More informationElements of a graph. Click on the links below to jump directly to the relevant section
Click on the links below to jump directly to the relevant section Elements of a graph Linear equations and their graphs What is slope? Slope and yintercept in the equation of a line Comparing lines on
More informationReview of Fundamental Mathematics
Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decisionmaking tools
More informationSimple Regression Theory I 2010 Samuel L. Baker
SIMPLE REGRESSION THEORY I 1 Simple Regression Theory I 2010 Samuel L. Baker Regression analysis lets you use data to explain and predict. A simple regression line drawn through data points In Assignment
More informationYou might be surprised to know that the word Tshirt wasn t really used until
Hot Shirts Using Tables, Graphs, and Equations, Part 2 Learning Goals In this lesson, you will: Use different methods to represent a problem situation. Estimate values of expressions that involve decimals.
More informationSection 1.4 Graphs of Linear Inequalities
Section 1.4 Graphs of Linear Inequalities A Linear Inequality and its Graph A linear inequality has the same form as a linear equation, except that the equal symbol is replaced with any one of,,
More informationThe PointSlope Form
7. The PointSlope Form 7. OBJECTIVES 1. Given a point and a slope, find the graph of a line. Given a point and the slope, find the equation of a line. Given two points, find the equation of a line y Slope
More informationEQUATIONS and INEQUALITIES
EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line
More informationAppendix C: Graphs. Vern Lindberg
Vern Lindberg 1 Making Graphs A picture is worth a thousand words. Graphical presentation of data is a vital tool in the sciences and engineering. Good graphs convey a great deal of information and can
More informationx x y y Then, my slope is =. Notice, if we use the slope formula, we ll get the same thing: m =
Slope and Lines The slope of a line is a ratio that measures the incline of the line. As a result, the smaller the incline, the closer the slope is to zero and the steeper the incline, the farther the
More informationMath Rational Functions
Rational Functions Math 3 Rational Functions A rational function is the algebraic equivalent of a rational number. Recall that a rational number is one that can be epressed as a ratio of integers: p/q.
More informationLinear Equations. Find the domain and the range of the following set. {(4,5), (7,8), (1,3), (3,3), (2,3)}
Linear Equations Domain and Range Domain refers to the set of possible values of the xcomponent of a point in the form (x,y). Range refers to the set of possible values of the ycomponent of a point in
More informationLinear Programming. Solving LP Models Using MS Excel, 18
SUPPLEMENT TO CHAPTER SIX Linear Programming SUPPLEMENT OUTLINE Introduction, 2 Linear Programming Models, 2 Model Formulation, 4 Graphical Linear Programming, 5 Outline of Graphical Procedure, 5 Plotting
More informationThis assignment will help you to prepare for Algebra 1 by reviewing some of the things you learned in Middle School. If you cannot remember how to complete a specific problem, there is an example at the
More informationSlopeIntercept Equation. Example
1.4 Equations of Lines and Modeling Find the slope and the y intercept of a line given the equation y = mx + b, or f(x) = mx + b. Graph a linear equation using the slope and the yintercept. Determine
More informationRational Functions 5.2 & 5.3
Math Precalculus Algebra Name Date Rational Function Rational Functions 5. & 5.3 g( ) A function is a rational function if f ( ), where g( ) and h( ) are polynomials. h( ) Vertical asymptotes occur at
More informationElasticity. I. What is Elasticity?
Elasticity I. What is Elasticity? The purpose of this section is to develop some general rules about elasticity, which may them be applied to the four different specific types of elasticity discussed in
More informationWhy should we learn this? One realworld connection is to find the rate of change in an airplane s altitude. The Slope of a Line VOCABULARY
Wh should we learn this? The Slope of a Line Objectives: To find slope of a line given two points, and to graph a line using the slope and the intercept. One realworld connection is to find the rate
More informationGraphical Integration Exercises Part Four: Reverse Graphical Integration
D4603 1 Graphical Integration Exercises Part Four: Reverse Graphical Integration Prepared for the MIT System Dynamics in Education Project Under the Supervision of Dr. Jay W. Forrester by Laughton Stanley
More informationGraphing Linear Equations in Two Variables
Math 123 Section 3.2  Graphing Linear Equations Using Intercepts  Page 1 Graphing Linear Equations in Two Variables I. Graphing Lines A. The graph of a line is just the set of solution points of the
More informationGraphing Rational Functions
Graphing Rational Functions A rational function is defined here as a function that is equal to a ratio of two polynomials p(x)/q(x) such that the degree of q(x) is at least 1. Examples: is a rational function
More informationSession 7 Bivariate Data and Analysis
Session 7 Bivariate Data and Analysis Key Terms for This Session Previously Introduced mean standard deviation New in This Session association bivariate analysis contingency table covariation least squares
More information1.3 LINEAR EQUATIONS IN TWO VARIABLES. Copyright Cengage Learning. All rights reserved.
1.3 LINEAR EQUATIONS IN TWO VARIABLES Copyright Cengage Learning. All rights reserved. What You Should Learn Use slope to graph linear equations in two variables. Find the slope of a line given two points
More informationStudent Activity: To investigate an ESB bill
Student Activity: To investigate an ESB bill Use in connection with the interactive file, ESB Bill, on the Student s CD. 1. What are the 2 main costs that contribute to your ESB bill? 2. a. Complete the
More informationEXPONENTS. To the applicant: KEY WORDS AND CONVERTING WORDS TO EQUATIONS
To the applicant: The following information will help you review math that is included in the Paraprofessional written examination for the Conejo Valley Unified School District. The Education Code requires
More informationReflection and Refraction
Equipment Reflection and Refraction Acrylic block set, planeconcaveconvex universal mirror, cork board, cork board stand, pins, flashlight, protractor, ruler, mirror worksheet, rectangular block worksheet,
More informationPart 1: Background  Graphing
Department of Physics and Geology Graphing Astronomy 1401 Equipment Needed Qty Computer with Data Studio Software 1 1.1 Graphing Part 1: Background  Graphing In science it is very important to find and
More informationGraphing  SlopeIntercept Form
2.3 Graphing  SlopeIntercept Form Objective: Give the equation of a line with a known slope and yintercept. When graphing a line we found one method we could use is to make a table of values. However,
More informationBasic Math Refresher A tutorial and assessment of basic math skills for students in PUBP704.
Basic Math Refresher A tutorial and assessment of basic math skills for students in PUBP704. The purpose of this Basic Math Refresher is to review basic math concepts so that students enrolled in PUBP704:
More informationSolving Systems of Two Equations Algebraically
8 MODULE 3. EQUATIONS 3b Solving Systems of Two Equations Algebraically Solving Systems by Substitution In this section we introduce an algebraic technique for solving systems of two equations in two unknowns
More informationYears after 2000. US Student to Teacher Ratio 0 16.048 1 15.893 2 15.900 3 15.900 4 15.800 5 15.657 6 15.540
To complete this technology assignment, you should already have created a scatter plot for your data on your calculator and/or in Excel. You could do this with any two columns of data, but for demonstration
More informationChapter 8 Graphs and Functions:
Chapter 8 Graphs and Functions: Cartesian axes, coordinates and points 8.1 Pictorially we plot points and graphs in a plane (flat space) using a set of Cartesian axes traditionally called the x and y axes
More informationA synonym is a word that has the same or almost the same definition of
SlopeIntercept Form Determining the Rate of Change and yintercept Learning Goals In this lesson, you will: Graph lines using the slope and yintercept. Calculate the yintercept of a line when given
More informationUnit 5: Coordinate Geometry Practice Test
Unit 5: Coordinate Geometry Practice Test Math 10 Common Name: Block: Please initial this box to indicate you carefully read over your test and checked your work for simple mistakes. What I can do in this
More informationc sigma & CEMTL
c sigma & CEMTL Foreword The Regional Centre for Excellence in Mathematics Teaching and Learning (CEMTL) is collaboration between the Shannon Consortium Partners: University of Limerick, Institute of Technology,
More informationAP Physics 1 and 2 Lab Investigations
AP Physics 1 and 2 Lab Investigations Student Guide to Data Analysis New York, NY. College Board, Advanced Placement, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks
More informationExample SECTION 131. XAXIS  the horizontal number line. YAXIS  the vertical number line ORIGIN  the point where the xaxis and yaxis cross
CHAPTER 13 SECTION 131 Geometry and Algebra The Distance Formula COORDINATE PLANE consists of two perpendicular number lines, dividing the plane into four regions called quadrants XAXIS  the horizontal
More information2. Simplify. College Algebra Student SelfAssessment of Mathematics (SSAM) Answer Key. Use the distributive property to remove the parentheses
College Algebra Student SelfAssessment of Mathematics (SSAM) Answer Key 1. Multiply 2 3 5 1 Use the distributive property to remove the parentheses 2 3 5 1 2 25 21 3 35 31 2 10 2 3 15 3 2 13 2 15 3 2
More informationLines That Pass Through Regions
: Student Outcomes Given two points in the coordinate plane and a rectangular or triangular region, students determine whether the line through those points meets the region, and if it does, they describe
More informationMeet You at the Intersection: Solving a System of Linear Equations
Meet You at the Intersection: Solving a System of Linear Equations Activity 30 Many times, the solution to a reallife problem involves solving more than one mathematical equation at the same time. The
More informationAlex and Morgan were asked to graph the equation y = 2x + 1
Which is better? Ale and Morgan were asked to graph the equation = 2 + 1 Ale s make a table of values wa Morgan s use the slope and intercept wa First, I made a table. I chose some values, then plugged
More informationSolving Systems of Linear Equations Graphing
Solving Systems of Linear Equations Graphing Outcome (learning objective) Students will accurately solve a system of equations by graphing. Student/Class Goal Students thinking about continuing their academic
More information2.3 Writing Equations of Lines
. Writing Equations of Lines In this section ou will learn to use pointslope form to write an equation of a line use slopeintercept form to write an equation of a line graph linear equations using the
More informationRELEVANT TO CAT QUALIFICATION PAPER 10
RELEVANT TO CAT QUALIFICATION PAPER 10 Interpreting breakeven and profit volume charts I commented in my examiner s report on the December 2010 exam that in Question 4, Part (b), the vast majority of students
More informationActually, if you have a graphing calculator this technique can be used to find solutions to any equation, not just quadratics. All you need to do is
QUADRATIC EQUATIONS Definition ax 2 + bx + c = 0 a, b, c are constants (generally integers) Roots Synonyms: Solutions or Zeros Can have 0, 1, or 2 real roots Consider the graph of quadratic equations.
More informationMSLC Workshop Series Math 1148 1150 Workshop: Polynomial & Rational Functions
MSLC Workshop Series Math 1148 1150 Workshop: Polynomial & Rational Functions The goal of this workshop is to familiarize you with similarities and differences in both the graphing and expression of polynomial
More informationDetermine If An Equation Represents a Function
Question : What is a linear function? The term linear function consists of two parts: linear and function. To understand what these terms mean together, we must first understand what a function is. The
More informationWeek 1: Functions and Equations
Week 1: Functions and Equations Goals: Review functions Introduce modeling using linear and quadratic functions Solving equations and systems Suggested Textbook Readings: Chapter 2: 2.12.2, and Chapter
More informationModule 3: Correlation and Covariance
Using Statistical Data to Make Decisions Module 3: Correlation and Covariance Tom Ilvento Dr. Mugdim Pašiƒ University of Delaware Sarajevo Graduate School of Business O ften our interest in data analysis
More informationwith functions, expressions and equations which follow in units 3 and 4.
Grade 8 Overview View unit yearlong overview here The unit design was created in line with the areas of focus for grade 8 Mathematics as identified by the Common Core State Standards and the PARCC Model
More informationPlot the following two points on a graph and draw the line that passes through those two points. Find the rise, run and slope of that line.
Objective # 6 Finding the slope of a line Material: page 117 to 121 Homework: worksheet NOTE: When we say line... we mean straight line! Slope of a line: It is a number that represents the slant of a line
More informationIntersecting Two Lines, Part One
Module 1.4 Page 97 of 938. Module 1.4: Intersecting Two Lines, Part One This module will explain to you several common methods used for intersecting two lines. By this, we mean finding the point x, y)
More informationThe Circumference Function
2 Geometry You have permission to make copies of this document for your classroom use only. You may not distribute, copy or otherwise reproduce any part of this document or the lessons contained herein
More informationMATH 65 NOTEBOOK CERTIFICATIONS
MATH 65 NOTEBOOK CERTIFICATIONS Review Material from Math 60 2.5 4.3 4.4a Chapter #8: Systems of Linear Equations 8.1 8.2 8.3 Chapter #5: Exponents and Polynomials 5.1 5.2a 5.2b 5.3 5.4 5.5 5.6a 5.7a 1
More informationPreAP Algebra 2 Lesson 17 Graphing Absolute Value Functions
Lesson 17 Graphing Absolute Value Functions Name Objectives: In this activity, students will relate the piecewise function to the graph of the absolute value function and continue their development of
More informationBecause the slope is, a slope of 5 would mean that for every 1cm increase in diameter, the circumference would increase by 5cm.
Measurement Lab You will be graphing circumference (cm) vs. diameter (cm) for several different circular objects, and finding the slope of the line of best fit using the CapStone program. Write out or
More informationSimple Regression and Correlation
Simple Regression and Correlation Today, we are going to discuss a powerful statistical technique for examining whether or not two variables are related. Specifically, we are going to talk about the ideas
More informationSection 1.1 Linear Equations: Slope and Equations of Lines
Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of
More informationIn this chapter, you will learn to use costvolumeprofit analysis.
2.0 Chapter Introduction In this chapter, you will learn to use costvolumeprofit analysis. Assumptions. When you acquire supplies or services, you normally expect to pay a smaller price per unit as the
More informationHow can you write an equation of a line when you are given the slope and the yintercept of the line? ACTIVITY: Writing Equations of Lines
. Writing Equations in SlopeIntercept Form How can ou write an equation of a line when ou are given the slope and the intercept of the line? ACTIVITY: Writing Equations of Lines Work with a partner.
More information1 One Dimensional Horizontal Motion Position vs. time Velocity vs. time
PHY132 Experiment 1 One Dimensional Horizontal Motion Position vs. time Velocity vs. time One of the most effective methods of describing motion is to plot graphs of distance, velocity, and acceleration
More informationCommon Core Unit Summary Grades 6 to 8
Common Core Unit Summary Grades 6 to 8 Grade 8: Unit 1: Congruence and Similarity 8G18G5 rotations reflections and translations,( RRT=congruence) understand congruence of 2 d figures after RRT Dilations
More information1291/2 Physics Lab Report Format
1291/2 Physics Lab Report Format General Remarks: Writing a lab report is the only way your TA will know what you have done during the lab and how well you have understood the process and the results.
More informationThe Cartesian Plane The Cartesian Plane. Performance Criteria 3. PreTest 5. Coordinates 7. Graphs of linear functions 9. The gradient of a line 13
6 The Cartesian Plane The Cartesian Plane Performance Criteria 3 PreTest 5 Coordinates 7 Graphs of linear functions 9 The gradient of a line 13 Linear equations 19 Empirical Data 24 Lines of best fit
More informationLesson Plan Mine Shaft Grade 8 Slope
CCSSM: Grade 8 DOMAIN: Expressions and Equations Cluster: Understand the connections between proportional relationships, lines, and linear equations. Standard: 8.EE.5: Graph proportional relationships,
More informationPrompt Students are studying multiplying binomials (factoring and roots) ax + b and cx + d. A student asks What if we divide instead of multiply?
Prompt Students are studying multiplying binomials (factoring and roots) ax + b and cx + d. A student asks What if we divide instead of multiply? Commentary In our foci, we are assuming that we have a
More informationFlorida Department of Education/Office of Assessment January 2012. Grade 7 FCAT 2.0 Mathematics Achievement Level Descriptions
Florida Department of Education/Office of Assessment January 2012 Grade 7 FCAT 2.0 Mathematics Grade 7 FCAT 2.0 Mathematics Reporting Category Geometry and Measurement Students performing at the mastery
More informationor, put slightly differently, the profit maximizing condition is for marginal revenue to equal marginal cost:
Chapter 9 Lecture Notes 1 Economics 35: Intermediate Microeconomics Notes and Sample Questions Chapter 9: Profit Maximization Profit Maximization The basic assumption here is that firms are profit maximizing.
More informationCOWLEY COUNTY COMMUNITY COLLEGE REVIEW GUIDE Compass Algebra Level 2
COWLEY COUNTY COMMUNITY COLLEGE REVIEW GUIDE Compass Algebra Level This study guide is for students trying to test into College Algebra. There are three levels of math study guides. 1. If x and y 1, what
More informationPURPOSE: To practice adding and subtracting integers with number lines and algebra tiles (charge method). SOL: 7.3 NUMBER LINES
Name: Date: Block: PURPOSE: To practice adding and subtracting integers with number lines and algebra tiles (charge method). SOL: 7.3 Examples: NUMBER LINES Use the below number lines to model the given
More informationLab 11: Magnetic Fields Name:
Lab 11: Magnetic Fields Name: Group Members: Date: TA s Name: Objectives: To measure and understand the magnetic field of a bar magnet. To measure and understand the magnetic field of an electromagnet,
More informationUtah Core Curriculum for Mathematics
Core Curriculum for Mathematics correlated to correlated to 2005 Chapter 1 (pp. 2 57) Variables, Expressions, and Integers Lesson 1.1 (pp. 5 9) Expressions and Variables 2.2.1 Evaluate algebraic expressions
More informationGrade 8 Mathematics Item Specification C1 TD Task Model 3
Task Model 3 Equation/Numeric DOK Level 1 algebraically, example, have no solution because 6. 3. The student estimates solutions by graphing systems of two linear equations in two variables. Prompt Features:
More informationWEB APPENDIX. Calculating Beta Coefficients. b Beta Rise Run Y 7.1 1 8.92 X 10.0 0.0 16.0 10.0 1.6
WEB APPENDIX 8A Calculating Beta Coefficients The CAPM is an ex ante model, which means that all of the variables represent beforethefact, expected values. In particular, the beta coefficient used in
More informationGraph Ordered Pairs on a Coordinate Plane
Graph Ordered Pairs on a Coordinate Plane Student Probe Plot the ordered pair (2, 5) on a coordinate grid. Plot the point the ordered pair (2, 5) on a coordinate grid. Note: If the student correctly plots
More informationGRAPH OF A RATIONAL FUNCTION
GRAPH OF A RATIONAL FUNCTION Find vertical asmptotes and draw them. Look for common factors first. Vertical asmptotes occur where the denominator becomes zero as long as there are no common factors. Find
More information5.4 The Quadratic Formula
Section 5.4 The Quadratic Formula 481 5.4 The Quadratic Formula Consider the general quadratic function f(x) = ax + bx + c. In the previous section, we learned that we can find the zeros of this function
More informationZero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.
MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called
More information2. THE xy PLANE 7 C7
2. THE xy PLANE 2.1. The Real Line When we plot quantities on a graph we can plot not only integer values like 1, 2 and 3 but also fractions, like 3½ or 4¾. In fact we can, in principle, plot any real
More informationIDEAL AND NONIDEAL GASES
2/2016 ideal gas 1/8 IDEAL AND NONIDEAL GASES PURPOSE: To measure how the pressure of a lowdensity gas varies with temperature, to determine the absolute zero of temperature by making a linear fit to
More informationGraphing Motion. Every Picture Tells A Story
Graphing Motion Every Picture Tells A Story Read and interpret motion graphs Construct and draw motion graphs Determine speed, velocity and accleration from motion graphs If you make a graph by hand it
More informationMathematics Curriculum Guide Precalculus 201516. Page 1 of 12
Mathematics Curriculum Guide Precalculus 201516 Page 1 of 12 Paramount Unified School District High School Math Curriculum Guides 2015 16 In 2015 16, PUSD will continue to implement the Standards by providing
More informationTIME VALUE OF MONEY PROBLEM #8: NET PRESENT VALUE Professor Peter Harris Mathematics by Sharon Petrushka
TIME VALUE OF MONEY PROBLEM #8: NET PRESENT VALUE Professor Peter Harris Mathematics by Sharon Petrushka Introduction Creativity Unlimited Corporation is contemplating buying a machine for $100,000, which
More information3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes
Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general
More informationActivity 6 Graphing Linear Equations
Activity 6 Graphing Linear Equations TEACHER NOTES Topic Area: Algebra NCTM Standard: Represent and analyze mathematical situations and structures using algebraic symbols Objective: The student will be
More informationPhysics Lab Report Guidelines
Physics Lab Report Guidelines Summary The following is an outline of the requirements for a physics lab report. A. Experimental Description 1. Provide a statement of the physical theory or principle observed
More informationCoordinate Plane, Slope, and Lines LongTerm Memory Review Review 1
Review. What does slope of a line mean?. How do you find the slope of a line? 4. Plot and label the points A (3, ) and B (, ). a. From point B to point A, by how much does the yvalue change? b. From point
More informationDetermining the Acceleration Due to Gravity
Chabot College Physics Lab Scott Hildreth Determining the Acceleration Due to Gravity Introduction In this experiment, you ll determine the acceleration due to earth s gravitational force with three different
More informationPlots, CurveFitting, and Data Modeling in Microsoft Excel
Plots, CurveFitting, and Data Modeling in Microsoft Excel This handout offers some tips on making nice plots of data collected in your lab experiments, as well as instruction on how to use the builtin
More informationChapter 6: Constructing and Interpreting Graphic Displays of Behavioral Data
Chapter 6: Constructing and Interpreting Graphic Displays of Behavioral Data Chapter Focus Questions What are the benefits of graphic display and visual analysis of behavioral data? What are the fundamental
More informationChapter 4. Kinematics  Velocity and Acceleration. 4.1 Purpose. 4.2 Introduction
Chapter 4 Kinematics  Velocity and Acceleration 4.1 Purpose In this lab, the relationship between position, velocity and acceleration will be explored. In this experiment, friction will be neglected.
More informationEquipotential and Electric Field Mapping
Experiment 1 Equipotential and Electric Field Mapping 1.1 Objectives 1. Determine the lines of constant electric potential for two simple configurations of oppositely charged conductors. 2. Determine the
More information