Cameras for Optical Microscopy

Size: px
Start display at page:

Download "Cameras for Optical Microscopy"

Transcription

1 Cameras for Optical Microscopy

2 Charge Coupled Device (CCD) Cameras The fundamental processes involved in creating an image with a CCD camera include: exposure of the photodiode array elements to incident light conversion of accumulated photons to electrons organization of the resulting electronic charge in potential wells transfer of charge packets through the shift registers to the output amplifier Charge output from the shift registers is converted to voltage and amplified prior to digitization in the A/D converter.

3 Light-sensing unit of the CCD is a metal oxide semiconductor (MOS) capacitor operated as a photodiode and storage device. The substrate is a p/n type silicon wafer insulated with a thin layer of silicon dioxide (approximately 100 nanometers). Pixels, are defined in the silicon matrix by an orthogonal grid of narrow transparent currentcarrying electrode strips, or gates that are used to control the collection and transfer of photoelectrons. Electrons are liberated by photon interaction on a thin transparent silicon layer. With reverse bias operation, negatively charged electrons migrate to an area underneath the positively charged gate electrode (potential well). Individual pixels are isolated from their neighbors by insulating barriers, or channel stops. Charges are then transferred to a neighboring pixel by controlling the gate voltage.

4 At the end of the integration period, accumulated charge in pixels is shifted row by row across the parallel register which is then transferred into the serial shift register. Charge contents of pixels are transferred into an output node to be read by an onchip amplifier, which boosts the electron signal and converts it into an analog voltage output. An ADC assigns a digital value for each pixel according to its voltage amplitude. Each pixel value is stored in computer memory and the complete image file is displayed for visual evaluation. The CCD is cleared of residual charge prior to the next exposure by executing the full readout cycle except for the digitization step.

5

6 CCD Architecture Full Frame: Nearly 100% photosensitive, no dead space between pixels Time resolution is limited by readout speed (dead time) Frame Transfer: One half of the chip is masked and used for storage. Photon accumulation and readout can be done simultaneously. Interline Transfer: Charges can be transferred to the adjacent pixel. Faster shift. Lower spatial resolution and lost signal. Adherent microlenses can be used to increase photosensitive area by 75%.

7 Quantum Efficiency of CCDs The losses due to gate channel structures are completely eliminated in the back-illuminated CCD. In this design, the back of the CCD has been thinned (10-15 microns) by etching until it is transparent nanometer range have a relatively high absorption coefficient in silicon. Front illuminated CCDs through the gate electrodes and oxide coatings, are more sensitive between 550 and 900 nanometers.

8 Signal (S) is determined as a product of input light level (I), quantum efficiency (QE) and the integration time (t) measured in seconds. S = I QE T The primary sources of noise considered in determining the ratio are statistical (shot noise), thermal noise (dark current) and preamplification or readout noise, SNR = IQ e t / [ IQ e t + Dt + N r 2 ] 1/2 I the incident photon flux (photons/pixel/second), D the dark current (electrons/pixel/second), and N(r) represents read noise (electrons rms/pixel/image). At a low light regime, signal must be multiplied to improve SNR!

9 Intensified CCDs Incoming photons are converted to electrons in the photocathode. Electron output is amplified in the microchannel plate. Amplified electrons are accelerated by a high potential difference onto a phosphorescent screen that converts the electrons to photons. Fluorescent signal is projected onto individual pixels on a CCD array by a fiber optic tapered bundle. The resolution is ultimately limited by the photocathode, the micro-channel plate, and the output phosphor. 50% of fluorescence signal spreads over to neighboring pixels

10 Electron Multiplied CCDs EMCCD is capable of detecting single photon events whilst maintaining high Quantum Efficiency, achievable by way of a unique electron multiplying structure built into the sensor. Unlike a conventional CCD, an EMCCD is not limited by the readout noise of the output amplifier The EM register has several hundred stages that use higher than normal clock voltages. As charge is transferred through each stage the phenomenon of Impact Ionization is utilized to produce secondary electrons, and hence EM gain.

11 R1 and R3) are clocked with drive pulses of normal potential, which is typically on the order of 5 to 15 volts (the R3 gates have zero potential for the clocking phase. R2 is clocked at higher voltage (35-50 volts) preceded by a gate held at a low DC level The potential difference sustains the impact ionization process as electrons are transferred from phase 1 to phase 2 in the normal clocking sequence.

12 The multiplication gain is exponentially proportional to the applied high phase-2 voltage, and can be increased or decreased by varying the clock voltages. M = (1 + g) N where g (0.013) is the probability of generating a secondary electron and N (512) is the number of pixels in the multiplication register. Total charge multiplication gain is over 744.

13 Parameters in Digital Imaging Quantum Efficiency: Probability of generating photoelectron out of incoming photon. Dark Current: Spontaneous generation of electron due to thermal noise. Spatial Resolution: Determines the ability to capture fine specimen details without pixels being visible in the image. Effective Pixel Size: Actual camera pixel size divided by magnification. Nyquist Criterion, 100 nm-160 nm for optimum resolution and brightness. Signal-to-Noise Ratio: Determines the visibility and clarity of specimen signals relative to the image background. Dynamic Range: Defines the dynamic range or number of gray levels that are distinguishable in the displayed image. 16 bit ADC gives Time Resolution: The sampling (frame) rate determines the ability to follow live specimen movement or rapid kinetic processes. Readout Rate: Acquisition speed in serial registry. 10MHz camera can take 30 msec images with 512*512 pixels. Faster readout increases the electronic noise. Region of Interest: Subarray image provides faster acquisition (whole rows are read regardless of the image size). Binning: Combining the pixels, improves time resolution with poorer spatial resolution.

14 State of the Art EMCCDs

15 CCD Camera Noise Sources Dark Current (per sec): Spontaneous generation of electrons due to thermal noise. Solution: Peltier cooling down the CCD chip to -80. Typical value is less than a photon per sec. Readout Rate (per image per pixel): Electronic noise in on-chip preamplifier during converting electrons to voltages. Increases by increasing the speed of acquisition. Solution: Electron Multiplication Gain. Pixelation Error: Nonuniformity in each pixel size (typically <10%), sensitivity and spacing. Solution: Scientific grade cameras $$$$ Photon Shot Noise: Fundamental limit of light collection. Poissonian error. No solution. Bright samples are photon shot noise limited, whereas single molecules or fast acquisition is readout noise limited.

16 EM-CCD Excess Noise Factors Due to the probabilistic nature of the impact ionization process, the uncertainty in the gain produces excess noise factor (typically 1.3). This factors directly effect photon shot noise limit. The clock pulses may produce a secondary electron even when no primary electron is present for transfer. Clock induced charge, dark related signal! Signal = (I.Q e.t) Noise = [(I.Q e.t. F 2 ) + (D. F 2 ) + (N r / M) 2 ] 1/2 where F represents the excess noise factor, D is the total dark signal, N(r) is the camera read noise, and M is the on-chip multiplication gain.

17 At low light levels, EM reduces the readout noise below 1 electron/pixel/frame, significantly enhancing SNR. At high light levels, EM increases photon shot noise, which may reduce the SNR.

18 EMCCD CCD ICCD Single Photon Sensitive Good resolution - Pixel limited Good dynamic range possible Fast or slow readout Flexible - Operate as EMCCD or CCD (gain can be turned off). Conventional CCD amplifier on some sensors No photocathode! Relatively affordable High and broad QE Good resolution pixel limited Good dynamic range possible No multiplication noise No photocathode! Greater choice of sensor formats available Single Photon Sensitive Nano and Picosecond time-resolved gating possible Fast or slow readout NIR photocathode options No nano or picosecond gating (microsecond gating available on some recent interline EMCCD sensors) Multiplication noise (effectively increases shot noise by x1.41) Read noise limited - not single photon sensitive Limited readout speed due to read noise restraints QE restricted by photocathode (<50% max) Poor dynamic range need to operate at high gains Cross-talk between channels of MCP increased point spread function Higher multiplication noise Artefacts, e.g. halo, chickenwire Expensive Damage susceptible longevity issues

19 Future: Scientific CMOS Cameras CMOS (complementary metal-oxide semiconductor) In a CCD device, the charge is actually transported across the chip and read at one corner of the array. An analog-to-digital converter turns each pixel's value into a digital value. In a CMOS sensor, each pixel has its own charge-to-voltage conversion, and the sensor includes amplifiers, noisecorrection, and digitization circuits, so that the chip outputs digital bits. Each pixel can be read individually. The individual amplifiers induce "fixed pattern noise" that arises from switching and sampling artifacts of individual pixel amplifiers. Because each pixel on a CMOS sensor has several transistors located next to it, the light sensitivity of a CMOS chip tends to be lower. Many of the photons hitting the chip hit the transistors instead of the photodiode. With each pixel doing its own conversion, uniformity is lower. CMOS sensors allow gain manipulation of individual photodiodes, region-of-interest read-out, high speed sampling, electronic shuttering and exposure control.

20 State of the Art CMOS Cameras Low cost Low readout rate No need for EM, hence no multiplication noise Small pixels Faster speeds Rolling shutter mode!

21 Back-illuminated scmos cameras will outperform EMCCDs at moderate and high light levels EM-CCDs will continue to dominate low-light level applications.

22 1. Histogram Stretching Digital Image Processing

23 2. ADJUSTING GAMMA TO CREATE EXPONENTIAL LUTs Displayed value = 255 (Data value - Min)/(Max - Min), linear LUT Displayed value = [(Normalized value - Min)/(Max - Min)] γ, exponential LUT With settings γ<1, low pixel values are boosted relative to high values and reduces the contrast between bright features and the darker background. A setting of 0.7 approximates the response of the eye, allowing the image to more closely resemble the view we perceive when looking in the microscope. Conversely, γ>1 depress dark and medium gray pixel values and increase the visibility and contrast of bright features.

24 Corr. Image = M. (Raw Dark) / (Flat Dark) 3. FLAT FIELD CORRECTION

25 4. IMAGE PROCESSING WITH FILTERS Filtering is used to sharpen or blur an image by convolution, by weighting intensity of neighboring pixels in the original image to compute new pixel values in a filtered image.

26 4. IMAGE PROCESSING WITH FILTERS Filtering is used to sharpen or blur an image by convolution, by weighting intensity of neighboring pixels in the original image to compute new pixel values in a filtered image. Low Pass High Pass

27 4. IMAGE PROCESSING WITH FILTERS Median Filtering is used to smooth highly noisy data.

28 5. UNSHARP MASKING Prepare a copy of the original and blur it with a conservative blurring filter. Images with fine details (high spatial frequencies) require more conservative blurring than images containing big blocky objects (low spatial frequencies). Subtract 50 95% of the amplitude of the blurred image from 100% of the original. The higher the percentage that is subtracted, the greater the sharpening effect. Using histogram stretching, adjust the brightness and contrast in the difference image.

29 6. FAST FOURIER TRANSFORM 1. FFT selectively diminishes or enhances low or high spatial frequencies (extended vs. fine detailed structures) in the object image. 2. Image is transformed into frequency domain through an FFT command, the information is represented in two plots (images): magnitudes and phases. In the magnitude image, frequency information is represented at different distances from the central point. Information from large structural features (low spatial frequencies) is found near the center of the image, and vice versa. The amplitude at each location in the magnitude plot is proportional to the amount of information at that frequency and orientation in the image. ADVANTAGES of FFT Removing noise that occurs at specific frequencies (electrical interference, raster scan lines) Enhancing or removing periodic structural features of the object Identifying spatial frequencies of defined structures in an image Determining the periodicity and/or orientation of indistinct features that are difficult to see in the object image Detecting optical aberrations such as astigmatism Applying convolution kernels to the magnitude plot for sharpening or blurring

30 FFT Filtered Image

Introduction to CCDs and CCD Data Calibration

Introduction to CCDs and CCD Data Calibration Introduction to CCDs and CCD Data Calibration Dr. William Welsh San Diego State University CCD: charge coupled devices integrated circuit silicon chips that can record optical (and X-ray) light pixel =

More information

Choosing a digital camera for your microscope John C. Russ, Materials Science and Engineering Dept., North Carolina State Univ.

Choosing a digital camera for your microscope John C. Russ, Materials Science and Engineering Dept., North Carolina State Univ. Choosing a digital camera for your microscope John C. Russ, Materials Science and Engineering Dept., North Carolina State Univ., Raleigh, NC One vital step is to choose a transfer lens matched to your

More information

CCD and CMOS Image Sensor Technologies. Image Sensors

CCD and CMOS Image Sensor Technologies. Image Sensors CCD and CMOS Image Sensor Technologies Image Sensors There are Two Main types of Image Sensors are available today: CCD and CMOS Both were originally developed in the late 1960 s and 1970 s Defining Some

More information

White paper. CCD and CMOS sensor technology Technical white paper

White paper. CCD and CMOS sensor technology Technical white paper White paper CCD and CMOS sensor technology Technical white paper Table of contents 1. Introduction to image sensors 3 2. CCD technology 4 3. CMOS technology 5 4. HDTV and megapixel sensors 6 5. Main differences

More information

Lecture 16: A Camera s Image Processing Pipeline Part 1. Kayvon Fatahalian CMU 15-869: Graphics and Imaging Architectures (Fall 2011)

Lecture 16: A Camera s Image Processing Pipeline Part 1. Kayvon Fatahalian CMU 15-869: Graphics and Imaging Architectures (Fall 2011) Lecture 16: A Camera s Image Processing Pipeline Part 1 Kayvon Fatahalian CMU 15-869: Graphics and Imaging Architectures (Fall 2011) Today (actually all week) Operations that take photons to an image Processing

More information

ZEISS Axiocam 506 color Your Microscope Camera for Imaging of Large Sample Areas Fast, in True Color, and High Resolution

ZEISS Axiocam 506 color Your Microscope Camera for Imaging of Large Sample Areas Fast, in True Color, and High Resolution Product Information Version 1.0 ZEISS Axiocam 506 color Your Microscope Camera for Imaging of Large Sample Areas Fast, in True Color, and High Resolution ZEISS Axiocam 506 color Sensor Model Sensor Pixel

More information

High Definition Imaging

High Definition Imaging High Definition Imaging Scientific CMOS Camera Photon Technology International www.pti-nj.com Scientific CMOS Camera The new HDI camera is a breakthrough in scientific imaging cameras, due to its distinctive

More information

Characterizing Digital Cameras with the Photon Transfer Curve

Characterizing Digital Cameras with the Photon Transfer Curve Characterizing Digital Cameras with the Photon Transfer Curve By: David Gardner Summit Imaging (All rights reserved) Introduction Purchasing a camera for high performance imaging applications is frequently

More information

product overview pco.edge family the most versatile scmos camera portfolio on the market pioneer in scmos image sensor technology

product overview pco.edge family the most versatile scmos camera portfolio on the market pioneer in scmos image sensor technology product overview family the most versatile scmos camera portfolio on the market pioneer in scmos image sensor technology scmos knowledge base scmos General Information PCO scmos cameras are a breakthrough

More information

Note monitors controlled by analog signals CRT monitors are controlled by analog voltage. i. e. the level of analog signal delivered through the

Note monitors controlled by analog signals CRT monitors are controlled by analog voltage. i. e. the level of analog signal delivered through the DVI Interface The outline: The reasons for digital interface of a monitor the transfer from VGA to DVI. DVI v. analog interface. The principles of LCD control through DVI interface. The link between DVI

More information

Displays. Cathode Ray Tube. Semiconductor Elements. Basic applications. Oscilloscope TV Old monitors. 2009, Associate Professor PhD. T.

Displays. Cathode Ray Tube. Semiconductor Elements. Basic applications. Oscilloscope TV Old monitors. 2009, Associate Professor PhD. T. Displays Semiconductor Elements 1 Cathode Ray Tube Basic applications Oscilloscope TV Old monitors 2 1 Idea of Electrostatic Deflection 3 Inside an Electrostatic Deflection Cathode Ray Tube Gun creates

More information

AxioCam MR The All-round Camera for Biology, Medicine and Materials Analysis Digital Documentation in Microscopy

AxioCam MR The All-round Camera for Biology, Medicine and Materials Analysis Digital Documentation in Microscopy Microscopy from Carl Zeiss AxioCam MR The All-round Camera for Biology, Medicine and Materials Analysis Digital Documentation in Microscopy New Dimensions in Performance AxioCam MR from Carl Zeiss Both

More information

OmniBSI TM Technology Backgrounder. Embargoed News: June 22, 2009. OmniVision Technologies, Inc.

OmniBSI TM Technology Backgrounder. Embargoed News: June 22, 2009. OmniVision Technologies, Inc. OmniBSI TM Technology Backgrounder Embargoed News: June 22, 2009 OmniVision Technologies, Inc. At the heart of any digital camera lies the image sensor. The image sensor is an integrated circuit, like

More information

Comparing Digital and Analogue X-ray Inspection for BGA, Flip Chip and CSP Analysis

Comparing Digital and Analogue X-ray Inspection for BGA, Flip Chip and CSP Analysis Comparing Digital and Analogue X-ray Inspection for BGA, Flip Chip and CSP Analysis David Bernard & Steve Ainsworth Dage Precision Industries Abstract Non-destructive testing during the manufacture of

More information

Graphical displays are generally of two types: vector displays and raster displays. Vector displays

Graphical displays are generally of two types: vector displays and raster displays. Vector displays Display technology Graphical displays are generally of two types: vector displays and raster displays. Vector displays Vector displays generally display lines, specified by their endpoints. Vector display

More information

(Amplifying) Photo Detectors: Avalanche Photodiodes Silicon Photomultiplier

(Amplifying) Photo Detectors: Avalanche Photodiodes Silicon Photomultiplier (Amplifying) Photo Detectors: Avalanche Photodiodes Silicon Photomultiplier (no PiN and pinned Diodes) Peter Fischer P. Fischer, ziti, Uni Heidelberg, Seite 1 Overview Reminder: Classical Photomultiplier

More information

Applications: X-ray Microtomography, Streak Tube and CRT Readout, Industrial & Medical Imaging X-RAY GROUP

Applications: X-ray Microtomography, Streak Tube and CRT Readout, Industrial & Medical Imaging X-RAY GROUP Now Powered by LightField FEATURES BENEFITS Back Illuminated CCD (248B) For highest sensitivity Front illuminated CCD (248F) Affordable technology for moderate light level applications Ultra low noise

More information

scmos discover new ways of seeing andor.com Features and Benefits Scientific CMOS - Fast, sensitive, compact and light. Specifications Summary

scmos discover new ways of seeing andor.com Features and Benefits Scientific CMOS - Fast, sensitive, compact and light. Specifications Summary Ultra Sensitive Imaging Low Light Imaging Features and Benefits Compact and light Ideal for integration into space restrictive set-ups 1.2 e - read noise Lower detection limit than any CCD 5.5 megapixel

More information

Physics 441/2: Transmission Electron Microscope

Physics 441/2: Transmission Electron Microscope Physics 441/2: Transmission Electron Microscope Introduction In this experiment we will explore the use of transmission electron microscopy (TEM) to take us into the world of ultrasmall structures. This

More information

Advances in scmos Camera Technology Benefit Bio Research

Advances in scmos Camera Technology Benefit Bio Research Advances in scmos Camera Technology Benefit Bio Research scmos camera technology is gaining in popularity - Why? In recent years, cell biology has emphasized live cell dynamics, mechanisms and electrochemical

More information

Planetary Imaging Workshop Larry Owens

Planetary Imaging Workshop Larry Owens Planetary Imaging Workshop Larry Owens Lowell Observatory, 1971-1973 Backyard Telescope, 2005 How is it possible? How is it done? Lowell Observatory Sequence,1971 Acquisition E-X-P-E-R-I-M-E-N-T-A-T-I-O-N!

More information

Activitity (of a radioisotope): The number of nuclei in a sample undergoing radioactive decay in each second. It is commonly expressed in curies

Activitity (of a radioisotope): The number of nuclei in a sample undergoing radioactive decay in each second. It is commonly expressed in curies Activitity (of a radioisotope): The number of nuclei in a sample undergoing radioactive decay in each second. It is commonly expressed in curies (Ci), where 1 Ci = 3.7x10 10 disintegrations per second.

More information

http://dx.doi.org/10.1117/12.906346

http://dx.doi.org/10.1117/12.906346 Stephanie Fullerton ; Keith Bennett ; Eiji Toda and Teruo Takahashi "Camera simulation engine enables efficient system optimization for super-resolution imaging", Proc. SPIE 8228, Single Molecule Spectroscopy

More information

Diode Circuits. Operating in the Reverse Breakdown region. (Zener Diode)

Diode Circuits. Operating in the Reverse Breakdown region. (Zener Diode) Diode Circuits Operating in the Reverse Breakdown region. (Zener Diode) In may applications, operation in the reverse breakdown region is highly desirable. The reverse breakdown voltage is relatively insensitive

More information

How To Use An Edge 3.1 Scientific Cmmos Camera

How To Use An Edge 3.1 Scientific Cmmos Camera edge 3.1 scientific CMOS camera high resolution 2048 x 1536 pixel low noise 1.1 electrons global shutter USB 3.0 small form factor high dynamic range 27 000:1 high speed 50 fps high quantum efficiency

More information

Avalanche Photodiodes: A User's Guide

Avalanche Photodiodes: A User's Guide !"#$%& Abstract Avalanche Photodiodes: A User's Guide Avalanche photodiode detectors have and will continue to be used in many diverse applications such as laser range finders and photon correlation studies.

More information

APPLICATION NOTES: Dimming InGaN LED

APPLICATION NOTES: Dimming InGaN LED APPLICATION NOTES: Dimming InGaN LED Introduction: Indium gallium nitride (InGaN, In x Ga 1-x N) is a semiconductor material made of a mixture of gallium nitride (GaN) and indium nitride (InN). Indium

More information

Lecture 14. Point Spread Function (PSF)

Lecture 14. Point Spread Function (PSF) Lecture 14 Point Spread Function (PSF), Modulation Transfer Function (MTF), Signal-to-noise Ratio (SNR), Contrast-to-noise Ratio (CNR), and Receiver Operating Curves (ROC) Point Spread Function (PSF) Recollect

More information

Lecture Notes 3 Introduction to Image Sensors

Lecture Notes 3 Introduction to Image Sensors Lecture Notes 3 Introduction to Image Sensors EE 392B Handout #5 Prof. A. El Gamal Spring 01 CCDs basic operation well capacity charge transfer efficiency and readout speed CMOS Passive Pixel Sensor (PPS)

More information

X-RAY IMAGING Emerging Digital Technology - CMOS Detectors

X-RAY IMAGING Emerging Digital Technology - CMOS Detectors Application Note Case Study Technology Primer White Paper X-RAY IMAGING Emerging Digital Technology - CMOS Detectors Image Sensors X-Ray DETECTORS Scanners Image Processing Custom Solutions In all domains

More information

pco.edge 4.2 LT 0.8 electrons 2048 x 2048 pixel 40 fps 37 500:1 > 70 % pco. low noise high resolution high speed high dynamic range

pco.edge 4.2 LT 0.8 electrons 2048 x 2048 pixel 40 fps 37 500:1 > 70 % pco. low noise high resolution high speed high dynamic range edge 4.2 LT scientific CMOS camera high resolution 2048 x 2048 pixel low noise 0.8 electrons USB 3.0 small form factor high dynamic range 37 500:1 high speed 40 fps high quantum efficiency > 70 % edge

More information

Spectral Measurement Solutions for Industry and Research

Spectral Measurement Solutions for Industry and Research Spectral Measurement Solutions for Industry and Research Hamamatsu Photonics offers a comprehensive range of products for spectroscopic applications, covering the, Visible and Infrared regions for Industrial,

More information

CHAPTER 3: DIGITAL IMAGING IN DIAGNOSTIC RADIOLOGY. 3.1 Basic Concepts of Digital Imaging

CHAPTER 3: DIGITAL IMAGING IN DIAGNOSTIC RADIOLOGY. 3.1 Basic Concepts of Digital Imaging Physics of Medical X-Ray Imaging (1) Chapter 3 CHAPTER 3: DIGITAL IMAGING IN DIAGNOSTIC RADIOLOGY 3.1 Basic Concepts of Digital Imaging Unlike conventional radiography that generates images on film through

More information

How an electronic shutter works in a CMOS camera. First, let s review how shutters work in film cameras.

How an electronic shutter works in a CMOS camera. First, let s review how shutters work in film cameras. How an electronic shutter works in a CMOS camera I have been asked many times how an electronic shutter works in a CMOS camera and how it affects the camera s performance. Here s a description of the way

More information

DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION

DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION Introduction The outputs from sensors and communications receivers are analogue signals that have continuously varying amplitudes. In many systems

More information

Zeiss 780 Training Notes

Zeiss 780 Training Notes Zeiss 780 Training Notes 780 Start Up Sequence Do you need the argon laser, 458,488,514nm lines? No Turn on the Systems PC Switch Turn on Main Power Switch Yes Turn on the laser main power switch and turn

More information

Spike-Based Sensing and Processing: What are spikes good for? John G. Harris Electrical and Computer Engineering Dept

Spike-Based Sensing and Processing: What are spikes good for? John G. Harris Electrical and Computer Engineering Dept Spike-Based Sensing and Processing: What are spikes good for? John G. Harris Electrical and Computer Engineering Dept ONR NEURO-SILICON WORKSHOP, AUG 1-2, 2006 Take Home Messages Introduce integrate-and-fire

More information

3D TOPOGRAPHY & IMAGE OVERLAY OF PRINTED CIRCUIT BOARD ASSEMBLY

3D TOPOGRAPHY & IMAGE OVERLAY OF PRINTED CIRCUIT BOARD ASSEMBLY 3D TOPOGRAPHY & IMAGE OVERLAY OF PRINTED CIRCUIT BOARD ASSEMBLY Prepared by Duanjie Li, PhD & Andrea Novitsky 6 Morgan, Ste156, Irvine CA 92618 P: 949.461.9292 F: 949.461.9232 nanovea.com Today's standard

More information

Scanners and How to Use Them

Scanners and How to Use Them Written by Jonathan Sachs Copyright 1996-1999 Digital Light & Color Introduction A scanner is a device that converts images to a digital file you can use with your computer. There are many different types

More information

Signal to Noise Instrumental Excel Assignment

Signal to Noise Instrumental Excel Assignment Signal to Noise Instrumental Excel Assignment Instrumental methods, as all techniques involved in physical measurements, are limited by both the precision and accuracy. The precision and accuracy of a

More information

Solar Photovoltaic (PV) Cells

Solar Photovoltaic (PV) Cells Solar Photovoltaic (PV) Cells A supplement topic to: Mi ti l S Micro-optical Sensors - A MEMS for electric power generation Science of Silicon PV Cells Scientific base for solar PV electric power generation

More information

Application Note AN1

Application Note AN1 TAKING INVENTIVE STEPS IN INFRARED. MINIATURE INFRARED GAS SENSORS GOLD SERIES UK Patent App. No. 799A USA Patent App. No. 9/78,7 World Patents Pending SENSOR OVERVIEW Application Note AN The Dynament

More information

ING LA PALMA TECHNICAL NOTE No. 130. Investigation of Low Fringing Detectors on the ISIS Spectrograph.

ING LA PALMA TECHNICAL NOTE No. 130. Investigation of Low Fringing Detectors on the ISIS Spectrograph. ING LA PALMA TECHNICAL NOTE No. 130 Investigation of Low Fringing Detectors on the ISIS Spectrograph. Simon Tulloch (ING) June 2005 Investigation of Low Fringing Detectors on the ISIS Spectrograph. 1.

More information

Automatic and Objective Measurement of Residual Stress and Cord in Glass

Automatic and Objective Measurement of Residual Stress and Cord in Glass Automatic and Objective Measurement of Residual Stress and Cord in Glass GlassTrend - ICG TC15/21 Seminar SENSORS AND PROCESS CONTROL 13-14 October 2015, Eindhoven Henning Katte, ilis gmbh copyright ilis

More information

Micro-CT for SEM Non-destructive Measurement and Volume Visualization of Specimens Internal Microstructure in SEM Micro-CT Innovation with Integrity

Micro-CT for SEM Non-destructive Measurement and Volume Visualization of Specimens Internal Microstructure in SEM Micro-CT Innovation with Integrity Micro-CT for SEM Non-destructive Measurement and Volume Visualization of Specimens Internal Microstructure in SEM Innovation with Integrity Micro-CT 3D Microscopy Using Micro-CT for SEM Micro-CT for SEM

More information

Lectures 6&7: Image Enhancement

Lectures 6&7: Image Enhancement Lectures 6&7: Image Enhancement Leena Ikonen Pattern Recognition (MVPR) Lappeenranta University of Technology (LUT) leena.ikonen@lut.fi http://www.it.lut.fi/ip/research/mvpr/ 1 Content Background Spatial

More information

Filter Comparison. Match #1: Analog vs. Digital Filters

Filter Comparison. Match #1: Analog vs. Digital Filters CHAPTER 21 Filter Comparison Decisions, decisions, decisions! With all these filters to choose from, how do you know which to use? This chapter is a head-to-head competition between filters; we'll select

More information

1. Oscilloscope is basically a graph-displaying device-it draws a graph of an electrical signal.

1. Oscilloscope is basically a graph-displaying device-it draws a graph of an electrical signal. CHAPTER 3: OSCILLOSCOPE AND SIGNAL GENERATOR 3.1 Introduction to oscilloscope 1. Oscilloscope is basically a graph-displaying device-it draws a graph of an electrical signal. 2. The graph show signal change

More information

High Resolution Spatial Electroluminescence Imaging of Photovoltaic Modules

High Resolution Spatial Electroluminescence Imaging of Photovoltaic Modules High Resolution Spatial Electroluminescence Imaging of Photovoltaic Modules Abstract J.L. Crozier, E.E. van Dyk, F.J. Vorster Nelson Mandela Metropolitan University Electroluminescence (EL) is a useful

More information

High Voltage Power Supplies for Analytical Instrumentation

High Voltage Power Supplies for Analytical Instrumentation ABSTRACT High Voltage Power Supplies for Analytical Instrumentation by Cliff Scapellati Power supply requirements for Analytical Instrumentation are as varied as the applications themselves. Power supply

More information

Microcontroller to Sensor Interfacing Techniques

Microcontroller to Sensor Interfacing Techniques to Sensor Interfacing Techniques Document Revision: 1.01 Date: 3rd February, 2006 16301 Blue Ridge Road, Missouri City, Texas 77489 Telephone: 1-713-283-9970 Fax: 1-281-416-2806 E-mail: info@bipom.com

More information

1024 x 1280 pixel dual shutter APS for industrial vision

1024 x 1280 pixel dual shutter APS for industrial vision Paper presented at SPIE Electronic Imaging, Santa Clara, 22 Jan 2003 p.1/5 1024 x 1280 pixel dual shutter APS for industrial vision Herman Witters, Tom Walschap, uy Vanstraelen, enis Chapinal, uy Meynants,

More information

Hello and welcome to this training module for the STM32L4 Liquid Crystal Display (LCD) controller. This controller can be used in a wide range of

Hello and welcome to this training module for the STM32L4 Liquid Crystal Display (LCD) controller. This controller can be used in a wide range of Hello and welcome to this training module for the STM32L4 Liquid Crystal Display (LCD) controller. This controller can be used in a wide range of applications such as home appliances, medical, automotive,

More information

hsfc pro 12 bit ultra speed intensified imaging

hsfc pro 12 bit ultra speed intensified imaging hsfc pro 12 bit ultra speed intensified imaging four MCP-image intensifier camera modules ultra fast shutter down to 3 ns in single mode excellent sensitivity of the system allows single photon detection

More information

Understanding Network Video Security Systems

Understanding Network Video Security Systems Understanding Network Video Security Systems Chris Adesanya Panasonic System Solutions Company adesanyac@us.panasonic.com Introduction and Overview This session will provide vendor neutral introduction

More information

Recording the Instrument Response Function of a Multiphoton FLIM System

Recording the Instrument Response Function of a Multiphoton FLIM System Recording the Instrument Response Function of a Multiphoton FLIM System Abstract. FLIM data analysis in presence of SHG signals or extremely fast decay components requires the correct instrument response

More information

Understanding Line Scan Camera Applications

Understanding Line Scan Camera Applications Understanding Line Scan Camera Applications Discover the benefits of line scan cameras, including perfect, high resolution images, and the ability to image large objects. A line scan camera has a single

More information

Op-Amp Simulation EE/CS 5720/6720. Read Chapter 5 in Johns & Martin before you begin this assignment.

Op-Amp Simulation EE/CS 5720/6720. Read Chapter 5 in Johns & Martin before you begin this assignment. Op-Amp Simulation EE/CS 5720/6720 Read Chapter 5 in Johns & Martin before you begin this assignment. This assignment will take you through the simulation and basic characterization of a simple operational

More information

Getting Started emacs.cshrc & :+/usr/local/classes/astr1030/astron/ source.cshrc cd /usr/local/classes/astr1030 idl .compile ccdlab2 ccdlab2 exit

Getting Started emacs.cshrc & :+/usr/local/classes/astr1030/astron/ source.cshrc cd /usr/local/classes/astr1030 idl .compile ccdlab2 ccdlab2 exit Getting Started You will be looking at a series of CCD images on the computer. A widget has been designed to help you view and manipulate the images. Here s how to get your computer up and running: (1)

More information

Encoders for Linear Motors in the Electronics Industry

Encoders for Linear Motors in the Electronics Industry Technical Information Encoders for Linear Motors in the Electronics Industry The semiconductor industry and automation technology increasingly require more precise and faster machines in order to satisfy

More information

Computer Vision. Image acquisition. 25 August 2014. Copyright 2001 2014 by NHL Hogeschool and Van de Loosdrecht Machine Vision BV All rights reserved

Computer Vision. Image acquisition. 25 August 2014. Copyright 2001 2014 by NHL Hogeschool and Van de Loosdrecht Machine Vision BV All rights reserved Computer Vision Image acquisition 25 August 2014 Copyright 2001 2014 by NHL Hogeschool and Van de Loosdrecht Machine Vision BV All rights reserved j.van.de.loosdrecht@nhl.nl, jaap@vdlmv.nl Image acquisition

More information

Email: tjohn@mail.nplindia.ernet.in

Email: tjohn@mail.nplindia.ernet.in USE OF VIRTUAL INSTRUMENTS IN RADIO AND ATMOSPHERIC EXPERIMENTS P.N. VIJAYAKUMAR, THOMAS JOHN AND S.C. GARG RADIO AND ATMOSPHERIC SCIENCE DIVISION, NATIONAL PHYSICAL LABORATORY, NEW DELHI 110012, INDIA

More information

Design of Prototype Scientific CMOS Image Sensors

Design of Prototype Scientific CMOS Image Sensors PRE-PRINT: SPIE Astronomical Telescopes and Instrumentation, 23-28 June 2008, Marseille, France Paper #7021-2 to be published in Proceedings of SPIE Vol. 7021 Design of Prototype Scientific CMOS Image

More information

TOSHIBA CCD Image Sensor CCD (charge coupled device) TCD2955D

TOSHIBA CCD Image Sensor CCD (charge coupled device) TCD2955D Preliminary TOSHIBA CCD Image Sensor CCD (charge coupled device) TCD2955D The TCD2955D is a high sensitive and low dark current 4240 elements 6 line CCD color image sensor which includes CCD drive circuit

More information

TOSHIBA CCD LINEAR IMAGE SENSOR CCD(Charge Coupled Device) TCD1304AP

TOSHIBA CCD LINEAR IMAGE SENSOR CCD(Charge Coupled Device) TCD1304AP TOSHIBA CCD LINEAR IMAGE SENSOR CCD(Charge Coupled Device) TCD1304AP TCD1304AP The TCD1304AP is a high sensitive and low dark current 3648 elements linear image sensor. The sensor can be used for POS scanner.

More information

A 10,000 Frames/s 0.18 µm CMOS Digital Pixel Sensor with Pixel-Level Memory

A 10,000 Frames/s 0.18 µm CMOS Digital Pixel Sensor with Pixel-Level Memory Presented at the 2001 International Solid State Circuits Conference February 5, 2001 A 10,000 Frames/s 0.1 µm CMOS Digital Pixel Sensor with Pixel-Level Memory Stuart Kleinfelder, SukHwan Lim, Xinqiao

More information

Advantage of the CMOS Sensor

Advantage of the CMOS Sensor - TECHNICAL DOCUMENTATION Advantage of the CMOS Sensor Contents 1. Introduction...2 2. Comparing CCD & CMOS...2 3. CMOS Sensor Exmor...3 4. New Wide-D Technology Using High-speed Readout of the CMOS Sensor

More information

Evaluating AC Current Sensor Options for Power Delivery Systems

Evaluating AC Current Sensor Options for Power Delivery Systems Evaluating AC Current Sensor Options for Power Delivery Systems State-of-the-art isolated ac current sensors based on CMOS technology can increase efficiency, performance and reliability compared to legacy

More information

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 956 24-BIT DIFFERENTIAL ADC WITH I2C LTC2485 DESCRIPTION

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 956 24-BIT DIFFERENTIAL ADC WITH I2C LTC2485 DESCRIPTION LTC2485 DESCRIPTION Demonstration circuit 956 features the LTC2485, a 24-Bit high performance Σ analog-to-digital converter (ADC). The LTC2485 features 2ppm linearity, 0.5µV offset, and 600nV RMS noise.

More information

AxioCam HR The Camera that Challenges your Microscope

AxioCam HR The Camera that Challenges your Microscope Microscopy from Carl Zeiss AxioCam HR The Camera that Challenges your Microscope Documentation at the edge of the visible The Camera for Maximum Success: AxioCam HR Low light fluorescence, live cell imaging,

More information

Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP

Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP Department of Electrical and Computer Engineering Ben-Gurion University of the Negev LAB 1 - Introduction to USRP - 1-1 Introduction In this lab you will use software reconfigurable RF hardware from National

More information

LOW COST MOTOR PROTECTION FILTERS FOR PWM DRIVE APPLICATIONS STOPS MOTOR DAMAGE

LOW COST MOTOR PROTECTION FILTERS FOR PWM DRIVE APPLICATIONS STOPS MOTOR DAMAGE LOW COST MOTOR PROTECTION FILTERS FOR PWM DRIVE APPLICATIONS STOPS MOTOR DAMAGE Karl M. Hink, Executive Vice President Originally presented at the Power Quality 99 Conference ABSTRACT Motor protection

More information

CONFOCAL LASER SCANNING MICROSCOPY TUTORIAL

CONFOCAL LASER SCANNING MICROSCOPY TUTORIAL CONFOCAL LASER SCANNING MICROSCOPY TUTORIAL Robert Bagnell 2006 This tutorial covers the following CLSM topics: 1) What is the optical principal behind CLSM? 2) What is the spatial resolution in X, Y,

More information

AC/DC Power Supply Reference Design. Advanced SMPS Applications using the dspic DSC SMPS Family

AC/DC Power Supply Reference Design. Advanced SMPS Applications using the dspic DSC SMPS Family AC/DC Power Supply Reference Design Advanced SMPS Applications using the dspic DSC SMPS Family dspic30f SMPS Family Excellent for Digital Power Conversion Internal hi-res PWM Internal high speed ADC Internal

More information

Application Note #503 Comparing 3D Optical Microscopy Techniques for Metrology Applications

Application Note #503 Comparing 3D Optical Microscopy Techniques for Metrology Applications Screw thread image generated by WLI Steep PSS angles WLI color imaging Application Note #503 Comparing 3D Optical Microscopy Techniques for Metrology Applications 3D optical microscopy is a mainstay metrology

More information

TOF FUNDAMENTALS TUTORIAL

TOF FUNDAMENTALS TUTORIAL TOF FUNDAMENTALS TUTORIAL Presented By: JORDAN TOF PRODUCTS, INC. 990 Golden Gate Terrace Grass Valley, CA 95945 530-272-4580 / 530-272-2955 [fax] www.rmjordan.com [web] info@rmjordan.com [e-mail] This

More information

Doppler. Doppler. Doppler shift. Doppler Frequency. Doppler shift. Doppler shift. Chapter 19

Doppler. Doppler. Doppler shift. Doppler Frequency. Doppler shift. Doppler shift. Chapter 19 Doppler Doppler Chapter 19 A moving train with a trumpet player holding the same tone for a very long time travels from your left to your right. The tone changes relative the motion of you (receiver) and

More information

Nexus Technology Review -- Exhibit A

Nexus Technology Review -- Exhibit A Nexus Technology Review -- Exhibit A Background A. Types of DSL Lines DSL comes in many flavors: ADSL, ADSL2, ADSL2+, VDSL and VDSL2. Each DSL variant respectively operates up a higher frequency level.

More information

White Paper. "See" what is important

White Paper. See what is important Bear this in mind when selecting a book scanner "See" what is important Books, magazines and historical documents come in hugely different colors, shapes and sizes; for libraries, archives and museums,

More information

ISSCC 2003 / SESSION 9 / TD: DIGITAL ARCHITECTURE AND SYSTEMS / PAPER 9.3

ISSCC 2003 / SESSION 9 / TD: DIGITAL ARCHITECTURE AND SYSTEMS / PAPER 9.3 ISSCC 2003 / SESSION 9 / TD: DIGITAL ARCHITECTURE AND SYSTEMS / PAPER 9.3 9.3 Ultra-High Resolution Image Capturing and Processing for Digital Cinematography Albert Theuwissen 1, John Coghill, Lucian Ion,

More information

Project 2B Building a Solar Cell (2): Solar Cell Performance

Project 2B Building a Solar Cell (2): Solar Cell Performance April. 15, 2010 Due April. 29, 2010 Project 2B Building a Solar Cell (2): Solar Cell Performance Objective: In this project we are going to experimentally measure the I-V characteristics, energy conversion

More information

Endoscope Optics. Chapter 8. 8.1 Introduction

Endoscope Optics. Chapter 8. 8.1 Introduction Chapter 8 Endoscope Optics Endoscopes are used to observe otherwise inaccessible areas within the human body either noninvasively or minimally invasively. Endoscopes have unparalleled ability to visualize

More information

AND9188/D. CCD Fundamentals APPLICATION NOTE

AND9188/D. CCD Fundamentals APPLICATION NOTE CCD Fundamentals Introduction This primer is intended for those involved with CCD image sensing applications wishing to obtain additional insight into the mechanisms of CCD sensor principles and operations.

More information

GE Medical Systems Training in Partnership. Module 8: IQ: Acquisition Time

GE Medical Systems Training in Partnership. Module 8: IQ: Acquisition Time Module 8: IQ: Acquisition Time IQ : Acquisition Time Objectives...Describe types of data acquisition modes....compute acquisition times for 2D and 3D scans. 2D Acquisitions The 2D mode acquires and reconstructs

More information

Continuous-Time Converter Architectures for Integrated Audio Processors: By Brian Trotter, Cirrus Logic, Inc. September 2008

Continuous-Time Converter Architectures for Integrated Audio Processors: By Brian Trotter, Cirrus Logic, Inc. September 2008 Continuous-Time Converter Architectures for Integrated Audio Processors: By Brian Trotter, Cirrus Logic, Inc. September 2008 As consumer electronics devices continue to both decrease in size and increase

More information

ANALYZER BASICS WHAT IS AN FFT SPECTRUM ANALYZER? 2-1

ANALYZER BASICS WHAT IS AN FFT SPECTRUM ANALYZER? 2-1 WHAT IS AN FFT SPECTRUM ANALYZER? ANALYZER BASICS The SR760 FFT Spectrum Analyzer takes a time varying input signal, like you would see on an oscilloscope trace, and computes its frequency spectrum. Fourier's

More information

S2000 Spectrometer Data Sheet

S2000 Spectrometer Data Sheet Description The Ocean Optics OEM S2000 Spectrometer includes the linear CCD-array optical bench, plus the circuits necessary for spectrometer operation. The result is a compact, flexible system with no

More information

Users Manual Model #93711. English

Users Manual Model #93711. English Users Manual Model #93711 English Congratulations on your purchase of the Celestron NexImage 5 Solar System imaging camera. Your NexImage camera comes with the following: + NexImage 5 Camera + 1.25 nose

More information

INSTRUMENTATION AND CONTROL TUTORIAL 3 SIGNAL PROCESSORS AND RECEIVERS

INSTRUMENTATION AND CONTROL TUTORIAL 3 SIGNAL PROCESSORS AND RECEIVERS INSTRUMENTATION AND CONTROL TUTORIAL 3 SIGNAL PROCESSORS AND RECEIVERS This tutorial provides an overview of signal processing and conditioning for use in instrumentation and automatic control systems.

More information

Section 3. Sensor to ADC Design Example

Section 3. Sensor to ADC Design Example Section 3 Sensor to ADC Design Example 3-1 This section describes the design of a sensor to ADC system. The sensor measures temperature, and the measurement is interfaced into an ADC selected by the systems

More information

An Overview of Digital Imaging Systems for Radiography and Fluoroscopy

An Overview of Digital Imaging Systems for Radiography and Fluoroscopy An Overview of Digital Imaging Systems for Radiography and Fluoroscopy Michael Yester, Ph.D. University of Alabama at Birmingham Outline Introduction Imaging Considerations Receptor Properties General

More information

TVL - The True Measurement of Video Quality

TVL - The True Measurement of Video Quality ACTi Knowledge Base Category: Educational Note Sub-category: Video Quality, Hardware Model: N/A Firmware: N/A Software: N/A Author: Ando.Meritee Published: 2010/10/25 Reviewed: 2010/10/27 TVL - The True

More information

Storage Tubes and Their Basic Principles, pp. 93-96

Storage Tubes and Their Basic Principles, pp. 93-96 Storage Tubes and Their Basic Principles, pp. 93-96 Description (Fig. 26). This device employs a large number of short parallel beams of electrons emitted from elongated flat cathodes which lie side by

More information

6.025J Medical Device Design Lecture 3: Analog-to-Digital Conversion Prof. Joel L. Dawson

6.025J Medical Device Design Lecture 3: Analog-to-Digital Conversion Prof. Joel L. Dawson Let s go back briefly to lecture 1, and look at where ADC s and DAC s fit into our overall picture. I m going in a little extra detail now since this is our eighth lecture on electronics and we are more

More information

AMPLIFIED HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE

AMPLIFIED HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE AMPLIFIED HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE Thank you for purchasing your Amplified High Speed Fiber Photodetector. This user s guide will help answer any questions you may have regarding the

More information

Development of a high-resolution, high-speed vision system using CMOS image sensor technology enhanced by intelligent pixel selection technique

Development of a high-resolution, high-speed vision system using CMOS image sensor technology enhanced by intelligent pixel selection technique Development of a high-resolution, high-speed vision system using CMOS image sensor technology enhanced by intelligent pixel selection technique Kenji Tajima *a, Akihiko Numata a, Idaku Ishii b a Photron

More information

CCD Line Scan Array P-Series High Speed Linear Photodiode Array Imagers

CCD Line Scan Array P-Series High Speed Linear Photodiode Array Imagers DATASHEET Photon Detection CCD Line Scan Array Key Features Extended spectral range, 200 to 1000 nm 80 MHz pixel data rate Line rates to 37 khz Center-split, dual channel readout > 2,500:1 dynamic range

More information

Digital Camera Imaging Evaluation

Digital Camera Imaging Evaluation Digital Camera Imaging Evaluation Presenter/Author J Mazzetta, Electro Optical Industries Coauthors Dennis Caudle, Electro Optical Industries Bob Wageneck, Electro Optical Industries Contact Information

More information

CHAPTER 6 PHOTON COUNTING

CHAPTER 6 PHOTON COUNTING CHAPTER 6 PHOTON COUNTING 1) 2) 4) - 12) Photon counting is an effective technique used to detect very-lowlevel-light such as Raman spectroscopy, fluorescence analysis, and chemical or biological luminescence

More information

Grasshopper3 U3. Point Grey Research Inc. 12051 Riverside Way Richmond, BC Canada V6W 1K7 T (604) 242-9937 www.ptgrey.com

Grasshopper3 U3. Point Grey Research Inc. 12051 Riverside Way Richmond, BC Canada V6W 1K7 T (604) 242-9937 www.ptgrey.com Grasshopper3 U3 USB 3.0 Camera Imaging Performance Specification Version 12.0 Point Grey Research Inc. 12051 Riverside Way Richmond, BC Canada V6W 1K7 T (604) 242-9937 www.ptgrey.com Copyright 2012-2015

More information