Your Name: MA 261 Worksheet Monday, April 21, 2014

Size: px
Start display at page:

Download "Your Name: MA 261 Worksheet Monday, April 21, 2014"

Transcription

1 Your Name: MA 261 Worksheet Monday, April 21, Show that 2 11,213 1 is not divisible by 11. Solution: To say that 2 11,213 1 is divisible by 11 is equivalent to saying that 2 11,213 1 (mod 11). Thus, to show our statement is equivalent to showing that 2 11,213 is congruent to something different from 1 modulo 11. Let us take (small) consecutive powers of 2 and see if there is a pattern that we can use to simplify our calculations. Note that (mod 11) (mod 11) (mod 11) (mod 11) (mod 11) (mod 11) (mod 11) (mod 11) (mod 11) (mod 11) (mod 11). Observe that we could have simplified are calculation as follows: (mod 11) (mod 11) 2 10 = (2 5 ) 2 ( 1) 2 = 1 (mod 11). No matter what, we have shown that 2 raised to the tenth power is congruent to 1 modulo 11. If we divide the exponent 11, 213 by 10 we obtain 11, 213 = 10 1, Thus 2 11,213 = ,121+3 = (2 10 ) 1, (1) 1, (mod 11). Thus, we have shown that 2 11,213 8 (mod 11), which implies that 2 11,213 1 cannot be divisible by 11. The above calculations shows that 2 11,213 8 is divisible by (1) Describe all solutions of the congruence 22x 5 (mod 15). Solution 1 (classic method): By Theorem 3.19 this congruence has a solution if and only if there exist integers x and y such that 22x + 15y = 5. We know that this Diophantine equation has a solution if and only if gcd(22, 15) divides 5, by Theorem 1.48 (see also Theorem 3.20). As gcd(22, 15) = 1, we do have a solution. Moreover, all the solutions are described by Theorem Namely, x = x k gcd(22, 15) y = y 0 22k gcd(22, 15) where x 0 and y 0 are a particular solution of 22x + 15y = 5. k Z, Do not memorize those formulas! For your instruction, we repeat next the proof in this specific example. To find a particular solution we use the Euclidean Algorithm (Exercise 1.35) applied to a = 22 and b = 15. We have: 22 = = =

2 2 This says that the last nonzero remainder is 1; this is the gcd between 22 and 15. We can also use the above equations to express 1, the gcd, as a linear combination of 22 and 15, as follows: 1 = = 15 (22 15) 2 1 = ( 2). If we multiply the last equation by 5 we obtain Thus x 0 = 10 and y 0 = ( 10) + 15 (15) = 5. (1) Consider now, another set of integer solutions x and y of 22x + 15y = 5. If we subtract equation (1) from 22x + 15y = 5 we obtain 22 (x + 10) + 15 (y 15) = 0 15 (15 y) = 22 (x + 10). (2) This means that 15 divides the product 22 (x + 10). However, by Theorem 1.41 we have that 15 divides x + 10, as gcd(15, 22) = 1. Thus x + 10 = 15 k x = k, k Z. Substituting back in equation (2) we obtain that y = k, even if we don t need the values for y. Thus the solutions of 22x 5 (mod 15) are x = k where k is any integer. The solution set consists of the numbers {..., 25, 10, 5, 20, 35,... }. Observe, tough, that the only solution that satisfies 0 x 14 is x = 5. This confirms the results in Theorem There is exactly 1 = gcd(22, 15) solution in the range 0 x 14. Solution 2 (easier, but requires some tricks): Notice that, by reducing the coefficient 22 modulo 15, the original congruence is equivalent to 22x 5 (mod 15) 7x 5 (mod 15). Now, multiply both sides of the latter congruence by 2. We obtain 14x 10 (mod 15) x 10 (mod 15), as 14 1 (mod 15). Multiply both sides by 1 and observe that 10 5 (mod 15): x 10 (mod 15) x 5 (mod 15). Hence our solutions are of the form x = l, where l Z. (2) Describe all solutions of the congruence 45x 15 (mod 24). Solution 1 (classic method): By Theorem 3.19 this congruence has a solution if and only if there exist integers x and y such that 45x + 24y = 15. We know that this Diophantine equation has a solution if and only if gcd(45, 24) divides 15, by Theorem 1.48 (see also Theorem 3.20). As gcd(45, 24) = 3, we do have a solution. Moreover, all the solutions are described by Theorem Namely, x = x k gcd(45, 24) y = y 0 45k gcd(45, 24) where x 0 and y 0 are a particular solution of 45x + 24y = 15. k Z,

3 Do not memorize those formulas! For your instruction, we repeat next the proof in this specific example. To find a particular solution we use the Euclidean Algorithm (Exercise 1.35) applied to a = 45 and b = 24. We have: 45 = = = This says that the last nonzero remainder is 3; this is the gcd between 45 and 24. We can also use the above equations to express 3, the gcd, as a linear combination of 45 and 24, as follows: 3 = = 24 (45 24) 3 = ( 1). If we multiply the last equation by 5 we obtain Thus x 0 = 5 and y 0 = ( 5) + 24 (10) = 15. (3) Consider now, another set of integer solutions x and y of 45x + 24y = 15. If we subtract equation (3) from 45x + 24y = 15 we obtain 45 (x + 5) + 24 (y 10) = 0 8 (10 y) = 15 (x + 5), (4) after we divided both sides by 3. This means that 8 divides the product 15 (x+5). However, by Theorem 1.41 we have that 8 divides x + 5, as gcd(8, 15) = 1. Thus x + 5 = 8 k x = k, k Z. Substituting back in equation (4) we obtain that y = 10 8 k, even if we don t need the values for y. Thus the solutions of 45x 15 (mod 24) are x = k, where k is any integer. The solution set consists of the numbers {..., 21, 13, 5, 3, 11, 19, 27,... }. Observe, tough, that the only solutions that satisfies 0 x 23 are x = 3, 11, 19. This confirms the results in Theorem There are exactly 3 = gcd(45, 24) distinct solutions in the range 0 x 23. Solution 2 (easier, but requires even more tricks): Notice that, by reducing the coefficient 45 modulo 24, the original congruence is equivalent to 45x 15 (mod 24) 3x 15 (mod 24). Now, multiply both sides of the latter congruence by 1. We obtain 3x 15 (mod 24) 3x 9 (mod 24), as 15 9 (mod 24). By Theorem 3.19, the congruence 3x 9 (mod 24) has a solution if and only if there exist integers x and y such that 3x + 24y = 9. All terms are divisibile by 3, so that x + 8y = 3. Hence, by using Theorem 3.19 again, we conclude that x is a solution of the simpler congruence x 3 (mod 8) 3x 9 (mod 24) x 3 (mod 8). Hence our solutions are of the form x = 3 + 8l, where l Z. The only solutions that satisfy 0 x 23 are again x = 3, 11, 19. 3

4 4 3. (1) Solve the simultaneous system of congruences x 1 (mod 8) x 2 (mod 25) x 3 (mod 81). Solution: Notice that the numbers 8, 25, and 81 are pairwise relatively prime. Using the proof that we gave for the Chinese Remainder Theorem (see Theorem 3.29), we are looking for a solution of the form that is, x = for suitable x 1, x 2, and x x x x 3, 81 x = x x x 3, (5) If we now substitute the proposed solution described in (5) into the three given congruences we realize that we need to solve the following independent (from each other) congruences x 1 1 (mod 8) 8 81 x 2 2 (mod 25) 8 25 x 3 3 (mod 81). The first congruence reduces to x 1 1 (mod 8) 1 1 x 1 1 (mod 8), because both 25 and 81 are congruent to 1 modulo 8. Thus we can choose x 1 = 1 as a solution. The second congruence reduces to 8 81 x 2 2 (mod 25) 8 6 x 2 2 (mod 25), because 81 is congruent to 6 modulo 25. Again notice that we can simplify the congruence as follows 48 x 2 2 (mod 25) 2 x 2 2 (mod 25), as 48 is congruent to 2 modulo 25. If we multiply the latter congruence by 13 we obtain 2 x 2 2 (mod 25) 26 x 2 26 (mod 25). Since 26 1 modulo 25 we have that x 2 1 (mod 25). Thus we can choose x 2 = 1 as a solution. The third congruence reduces to 8 25 x 3 3 (mod 81) 38 x 3 3 (mod 81), because 8 25 = 200 is congruent to 38 modulo 81. If we multiply the latter congruence by 32 we obtain x (mod 81) x 3 15 (mod 81). since = and 32 3 = modulo 81. Thus we can choose x 3 = 15 as a solution. I am sure you will ask: how did you know that multiplying by 32 would have given such an easy value? It has to do with the fact that gcd(38, 81) = 1. Hence if you apply the Euclidean Algorithm to the pair 81 and 38, you will see that 1 = ( 15). Thus (mod 81).

5 Summing up what we did so far, we have x = ( 1) = 4, 377 satisfies the given congruences. By Theorem 3.29 any other solution x is such that x 4, 377 (mod ) x 4, 377 (mod 16, 200). In other words, the only solution x of the three given congruences such that 0 x 16, 199 is x = 4, (2) Solve the simultaneous system of congruences y 5 (mod 8) y 12 (mod 25) y 47 (mod 81). Solution: Modify the previous calculations on your own. You will look for a solution of the form y = y y y 3, (6) for suitable y 1, y 2, and y 3. You will obtain that y 1 = 5 y 2 = 6 y 3 = 43 do work. Thus y = 15, 437. Again by Theorem 3.29 any other solution y is such that y 15, 437 (mod 16, 200). In other words, the only solution y of the three given congruences such that 0 y 16, 199 is x = 15, (Challenge): Show that for every integer n, the number n 33 n is divisible by 15. Sketch of the solution: Notice that 15 = 3 5 and gcd(3, 5) = 1. Thus by Theorem 1.42 (or Theorem 2.25) it is enough to show that n 33 n is divisible by 3 and by 5, respectively. In other words we need to show n 33 n (mod 3) and n 33 n (mod 5). The above relations will follow once we prove that for any n one has Indeed, and n 3 n (mod 3) and n 5 n (mod 5). (7) n 33 = (n 3 ) 11 n 11 = (n 3 ) 3 n 2 n 3 n 2 n n 2 = n 3 n (mod 3), n 33 = (n 5 ) 6 n 3 n 6 n 3 = n 9 = n 5 n 4 n n 4 = n 5 n (mod 5). Now, to prove the congruences in equation (7) we have to distinguish various cases. When we consider the congruences modulo 3 we have the following three cases n 0 (mod 3) n 1 (mod 3) n 2 (mod 3) that we need to analyze. When we consider the congruences modulo 5 we have the following five cases n 0 (mod 5) n 1 (mod 5) n 2 (mod 5) n 3 (mod 5) n 4 (mod 5) that we need to analyze.

6 6 Let me verify for you (7) in one of these cases so that you understand the trick. For instance, suppose that n 2 (mod 5). Then by Theorem 1.18 we have that n (mod 5). But 2 5 = 32 which is congruent to 2 modulo 5. Hence n 2 (mod 5) n 5 2 (mod 5). Now, by the symmetric (Theorem 1.10) and the transitive (Theorem 1.11) properties of congruences, the two congruences above yield n 5 n (mod 5). The remaining cases can be verified similarly.

Applications of Fermat s Little Theorem and Congruences

Applications of Fermat s Little Theorem and Congruences Applications of Fermat s Little Theorem and Congruences Definition: Let m be a positive integer. Then integers a and b are congruent modulo m, denoted by a b mod m, if m (a b). Example: 3 1 mod 2, 6 4

More information

Math 319 Problem Set #3 Solution 21 February 2002

Math 319 Problem Set #3 Solution 21 February 2002 Math 319 Problem Set #3 Solution 21 February 2002 1. ( 2.1, problem 15) Find integers a 1, a 2, a 3, a 4, a 5 such that every integer x satisfies at least one of the congruences x a 1 (mod 2), x a 2 (mod

More information

Homework until Test #2

Homework until Test #2 MATH31: Number Theory Homework until Test # Philipp BRAUN Section 3.1 page 43, 1. It has been conjectured that there are infinitely many primes of the form n. Exhibit five such primes. Solution. Five such

More information

Computing exponents modulo a number: Repeated squaring

Computing exponents modulo a number: Repeated squaring Computing exponents modulo a number: Repeated squaring How do you compute (1415) 13 mod 2537 = 2182 using just a calculator? Or how do you check that 2 340 mod 341 = 1? You can do this using the method

More information

8 Primes and Modular Arithmetic

8 Primes and Modular Arithmetic 8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.

More information

Number Theory. Proof. Suppose otherwise. Then there would be a finite number n of primes, which we may

Number Theory. Proof. Suppose otherwise. Then there would be a finite number n of primes, which we may Number Theory Divisibility and Primes Definition. If a and b are integers and there is some integer c such that a = b c, then we say that b divides a or is a factor or divisor of a and write b a. Definition

More information

CHAPTER 5. Number Theory. 1. Integers and Division. Discussion

CHAPTER 5. Number Theory. 1. Integers and Division. Discussion CHAPTER 5 Number Theory 1. Integers and Division 1.1. Divisibility. Definition 1.1.1. Given two integers a and b we say a divides b if there is an integer c such that b = ac. If a divides b, we write a

More information

V55.0106 Quantitative Reasoning: Computers, Number Theory and Cryptography

V55.0106 Quantitative Reasoning: Computers, Number Theory and Cryptography V55.0106 Quantitative Reasoning: Computers, Number Theory and Cryptography 3 Congruence Congruences are an important and useful tool for the study of divisibility. As we shall see, they are also critical

More information

Every Positive Integer is the Sum of Four Squares! (and other exciting problems)

Every Positive Integer is the Sum of Four Squares! (and other exciting problems) Every Positive Integer is the Sum of Four Squares! (and other exciting problems) Sophex University of Texas at Austin October 18th, 00 Matilde N. Lalín 1. Lagrange s Theorem Theorem 1 Every positive integer

More information

Some facts about polynomials modulo m (Full proof of the Fingerprinting Theorem)

Some facts about polynomials modulo m (Full proof of the Fingerprinting Theorem) Some facts about polynomials modulo m (Full proof of the Fingerprinting Theorem) In order to understand the details of the Fingerprinting Theorem on fingerprints of different texts from Chapter 19 of the

More information

Quotient Rings and Field Extensions

Quotient Rings and Field Extensions Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.

More information

PYTHAGOREAN TRIPLES KEITH CONRAD

PYTHAGOREAN TRIPLES KEITH CONRAD PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

More information

Kevin James. MTHSC 412 Section 2.4 Prime Factors and Greatest Comm

Kevin James. MTHSC 412 Section 2.4 Prime Factors and Greatest Comm MTHSC 412 Section 2.4 Prime Factors and Greatest Common Divisor Greatest Common Divisor Definition Suppose that a, b Z. Then we say that d Z is a greatest common divisor (gcd) of a and b if the following

More information

The Euclidean Algorithm

The Euclidean Algorithm The Euclidean Algorithm A METHOD FOR FINDING THE GREATEST COMMON DIVISOR FOR TWO LARGE NUMBERS To be successful using this method you have got to know how to divide. If this is something that you have

More information

Chapter 2 Remodulization of Congruences Proceedings NCUR VI. è1992è, Vol. II, pp. 1036í1041. Jeærey F. Gold Department of Mathematics, Department of Physics University of Utah Don H. Tucker Department

More information

= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that

= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without

More information

GREATEST COMMON DIVISOR

GREATEST COMMON DIVISOR DEFINITION: GREATEST COMMON DIVISOR The greatest common divisor (gcd) of a and b, denoted by (a, b), is the largest common divisor of integers a and b. THEOREM: If a and b are nonzero integers, then their

More information

The Chinese Remainder Theorem

The Chinese Remainder Theorem The Chinese Remainder Theorem Evan Chen evanchen@mit.edu February 3, 2015 The Chinese Remainder Theorem is a theorem only in that it is useful and requires proof. When you ask a capable 15-year-old why

More information

Breaking The Code. Ryan Lowe. Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and

Breaking The Code. Ryan Lowe. Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and Breaking The Code Ryan Lowe Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and a minor in Applied Physics. As a sophomore, he took an independent study

More information

Vieta s Formulas and the Identity Theorem

Vieta s Formulas and the Identity Theorem Vieta s Formulas and the Identity Theorem This worksheet will work through the material from our class on 3/21/2013 with some examples that should help you with the homework The topic of our discussion

More information

Five fundamental operations. mathematics: addition, subtraction, multiplication, division, and modular forms

Five fundamental operations. mathematics: addition, subtraction, multiplication, division, and modular forms The five fundamental operations of mathematics: addition, subtraction, multiplication, division, and modular forms UC Berkeley Trinity University March 31, 2008 This talk is about counting, and it s about

More information

k, then n = p2α 1 1 pα k

k, then n = p2α 1 1 pα k Powers of Integers An integer n is a perfect square if n = m for some integer m. Taking into account the prime factorization, if m = p α 1 1 pα k k, then n = pα 1 1 p α k k. That is, n is a perfect square

More information

Stupid Divisibility Tricks

Stupid Divisibility Tricks Stupid Divisibility Tricks 101 Ways to Stupefy Your Friends Appeared in Math Horizons November, 2006 Marc Renault Shippensburg University Mathematics Department 1871 Old Main Road Shippensburg, PA 17013

More information

Settling a Question about Pythagorean Triples

Settling a Question about Pythagorean Triples Settling a Question about Pythagorean Triples TOM VERHOEFF Department of Mathematics and Computing Science Eindhoven University of Technology P.O. Box 513, 5600 MB Eindhoven, The Netherlands E-Mail address:

More information

3 0 + 4 + 3 1 + 1 + 3 9 + 6 + 3 0 + 1 + 3 0 + 1 + 3 2 mod 10 = 4 + 3 + 1 + 27 + 6 + 1 + 1 + 6 mod 10 = 49 mod 10 = 9.

3 0 + 4 + 3 1 + 1 + 3 9 + 6 + 3 0 + 1 + 3 0 + 1 + 3 2 mod 10 = 4 + 3 + 1 + 27 + 6 + 1 + 1 + 6 mod 10 = 49 mod 10 = 9. SOLUTIONS TO HOMEWORK 2 - MATH 170, SUMMER SESSION I (2012) (1) (Exercise 11, Page 107) Which of the following is the correct UPC for Progresso minestrone soup? Show why the other numbers are not valid

More information

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory

More information

8 Divisibility and prime numbers

8 Divisibility and prime numbers 8 Divisibility and prime numbers 8.1 Divisibility In this short section we extend the concept of a multiple from the natural numbers to the integers. We also summarize several other terms that express

More information

Chapter 3. if 2 a i then location: = i. Page 40

Chapter 3. if 2 a i then location: = i. Page 40 Chapter 3 1. Describe an algorithm that takes a list of n integers a 1,a 2,,a n and finds the number of integers each greater than five in the list. Ans: procedure greaterthanfive(a 1,,a n : integers)

More information

Student Outcomes. Lesson Notes. Classwork. Discussion (10 minutes)

Student Outcomes. Lesson Notes. Classwork. Discussion (10 minutes) NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 5 8 Student Outcomes Students know the definition of a number raised to a negative exponent. Students simplify and write equivalent expressions that contain

More information

On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples

On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples Brian Hilley Boston College MT695 Honors Seminar March 3, 2006 1 Introduction 1.1 Mazur s Theorem Let C be a

More information

Revised Version of Chapter 23. We learned long ago how to solve linear congruences. ax c (mod m)

Revised Version of Chapter 23. We learned long ago how to solve linear congruences. ax c (mod m) Chapter 23 Squares Modulo p Revised Version of Chapter 23 We learned long ago how to solve linear congruences ax c (mod m) (see Chapter 8). It s now time to take the plunge and move on to quadratic equations.

More information

Indiana State Core Curriculum Standards updated 2009 Algebra I

Indiana State Core Curriculum Standards updated 2009 Algebra I Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and

More information

Intermediate Math Circles March 7, 2012 Linear Diophantine Equations II

Intermediate Math Circles March 7, 2012 Linear Diophantine Equations II Intermediate Math Circles March 7, 2012 Linear Diophantine Equations II Last week: How to find one solution to a linear Diophantine equation This week: How to find all solutions to a linear Diophantine

More information

Continued Fractions. Darren C. Collins

Continued Fractions. Darren C. Collins Continued Fractions Darren C Collins Abstract In this paper, we discuss continued fractions First, we discuss the definition and notation Second, we discuss the development of the subject throughout history

More information

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called

More information

Section 4.2: The Division Algorithm and Greatest Common Divisors

Section 4.2: The Division Algorithm and Greatest Common Divisors Section 4.2: The Division Algorithm and Greatest Common Divisors The Division Algorithm The Division Algorithm is merely long division restated as an equation. For example, the division 29 r. 20 32 948

More information

MATH 289 PROBLEM SET 4: NUMBER THEORY

MATH 289 PROBLEM SET 4: NUMBER THEORY MATH 289 PROBLEM SET 4: NUMBER THEORY 1. The greatest common divisor If d and n are integers, then we say that d divides n if and only if there exists an integer q such that n = qd. Notice that if d divides

More information

Zeros of Polynomial Functions

Zeros of Polynomial Functions Zeros of Polynomial Functions The Rational Zero Theorem If f (x) = a n x n + a n-1 x n-1 + + a 1 x + a 0 has integer coefficients and p/q (where p/q is reduced) is a rational zero, then p is a factor of

More information

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

More information

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1. MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

More information

RSA Encryption. Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles October 10, 2003

RSA Encryption. Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles October 10, 2003 RSA Encryption Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles October 10, 2003 1 Public Key Cryptography One of the biggest problems in cryptography is the distribution of keys.

More information

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12 CONTINUED FRACTIONS AND PELL S EQUATION SEUNG HYUN YANG Abstract. In this REU paper, I will use some important characteristics of continued fractions to give the complete set of solutions to Pell s equation.

More information

Math 55: Discrete Mathematics

Math 55: Discrete Mathematics Math 55: Discrete Mathematics UC Berkeley, Fall 2011 Homework # 5, due Wednesday, February 22 5.1.4 Let P (n) be the statement that 1 3 + 2 3 + + n 3 = (n(n + 1)/2) 2 for the positive integer n. a) What

More information

An Introduction to the RSA Encryption Method

An Introduction to the RSA Encryption Method April 17, 2012 Outline 1 History 2 3 4 5 History RSA stands for Rivest, Shamir, and Adelman, the last names of the designers It was first published in 1978 as one of the first public-key crytographic systems

More information

MATH 537 (Number Theory) FALL 2016 TENTATIVE SYLLABUS

MATH 537 (Number Theory) FALL 2016 TENTATIVE SYLLABUS MATH 537 (Number Theory) FALL 2016 TENTATIVE SYLLABUS Class Meetings: MW 2:00-3:15 pm in Physics 144, September 7 to December 14 [Thanksgiving break November 23 27; final exam December 21] Instructor:

More information

CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY

CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY January 10, 2010 CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY The set of polynomials over a field F is a ring, whose structure shares with the ring of integers many characteristics.

More information

Solution to Exercise 2.2. Both m and n are divisible by d, som = dk and n = dk. Thus m ± n = dk ± dk = d(k ± k ),som + n and m n are divisible by d.

Solution to Exercise 2.2. Both m and n are divisible by d, som = dk and n = dk. Thus m ± n = dk ± dk = d(k ± k ),som + n and m n are divisible by d. [Chap. ] Pythagorean Triples 6 (b) The table suggests that in every primitive Pythagorean triple, exactly one of a, b,orc is a multiple of 5. To verify this, we use the Pythagorean Triples Theorem to write

More information

Number Theory Hungarian Style. Cameron Byerley s interpretation of Csaba Szabó s lectures

Number Theory Hungarian Style. Cameron Byerley s interpretation of Csaba Szabó s lectures Number Theory Hungarian Style Cameron Byerley s interpretation of Csaba Szabó s lectures August 20, 2005 2 0.1 introduction Number theory is a beautiful subject and even cooler when you learn about it

More information

Lectures on Number Theory. Lars-Åke Lindahl

Lectures on Number Theory. Lars-Åke Lindahl Lectures on Number Theory Lars-Åke Lindahl 2002 Contents 1 Divisibility 1 2 Prime Numbers 7 3 The Linear Diophantine Equation ax+by=c 12 4 Congruences 15 5 Linear Congruences 19 6 The Chinese Remainder

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

H/wk 13, Solutions to selected problems

H/wk 13, Solutions to selected problems H/wk 13, Solutions to selected problems Ch. 4.1, Problem 5 (a) Find the number of roots of x x in Z 4, Z Z, any integral domain, Z 6. (b) Find a commutative ring in which x x has infinitely many roots.

More information

Chapter 9. Systems of Linear Equations

Chapter 9. Systems of Linear Equations Chapter 9. Systems of Linear Equations 9.1. Solve Systems of Linear Equations by Graphing KYOTE Standards: CR 21; CA 13 In this section we discuss how to solve systems of two linear equations in two variables

More information

2.6 Exponents and Order of Operations

2.6 Exponents and Order of Operations 2.6 Exponents and Order of Operations We begin this section with exponents applied to negative numbers. The idea of applying an exponent to a negative number is identical to that of a positive number (repeated

More information

Basics of Polynomial Theory

Basics of Polynomial Theory 3 Basics of Polynomial Theory 3.1 Polynomial Equations In geodesy and geoinformatics, most observations are related to unknowns parameters through equations of algebraic (polynomial) type. In cases where

More information

Equations, Inequalities & Partial Fractions

Equations, Inequalities & Partial Fractions Contents Equations, Inequalities & Partial Fractions.1 Solving Linear Equations 2.2 Solving Quadratic Equations 1. Solving Polynomial Equations 1.4 Solving Simultaneous Linear Equations 42.5 Solving Inequalities

More information

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 3 Binary Operations We are used to addition and multiplication of real numbers. These operations combine two real numbers

More information

Category 3 Number Theory Meet #1, October, 2000

Category 3 Number Theory Meet #1, October, 2000 Category 3 Meet #1, October, 2000 1. For how many positive integral values of n will 168 n be a whole number? 2. What is the greatest integer that will always divide the product of four consecutive integers?

More information

The last three chapters introduced three major proof techniques: direct,

The last three chapters introduced three major proof techniques: direct, CHAPTER 7 Proving Non-Conditional Statements The last three chapters introduced three major proof techniques: direct, contrapositive and contradiction. These three techniques are used to prove statements

More information

Clock Arithmetic and Modular Systems Clock Arithmetic The introduction to Chapter 4 described a mathematical system

Clock Arithmetic and Modular Systems Clock Arithmetic The introduction to Chapter 4 described a mathematical system CHAPTER Number Theory FIGURE FIGURE FIGURE Plus hours Plus hours Plus hours + = + = + = FIGURE. Clock Arithmetic and Modular Systems Clock Arithmetic The introduction to Chapter described a mathematical

More information

Handout NUMBER THEORY

Handout NUMBER THEORY Handout of NUMBER THEORY by Kus Prihantoso Krisnawan MATHEMATICS DEPARTMENT FACULTY OF MATHEMATICS AND NATURAL SCIENCES YOGYAKARTA STATE UNIVERSITY 2012 Contents Contents i 1 Some Preliminary Considerations

More information

Factoring Algorithms

Factoring Algorithms Factoring Algorithms The p 1 Method and Quadratic Sieve November 17, 2008 () Factoring Algorithms November 17, 2008 1 / 12 Fermat s factoring method Fermat made the observation that if n has two factors

More information

Lecture 14: Section 3.3

Lecture 14: Section 3.3 Lecture 14: Section 3.3 Shuanglin Shao October 23, 2013 Definition. Two nonzero vectors u and v in R n are said to be orthogonal (or perpendicular) if u v = 0. We will also agree that the zero vector in

More information

Discrete Mathematics, Chapter 4: Number Theory and Cryptography

Discrete Mathematics, Chapter 4: Number Theory and Cryptography Discrete Mathematics, Chapter 4: Number Theory and Cryptography Richard Mayr University of Edinburgh, UK Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 4 1 / 35 Outline 1 Divisibility

More information

Some practice problems for midterm 2

Some practice problems for midterm 2 Some practice problems for midterm 2 Kiumars Kaveh November 15, 2011 Problem: What is the remainder of 6 2000 when divided by 11? Solution: This is a long-winded way of asking for the value of 6 2000 mod

More information

SYSTEMS OF PYTHAGOREAN TRIPLES. Acknowledgements. I would like to thank Professor Laura Schueller for advising and guiding me

SYSTEMS OF PYTHAGOREAN TRIPLES. Acknowledgements. I would like to thank Professor Laura Schueller for advising and guiding me SYSTEMS OF PYTHAGOREAN TRIPLES CHRISTOPHER TOBIN-CAMPBELL Abstract. This paper explores systems of Pythagorean triples. It describes the generating formulas for primitive Pythagorean triples, determines

More information

Sample Problems. Practice Problems

Sample Problems. Practice Problems Lecture Notes Quadratic Word Problems page 1 Sample Problems 1. The sum of two numbers is 31, their di erence is 41. Find these numbers.. The product of two numbers is 640. Their di erence is 1. Find these

More information

a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)

a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4) ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n 1 + + a 1 x

More information

MATH10040 Chapter 2: Prime and relatively prime numbers

MATH10040 Chapter 2: Prime and relatively prime numbers MATH10040 Chapter 2: Prime and relatively prime numbers Recall the basic definition: 1. Prime numbers Definition 1.1. Recall that a positive integer is said to be prime if it has precisely two positive

More information

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)! Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following

More information

Number Theory: A Mathemythical Approach. Student Resources. Printed Version

Number Theory: A Mathemythical Approach. Student Resources. Printed Version Number Theory: A Mathemythical Approach Student Resources Printed Version ii Contents 1 Appendix 1 2 Hints to Problems 3 Chapter 1 Hints......................................... 3 Chapter 2 Hints.........................................

More information

Chapter 4 Complementary Sets Of Systems Of Congruences Proceedings NCUR VII. è1993è, Vol. II, pp. 793í796. Jeærey F. Gold Department of Mathematics, Department of Physics University of Utah Don H. Tucker

More information

Linear Programming Notes V Problem Transformations

Linear Programming Notes V Problem Transformations Linear Programming Notes V Problem Transformations 1 Introduction Any linear programming problem can be rewritten in either of two standard forms. In the first form, the objective is to maximize, the material

More information

Lecture 3: Finding integer solutions to systems of linear equations

Lecture 3: Finding integer solutions to systems of linear equations Lecture 3: Finding integer solutions to systems of linear equations Algorithmic Number Theory (Fall 2014) Rutgers University Swastik Kopparty Scribe: Abhishek Bhrushundi 1 Overview The goal of this lecture

More information

Section 1.1 Linear Equations: Slope and Equations of Lines

Section 1.1 Linear Equations: Slope and Equations of Lines Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of

More information

z 0 and y even had the form

z 0 and y even had the form Gaussian Integers The concepts of divisibility, primality and factoring are actually more general than the discussion so far. For the moment, we have been working in the integers, which we denote by Z

More information

SUM OF TWO SQUARES JAHNAVI BHASKAR

SUM OF TWO SQUARES JAHNAVI BHASKAR SUM OF TWO SQUARES JAHNAVI BHASKAR Abstract. I will investigate which numbers can be written as the sum of two squares and in how many ways, providing enough basic number theory so even the unacquainted

More information

Polynomial and Synthetic Division. Long Division of Polynomials. Example 1. 6x 2 7x 2 x 2) 19x 2 16x 4 6x3 12x 2 7x 2 16x 7x 2 14x. 2x 4.

Polynomial and Synthetic Division. Long Division of Polynomials. Example 1. 6x 2 7x 2 x 2) 19x 2 16x 4 6x3 12x 2 7x 2 16x 7x 2 14x. 2x 4. _.qd /7/5 9: AM Page 5 Section.. Polynomial and Synthetic Division 5 Polynomial and Synthetic Division What you should learn Use long division to divide polynomials by other polynomials. Use synthetic

More information

Solutions of Linear Equations in One Variable

Solutions of Linear Equations in One Variable 2. Solutions of Linear Equations in One Variable 2. OBJECTIVES. Identify a linear equation 2. Combine like terms to solve an equation We begin this chapter by considering one of the most important tools

More information

MATH 22. THE FUNDAMENTAL THEOREM of ARITHMETIC. Lecture R: 10/30/2003

MATH 22. THE FUNDAMENTAL THEOREM of ARITHMETIC. Lecture R: 10/30/2003 MATH 22 Lecture R: 10/30/2003 THE FUNDAMENTAL THEOREM of ARITHMETIC You must remember this, A kiss is still a kiss, A sigh is just a sigh; The fundamental things apply, As time goes by. Herman Hupfeld

More information

COMP 250 Fall 2012 lecture 2 binary representations Sept. 11, 2012

COMP 250 Fall 2012 lecture 2 binary representations Sept. 11, 2012 Binary numbers The reason humans represent numbers using decimal (the ten digits from 0,1,... 9) is that we have ten fingers. There is no other reason than that. There is nothing special otherwise about

More information

Factorization Algorithms for Polynomials over Finite Fields

Factorization Algorithms for Polynomials over Finite Fields Degree Project Factorization Algorithms for Polynomials over Finite Fields Sajid Hanif, Muhammad Imran 2011-05-03 Subject: Mathematics Level: Master Course code: 4MA11E Abstract Integer factorization is

More information

3 Some Integer Functions

3 Some Integer Functions 3 Some Integer Functions A Pair of Fundamental Integer Functions The integer function that is the heart of this section is the modulo function. However, before getting to it, let us look at some very simple

More information

2.3 Solving Equations Containing Fractions and Decimals

2.3 Solving Equations Containing Fractions and Decimals 2. Solving Equations Containing Fractions and Decimals Objectives In this section, you will learn to: To successfully complete this section, you need to understand: Solve equations containing fractions

More information

Greatest Common Factors and Least Common Multiples with Venn Diagrams

Greatest Common Factors and Least Common Multiples with Venn Diagrams Greatest Common Factors and Least Common Multiples with Venn Diagrams Stephanie Kolitsch and Louis Kolitsch The University of Tennessee at Martin Martin, TN 38238 Abstract: In this article the authors

More information

Math Workshop October 2010 Fractions and Repeating Decimals

Math Workshop October 2010 Fractions and Repeating Decimals Math Workshop October 2010 Fractions and Repeating Decimals This evening we will investigate the patterns that arise when converting fractions to decimals. As an example of what we will be looking at,

More information

17 Greatest Common Factors and Least Common Multiples

17 Greatest Common Factors and Least Common Multiples 17 Greatest Common Factors and Least Common Multiples Consider the following concrete problem: An architect is designing an elegant display room for art museum. One wall is to be covered with large square

More information

DIVISIBILITY AND GREATEST COMMON DIVISORS

DIVISIBILITY AND GREATEST COMMON DIVISORS DIVISIBILITY AND GREATEST COMMON DIVISORS KEITH CONRAD 1 Introduction We will begin with a review of divisibility among integers, mostly to set some notation and to indicate its properties Then we will

More information

POLYNOMIAL FUNCTIONS

POLYNOMIAL FUNCTIONS POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a

More information

3.1. Solving linear equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

3.1. Solving linear equations. Introduction. Prerequisites. Learning Outcomes. Learning Style Solving linear equations 3.1 Introduction Many problems in engineering reduce to the solution of an equation or a set of equations. An equation is a type of mathematical expression which contains one or

More information

Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.

Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook. Elementary Number Theory and Methods of Proof CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.edu/~cse215 1 Number theory Properties: 2 Properties of integers (whole

More information

Integrating algebraic fractions

Integrating algebraic fractions Integrating algebraic fractions Sometimes the integral of an algebraic fraction can be found by first epressing the algebraic fraction as the sum of its partial fractions. In this unit we will illustrate

More information

Chapter 11 Number Theory

Chapter 11 Number Theory Chapter 11 Number Theory Number theory is one of the oldest branches of mathematics. For many years people who studied number theory delighted in its pure nature because there were few practical applications

More information

3. Mathematical Induction

3. Mathematical Induction 3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)

More information

by the matrix A results in a vector which is a reflection of the given

by the matrix A results in a vector which is a reflection of the given Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the y-axis We observe that

More information

Math 55: Discrete Mathematics

Math 55: Discrete Mathematics Math 55: Discrete Mathematics UC Berkeley, Spring 2012 Homework # 9, due Wednesday, April 11 8.1.5 How many ways are there to pay a bill of 17 pesos using a currency with coins of values of 1 peso, 2 pesos,

More information

Just the Factors, Ma am

Just the Factors, Ma am 1 Introduction Just the Factors, Ma am The purpose of this note is to find and study a method for determining and counting all the positive integer divisors of a positive integer Let N be a given positive

More information

SECTION 10-2 Mathematical Induction

SECTION 10-2 Mathematical Induction 73 0 Sequences and Series 6. Approximate e 0. using the first five terms of the series. Compare this approximation with your calculator evaluation of e 0.. 6. Approximate e 0.5 using the first five terms

More information

15. Symmetric polynomials

15. Symmetric polynomials 15. Symmetric polynomials 15.1 The theorem 15.2 First examples 15.3 A variant: discriminants 1. The theorem Let S n be the group of permutations of {1,, n}, also called the symmetric group on n things.

More information

Factoring. Factoring 1

Factoring. Factoring 1 Factoring Factoring 1 Factoring Security of RSA algorithm depends on (presumed) difficulty of factoring o Given N = pq, find p or q and RSA is broken o Rabin cipher also based on factoring Factoring like

More information

Elementary Number Theory

Elementary Number Theory Elementary Number Theory A revision by Jim Hefferon, St Michael s College, 2003-Dec of notes by W. Edwin Clark, University of South Florida, 2002-Dec L A TEX source compiled on January 5, 2004 by Jim Hefferon,

More information