Periodic Railway Timetabling with Event Flexibility

Size: px
Start display at page:

Download "Periodic Railway Timetabling with Event Flexibility"

Transcription

1 Periodic Railway Timetabling with Event Flexibility G. Caimi, M. Fuchsberger, M. Laumanns, K. Schüpbach ETH Zurich ATMOS, Sevilla, 16 November 2007 ETH Zürich 16 November 2007

2 Outline Approach to the train scheduling problem Timetable generation with PESP Event flexibility in timetables (FPESP) Results Conclusions 2

3 Generating train schedules 3

4 Generating train schedules INPUT: Global train service intention (GSI) Train lines with stops and frequencies Interconnections Rolling stock Aggregated and detailed track topology Rolling stock with dynamic properties OUTPUT: Conflict-free train schedule 4

5 Two level approach Macro scheduling: Find a timetable that fulfills basic properties, such as trip times, connections and headways. Micro scheduling: Find locally a conflict free routing, fulfilling detailed safety requirements for a given macro schedule. 5

6 Scheduling on the macro level Periodic Event Scheduling Problem (Serafini Ukovich 1989) Generates cyclic timetables or gives a proof of infeasibility Train line has to be known a priori (from GSI) Simplified safety system: headway time 6

7 Periodic Event Scheduling Problem (PESP) Events: train departures and arrivals 0 π i < T Constraints: τ i (l ij, u ij ) τ j Periodicity: T l ij π j - π i + T p ij u ij Period jumps: p ij, integer variables (binary for 0 l ij u ij < T) Serafini and Ukovich

8 PESP constraints Trip time Dwell time A Departure in A Headway time Connection B Arrival at B A (22,25) B (1,5) B (10,12) C (2,58) (2,58) A (28,33) B (3,8) B (18,21) D 8

9 MIP formulations of PESP Original Cycle Periodicity 1 Problem is NP-complete Cycle Periodicity is more efficient 1 1 Peeters 03 1 Liebchen 06 9

10 Outline Approach to the train scheduling problem Timetable generation with PESP Event flexibility in timetables (FPESP) Results Conclusions 10

11 Two level interface Interaction of the macro and micro scheduling Find a feasible macro schedule check Find a conflict free routing C. et al 2007 Kroon et al 1996 Ehrgott et al 2005 reject Goal: Increase search space in micro scheduling generate time slots instead of fixed times for the events at the macro level 11

12 Recall PESP Example x = [45,49] x = 3 [2,4] [2,6] x = 4 1 [2,57] x = 5 56 May be too restrictive! 12

13 FPESP: introduce event slots [4,5] [45,49] [51,53] [2,4] [2,6] [2,57] Each choice of event times in interval corresponds to a feasible schedule [1,2] [55,57] 13

14 Introduction of event slots Assign time slots (π li, π ui ) for the events instead of fixed times t All π i 2(π li, π ui ) fulfill the PESP constraints δ j Event flexibility δ i = π ui - π li Event flexibilities are dependent δ i + δ j γ ij for all constraints δ i i j where the γ ij = u ij l ij is the constraint interval length δ i γ ij δ j 14

15 Flexible PESP model (FPESP) Event slots are modelled by constraint adaptation (l,u) π (l,u) (l,u δ) (π,π+δ) (l +δ,u) (l,u) (l +δ,u) Fits into both MIP formulations Close to the original PESP model No additional integer variables 15

16 Testcase Bi-objective problem of minimizing the total triptime and maximizing the flexibility 16

17 Test Case Zug Luzern ArthGoldau Trains: intercity, local, cargo Service Intention from SBB timetable 2007 Matlab implementation with Mosek/Cplex solver 16 November 2007 G. Caimi ETH Zurich Periodic Railway Timetabling with Event Flexibility 17

18 Test case: generated timetable Muri Rotkreuz Immensee Arth-Goldau Erstfeld 18

19 Trip time vs flexibility: Pareto line >0.5 MIXFLEX <0.5 19

20 How do we use this flexibility? Event slots are used as input for the micro scheduling Enables different time alternatives for train departure/arrival at portal Time choice should be independent for each train Dependencies for same train in same station are not problematic Improves timetable stability by better distributing trains over time 20

21 Flexbox Example 4 Arrival a 1 Departure 1 4 d a d More flexibility per event Larger search space for the micro scheduling 21

22 Flexbox Results Reference scenario, objective Maxflex Scenario FPESP FPESP + station boxes FPESP + dwell boxes FPESP + separation boxes Flexibility

23 Conclusion Generation of flexible train schedules works well with the FPESP model Reasonable performance for ~ 50 trains Computation time depends strongly on objective and scenario Flexbox approach is promising to make use of natural dependencies 23

24 Thank you! 24

25 FPESP results Additional upper bounds for flexibilities to improve their distribution over events 25

26 26

27 Progress of the solution quality Objective function time 27

28 Event Slot Objectives Maximal sum of flexibilities versus uniform distribution Because of δ i + δ j γ ij, a limitation of δ i δ max reduces the number of zero-flexibility events 28

29 Flexbox: Definition Introduce flexibilities for multiple events together: Flexbox Each Flexbox has a variable δ box Boxes can overlap or contain each other The events in a box can be postponed by at most δ box For each constraint 29

30 Flexbox Result 30

31 Schema of global timetable generation Global SI Local SI Delete intention in SI infeasible Find macro schedule fulfilling SI feasible Check feasibility locally on detailed topology (Micro scheduling) Detect conflict, Move flexibility no Conflict-free? yes IFOR Conflict-free timetable, constraints report Appraisal, Relaxation no Satisfies GSI? yes Production Plan 31

32 Aggregated topology Used for macroscopic scheduling Nodes are stations/station regions with overtaking possibilities (e.g. additional tracks) Nodes are connected with as many edges as parallel tracks between the stations 32

33 Cycle Periodicity Formulation (CPF) Use event time difference x ij per constraint instead of event times τ i For each cycle C, it must hold Use the periodicity jumps per cycle Add cutting planes 33

34 Cycle Periodicity Formulation (CPF) B is a Integer Cycle Basis of the PESP Graph (Peeters `03, Liebchen `06) 34

35 PESP versus CPF formulation Cycle consisting of 25 arcs Cutting plane: 1 q C 2 Integer search space size can be reduced (original PESP: 2 25 CPF: 2) 35

36 Test Case Zug Luzern ArthGoldau Trains: intercity, local, cargo Service Intention from SBB timetable 2007 Matlab implementation with Mosek solver Objective: Minimize travel time 36

37 Flexibles PESP Modell: Resultate 37

38 Adding Flexibility: Time Slot Scheduling Assign time slots in the macro level to departures and arrivals. (l,u) τ i (l,u) (l,u) Add flexibility d i to each event + : fits into the PESP framework + : no additional constraints - : additional continous variables (l,u-d i ) (τ i,τ i +d i ) (l+d i,u) (l,u) (l+d i,u) 38

39 Trip time vs flexibility: Pareto line Flexibility Trip Time 39

40 PESP Period Jumps Difficult part, binary search tree, one tree level per constraint Determine event order Can be used as non-collision constraints (22,25) d 1 a 1 (2,58) (2,58) t t (28,33) d 2 a 2 p ij = 0 A B A B 40

41 PESP Period Jumps Difficult part, binary search tree, one tree level per constraint Determine event order Can be used as non-collision constraints (22,25) d 1 a 1 (2,58) (2,58) t t (28,33) d 2 a 2 p ij = 0 p ij = 0 A B p ij = 1 A B 41

42 PESP Period Jumps The periodic ordering of events along a cycle determines the number of period jumps along C (2,58) A (2,58) C B (2,58) p ij = 0 42

43 (22,25) d 1 a 1 (2,58) (2,58) t a 2 a 1 d 2 d 1 a 2 t d 1 a 2 a 1 (28,33) d 2 a 2 d 2 d 1 a 1 d 2 d 1 d 2 a 2 a 1 A B A B (22,25) d 1 a 1 (2,58) (2,58) t d 2 d 1 p ij = 0 a 2 t a 2 d 1 p ij = 1 a 1 a 2 a 1 (28,33) d 2 a 2 d 2 d 1 A B a 1 d 2 d 1 d 2 A B a 2 a 1 43

44 a 2 d 2 d 2 d 1 a 1 a 1 d 1 a 2 A B A B d 2 a 2 a 1 a 1 a 2 a 1 a 2 d 2 d 1 a 1 d 2 d 1 d 2 d 1 d 1 a 2 A B A B A B A B 44

45 τ li τ lj τ ui τ uj τ li τ lj (l (l ij, u ij ) τ ij, u ij ) i τ j (0,r) (l ij, u ij ) τ ui τ uj (0,r) 45

46 (22,26) (2,58) a 1 (0,1) (2,58) d 1 (10,14) (20,23) a 2 (0,1) d 2 (12,15) 4 a 1 1 d a 2 1 d

47 Event slots only in stations 47

48 4 56 a d a d

49 What can be modeled with PESP Time period Trip time (with flexible time reserves) Train interconnections Headway time Dwell times Train frequencies 49

50 Outlook Discussion of the generated timetables with SBB. Refinement of the model. Test larger scenarios Further tests with Flexbox concept 50

Railway Timetabling from an Operations Research Perspective

Railway Timetabling from an Operations Research Perspective Railway Timetabling from an Operations Research Perspective Leo Kroon 1,3, Dennis Huisman 2,3, Gábor Maróti 1 1 Rotterdam School of Management Erasmus Center for Optimization in Public Transport (ECOPT)

More information

Lecture 10 Scheduling 1

Lecture 10 Scheduling 1 Lecture 10 Scheduling 1 Transportation Models -1- large variety of models due to the many modes of transportation roads railroad shipping airlines as a consequence different type of equipment and resources

More information

Distributed Control in Transportation and Supply Networks

Distributed Control in Transportation and Supply Networks Distributed Control in Transportation and Supply Networks Marco Laumanns, Institute for Operations Research, ETH Zurich Joint work with Harold Tiemessen, Stefan Wörner (IBM Research Zurich) Apostolos Fertis,

More information

Models in Transportation. Tim Nieberg

Models in Transportation. Tim Nieberg Models in Transportation Tim Nieberg Transportation Models large variety of models due to the many modes of transportation roads railroad shipping airlines as a consequence different type of equipment

More information

INTEGER PROGRAMMING. Integer Programming. Prototype example. BIP model. BIP models

INTEGER PROGRAMMING. Integer Programming. Prototype example. BIP model. BIP models Integer Programming INTEGER PROGRAMMING In many problems the decision variables must have integer values. Example: assign people, machines, and vehicles to activities in integer quantities. If this is

More information

Re-optimization of Rolling Stock Rotations

Re-optimization of Rolling Stock Rotations Konrad-Zuse-Zentrum für Informationstechnik Berlin Takustraße 7 D-14195 Berlin-Dahlem Germany RALF BORNDÖRFER 1, JULIKA MEHRGARDT 1, MARKUS REUTHER 1, THOMAS SCHLECHTE 1, KERSTIN WAAS 2 Re-optimization

More information

Railway rolling stock is one of the most significant cost components for operators of passenger trains. The

Railway rolling stock is one of the most significant cost components for operators of passenger trains. The TRANSPORTATION SCIENCE Vol. 0, No., August 2006, pp. 78 91 issn 001-1655 eissn 1526-57 06 00 078 informs doi 10.1287/trsc.1060.0155 2006 INFORMS Efficient Circulation of Railway Rolling Stock Arianna Alfieri

More information

Branch-and-Price Approach to the Vehicle Routing Problem with Time Windows

Branch-and-Price Approach to the Vehicle Routing Problem with Time Windows TECHNISCHE UNIVERSITEIT EINDHOVEN Branch-and-Price Approach to the Vehicle Routing Problem with Time Windows Lloyd A. Fasting May 2014 Supervisors: dr. M. Firat dr.ir. M.A.A. Boon J. van Twist MSc. Contents

More information

Scheduling Algorithm with Optimization of Employee Satisfaction

Scheduling Algorithm with Optimization of Employee Satisfaction Washington University in St. Louis Scheduling Algorithm with Optimization of Employee Satisfaction by Philip I. Thomas Senior Design Project http : //students.cec.wustl.edu/ pit1/ Advised By Associate

More information

The Rolling Stock Recovery Problem. Literature review. Julie Jespersen Groth *α, Jesper Larsen β and Jens Clausen *γ

The Rolling Stock Recovery Problem. Literature review. Julie Jespersen Groth *α, Jesper Larsen β and Jens Clausen *γ The Rolling Stock Recovery Problem Julie Jespersen Groth *α, Jesper Larsen β and Jens Clausen *γ DTU Management Engineering, The Technical University of Denmark, Produktionstorvet, DTU Building 424, 2800

More information

Analysis of Micro-Macro Transformations of Railway Networks

Analysis of Micro-Macro Transformations of Railway Networks Konrad-Zuse-Zentrum für Informationstechnik Berlin Takustraße 7 D-14195 Berlin-Dahlem Germany MARCO BLANCO THOMAS SCHLECHTE Analysis of Micro-Macro Transformations of Railway Networks Zuse Institute Berlin

More information

A Service Design Problem for a Railway Network

A Service Design Problem for a Railway Network A Service Design Problem for a Railway Network Alberto Caprara Enrico Malaguti Paolo Toth Dipartimento di Elettronica, Informatica e Sistemistica, University of Bologna Viale Risorgimento, 2-40136 - Bologna

More information

a.dariano@dia.uniroma3.it

a.dariano@dia.uniroma3.it Dynamic Control of Railway Traffic A state-of-the-art real-time train scheduler based on optimization models and algorithms 20/06/2013 a.dariano@dia.uniroma3.it 1 The Aut.O.R.I. Lab (Rome Tre University)

More information

Line Planning with Minimal Traveling Time

Line Planning with Minimal Traveling Time Line Planning with Minimal Traveling Time Anita Schöbel and Susanne Scholl Institut für Numerische und Angewandte Mathematik, Georg-August-Universität Göttingen Lotzestrasse 16-18, 37083 Göttingen, Germany

More information

IRMA: Integrated Routing and MAC Scheduling in Multihop Wireless Mesh Networks

IRMA: Integrated Routing and MAC Scheduling in Multihop Wireless Mesh Networks IRMA: Integrated Routing and MAC Scheduling in Multihop Wireless Mesh Networks Zhibin Wu, Sachin Ganu and Dipankar Raychaudhuri WINLAB, Rutgers University 2006-11-16 IAB Research Review, Fall 2006 1 Contents

More information

Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method

Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method Lecture 3 3B1B Optimization Michaelmas 2015 A. Zisserman Linear Programming Extreme solutions Simplex method Interior point method Integer programming and relaxation The Optimization Tree Linear Programming

More information

Chapter 13: Binary and Mixed-Integer Programming

Chapter 13: Binary and Mixed-Integer Programming Chapter 3: Binary and Mixed-Integer Programming The general branch and bound approach described in the previous chapter can be customized for special situations. This chapter addresses two special situations:

More information

Multi-layer MPLS Network Design: the Impact of Statistical Multiplexing

Multi-layer MPLS Network Design: the Impact of Statistical Multiplexing Multi-layer MPLS Network Design: the Impact of Statistical Multiplexing Pietro Belotti, Antonio Capone, Giuliana Carello, Federico Malucelli Tepper School of Business, Carnegie Mellon University, Pittsburgh

More information

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm.

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm. Approximation Algorithms Chapter Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of

More information

5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 General Integer Linear Program: (ILP) min c T x Ax b x 0 integer Assumption: A, b integer The integrality condition

More information

A MULTI-PERIOD INVESTMENT SELECTION MODEL FOR STRATEGIC RAILWAY CAPACITY PLANNING

A MULTI-PERIOD INVESTMENT SELECTION MODEL FOR STRATEGIC RAILWAY CAPACITY PLANNING A MULTI-PERIOD INVESTMENT SELECTION MODEL FOR STRATEGIC RAILWAY Yung-Cheng (Rex) Lai, Assistant Professor, Department of Civil Engineering, National Taiwan University, Rm 313, Civil Engineering Building,

More information

Assessment of robust capacity utilisation in railway networks

Assessment of robust capacity utilisation in railway networks Assessment of robust capacity utilisation in railway networks Lars Wittrup Jensen 2015 Agenda 1) Introduction to WP 3.1 and PhD project 2) Model for measuring capacity consumption in railway networks a)

More information

On the effect of forwarding table size on SDN network utilization

On the effect of forwarding table size on SDN network utilization IBM Haifa Research Lab On the effect of forwarding table size on SDN network utilization Rami Cohen IBM Haifa Research Lab Liane Lewin Eytan Yahoo Research, Haifa Seffi Naor CS Technion, Israel Danny Raz

More information

RECIFE: a MCDSS for Railway Capacity

RECIFE: a MCDSS for Railway Capacity RECIFE: a MCDSS for Railway Capacity Xavier GANDIBLEUX (1), Pierre RITEAU (1), and Xavier DELORME (2) (1) LINA - Laboratoire d Informatique de Nantes Atlantique Universite de Nantes 2 rue de la Houssiniere

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NP-Completeness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms

More information

Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams

Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams André Ciré University of Toronto John Hooker Carnegie Mellon University INFORMS 2014 Home Health Care Home health care delivery

More information

Sport Timetabling. Outline DM87 SCHEDULING, TIMETABLING AND ROUTING. Outline. Lecture 15. 1. Problem Definitions

Sport Timetabling. Outline DM87 SCHEDULING, TIMETABLING AND ROUTING. Outline. Lecture 15. 1. Problem Definitions Outline DM87 SCHEDULING, TIMETABLING AND ROUTING Lecture 15 Sport Timetabling 1. Problem Definitions Marco Chiarandini DM87 Scheduling, Timetabling and Routing 2 Problems we treat: single and double round-robin

More information

Trapeze Rail System Simulation and Planning

Trapeze Rail System Simulation and Planning trapeze Rail System English Software for Rail Modelling and Planning Trapeze Rail System Simulation and Planning www.trapezegroup.com Enabling future railway plans Cost reductions through integrated planning

More information

Chapter 2. Estimated Timetable. 2.1 Introduction. 2.2 Selected Timetable: Spoorboekje 1999-2000

Chapter 2. Estimated Timetable. 2.1 Introduction. 2.2 Selected Timetable: Spoorboekje 1999-2000 Chapter 2 Estimated Timetable 2.1 Introduction A suitable starting point from where to do capacity evaluation and further cogitate upon alternative upgraded scenarios ought to be defined. This chapter

More information

An Interactive Train Scheduling Tool for Solving and Plotting Running Maps

An Interactive Train Scheduling Tool for Solving and Plotting Running Maps An Interactive Train Scheduling Tool for Solving and Plotting Running Maps F. Barber 1, M.A. Salido 2, L. Ingolotti 1, M. Abril 1, A. Lova 3, P. Tormos 3 1 DSIC, 3 DEIOAC, Universidad Politécnica de Valencia,

More information

Optimization Modeling for Mining Engineers

Optimization Modeling for Mining Engineers Optimization Modeling for Mining Engineers Alexandra M. Newman Division of Economics and Business Slide 1 Colorado School of Mines Seminar Outline Linear Programming Integer Linear Programming Slide 2

More information

NEW applications of wireless multi-hop networks, such

NEW applications of wireless multi-hop networks, such 870 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 3, JUNE 2009 Delay Aware Link Scheduling for Multi-Hop TDMA Wireless Networks Petar Djukic, Member, IEEE, and Shahrokh Valaee, Senior Member, IEEE

More information

Performance of networks containing both MaxNet and SumNet links

Performance of networks containing both MaxNet and SumNet links Performance of networks containing both MaxNet and SumNet links Lachlan L. H. Andrew and Bartek P. Wydrowski Abstract Both MaxNet and SumNet are distributed congestion control architectures suitable for

More information

Discrete Optimization

Discrete Optimization Discrete Optimization [Chen, Batson, Dang: Applied integer Programming] Chapter 3 and 4.1-4.3 by Johan Högdahl and Victoria Svedberg Seminar 2, 2015-03-31 Todays presentation Chapter 3 Transforms using

More information

A Branch and Bound Algorithm for Solving the Binary Bi-level Linear Programming Problem

A Branch and Bound Algorithm for Solving the Binary Bi-level Linear Programming Problem A Branch and Bound Algorithm for Solving the Binary Bi-level Linear Programming Problem John Karlof and Peter Hocking Mathematics and Statistics Department University of North Carolina Wilmington Wilmington,

More information

School Timetabling in Theory and Practice

School Timetabling in Theory and Practice School Timetabling in Theory and Practice Irving van Heuven van Staereling VU University, Amsterdam Faculty of Sciences December 24, 2012 Preface At almost every secondary school and university, some

More information

Models for Incorporating Block Scheduling in Blood Drive Staffing Problems

Models for Incorporating Block Scheduling in Blood Drive Staffing Problems University of Arkansas, Fayetteville ScholarWorks@UARK Industrial Engineering Undergraduate Honors Theses Industrial Engineering 5-2014 Models for Incorporating Block Scheduling in Blood Drive Staffing

More information

SBB: A New Solver for Mixed Integer Nonlinear Programming

SBB: A New Solver for Mixed Integer Nonlinear Programming SBB: A New Solver for Mixed Integer Nonlinear Programming Michael R. Bussieck GAMS Development Corp. Arne S. Drud ARKI Consulting & Development A/S OR2001, Duisburg Overview! SBB = Simple Branch & Bound!

More information

Distributed and Scalable QoS Optimization for Dynamic Web Service Composition

Distributed and Scalable QoS Optimization for Dynamic Web Service Composition Distributed and Scalable QoS Optimization for Dynamic Web Service Composition Mohammad Alrifai L3S Research Center Leibniz University of Hannover, Germany alrifai@l3s.de Supervised by: Prof. Dr. tech.

More information

11. APPROXIMATION ALGORITHMS

11. APPROXIMATION ALGORITHMS 11. APPROXIMATION ALGORITHMS load balancing center selection pricing method: vertex cover LP rounding: vertex cover generalized load balancing knapsack problem Lecture slides by Kevin Wayne Copyright 2005

More information

Optimisation of Airport Taxi Planning

Optimisation of Airport Taxi Planning Nationaal Lucht- en Ruimtevaartlaboratorium National Aerospace Laboratory NLR Optimisation of Airport Taxi Planning J.W. Smeltink 1, M.J. Soomer 1,2, P.R. de Waal 1 and R.D. van der Mei 2,3 1 National

More information

Cost Models for Vehicle Routing Problems. 8850 Stanford Boulevard, Suite 260 R. H. Smith School of Business

Cost Models for Vehicle Routing Problems. 8850 Stanford Boulevard, Suite 260 R. H. Smith School of Business 0-7695-1435-9/02 $17.00 (c) 2002 IEEE 1 Cost Models for Vehicle Routing Problems John Sniezek Lawerence Bodin RouteSmart Technologies Decision and Information Technologies 8850 Stanford Boulevard, Suite

More information

Load Balancing and Switch Scheduling

Load Balancing and Switch Scheduling EE384Y Project Final Report Load Balancing and Switch Scheduling Xiangheng Liu Department of Electrical Engineering Stanford University, Stanford CA 94305 Email: liuxh@systems.stanford.edu Abstract Load

More information

Change Management in Enterprise IT Systems: Process Modeling and Capacity-optimal Scheduling

Change Management in Enterprise IT Systems: Process Modeling and Capacity-optimal Scheduling Change Management in Enterprise IT Systems: Process Modeling and Capacity-optimal Scheduling Praveen K. Muthusamy, Koushik Kar, Sambit Sahu, Prashant Pradhan and Saswati Sarkar Rensselaer Polytechnic Institute

More information

Simulation of Railway Networks

Simulation of Railway Networks began a few years ago as a research project at the Swiss Federal Institute of Technology. The aim of the project, Object-Oriented Modeling in Railways, was to develop a userfriendly tool to answer questions

More information

The Goldberg Rao Algorithm for the Maximum Flow Problem

The Goldberg Rao Algorithm for the Maximum Flow Problem The Goldberg Rao Algorithm for the Maximum Flow Problem COS 528 class notes October 18, 2006 Scribe: Dávid Papp Main idea: use of the blocking flow paradigm to achieve essentially O(min{m 2/3, n 1/2 }

More information

LECTURE - 3 RESOURCE AND WORKFORCE SCHEDULING IN SERVICES

LECTURE - 3 RESOURCE AND WORKFORCE SCHEDULING IN SERVICES LECTURE - 3 RESOURCE AND WORKFORCE SCHEDULING IN SERVICES Learning objective To explain various work shift scheduling methods for service sector. 8.9 Workforce Management Workforce management deals in

More information

Max Flow, Min Cut, and Matchings (Solution)

Max Flow, Min Cut, and Matchings (Solution) Max Flow, Min Cut, and Matchings (Solution) 1. The figure below shows a flow network on which an s-t flow is shown. The capacity of each edge appears as a label next to the edge, and the numbers in boxes

More information

JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS. Received December May 12, 2003; revised February 5, 2004

JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS. Received December May 12, 2003; revised February 5, 2004 Scientiae Mathematicae Japonicae Online, Vol. 10, (2004), 431 437 431 JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS Ondřej Čepeka and Shao Chin Sung b Received December May 12, 2003; revised February

More information

Solutions to Homework 6

Solutions to Homework 6 Solutions to Homework 6 Debasish Das EECS Department, Northwestern University ddas@northwestern.edu 1 Problem 5.24 We want to find light spanning trees with certain special properties. Given is one example

More information

Improving Market Clearing Software Performance to Meet Existing and Future Challenges MISO s Perspective

Improving Market Clearing Software Performance to Meet Existing and Future Challenges MISO s Perspective Improving Market Clearing Software Performance to Meet Existing and Future Challenges MISO s Perspective FERC Technical Conference on Increasing Real-Time and Day-Ahead Market Efficiency through Improved

More information

Applying multiscaling analysis to detect capacity resources in railway networks

Applying multiscaling analysis to detect capacity resources in railway networks Timetabling 73 Applying multiscaling analysis to detect capacity resources in railway networks A. Gille, M. Klemenz & Th. Siefer Institute of Transport, Railway Construction and Operation, Leibniz Universität

More information

Operations Research in Passenger Railway Transportation

Operations Research in Passenger Railway Transportation Operations Research in Passenger Railway Transportation Dennis Huisman 1,2, Leo G. Kroon 1,2, Ramon M. Lentink 1,3 and Michiel J.C.M. Vromans 1,4 1 Erasmus Center for Optimization in Public Transport (ECOPT),

More information

Minimizing costs for transport buyers using integer programming and column generation. Eser Esirgen

Minimizing costs for transport buyers using integer programming and column generation. Eser Esirgen MASTER STHESIS Minimizing costs for transport buyers using integer programming and column generation Eser Esirgen DepartmentofMathematicalSciences CHALMERS UNIVERSITY OF TECHNOLOGY UNIVERSITY OF GOTHENBURG

More information

Airlift: Video Conferencing as a Cloud Service using Inter- Datacenter Networks

Airlift: Video Conferencing as a Cloud Service using Inter- Datacenter Networks Airlift: Video Conferencing as a Cloud Service using Inter- Datacenter Networks Yuan Feng Baochun Li Bo Li University of Toronto HKUST 1 Multi-party video conferencing 2 Multi-party video conferencing

More information

Optimization of Supply Chain Networks

Optimization of Supply Chain Networks Optimization of Supply Chain Networks M. Herty TU Kaiserslautern September 2006 (2006) 1 / 41 Contents 1 Supply Chain Modeling 2 Networks 3 Optimization Continuous optimal control problem Discrete optimal

More information

2007/26. A tighter continuous time formulation for the cyclic scheduling of a mixed plant

2007/26. A tighter continuous time formulation for the cyclic scheduling of a mixed plant CORE DISCUSSION PAPER 2007/26 A tighter continuous time formulation for the cyclic scheduling of a mixed plant Yves Pochet 1, François Warichet 2 March 2007 Abstract In this paper, based on the cyclic

More information

Incremental bus service design: combining limited-stop and local bus services

Incremental bus service design: combining limited-stop and local bus services Public Transp (2013) 5:53 78 DOI 10.1007/s12469-013-0067-7 ORIGINAL PAPER Incremental bus service design: combining limited-stop and local bus services Virot Chiraphadhanakul Cynthia Barnhart Published

More information

Supply planning for two-level assembly systems with stochastic component delivery times: trade-off between holding cost and service level

Supply planning for two-level assembly systems with stochastic component delivery times: trade-off between holding cost and service level Supply planning for two-level assembly systems with stochastic component delivery times: trade-off between holding cost and service level Faicel Hnaien, Xavier Delorme 2, and Alexandre Dolgui 2 LIMOS,

More information

Airline Schedule Development

Airline Schedule Development Airline Schedule Development 16.75J/1.234J Airline Management Dr. Peter Belobaba February 22, 2006 Airline Schedule Development 1. Schedule Development Process Airline supply terminology Sequential approach

More information

Discuss the size of the instance for the minimum spanning tree problem.

Discuss the size of the instance for the minimum spanning tree problem. 3.1 Algorithm complexity The algorithms A, B are given. The former has complexity O(n 2 ), the latter O(2 n ), where n is the size of the instance. Let n A 0 be the size of the largest instance that can

More information

Context-Aware Route Planning

Context-Aware Route Planning Context-Aware Route Planning A. W. ter Mors, C. Witteveen, J. Zutt, F. A. Kuipers Delft University of Technology September 28, 2010 Problem description A set of agents, each with their own start and destination

More information

Single-Link Failure Detection in All-Optical Networks Using Monitoring Cycles and Paths

Single-Link Failure Detection in All-Optical Networks Using Monitoring Cycles and Paths Single-Link Failure Detection in All-Optical Networks Using Monitoring Cycles and Paths Satyajeet S. Ahuja, Srinivasan Ramasubramanian, and Marwan Krunz Department of ECE, University of Arizona, Tucson,

More information

Chapter 11 Monte Carlo Simulation

Chapter 11 Monte Carlo Simulation Chapter 11 Monte Carlo Simulation 11.1 Introduction The basic idea of simulation is to build an experimental device, or simulator, that will act like (simulate) the system of interest in certain important

More information

Automated planning of timetables in large railway networks using a microscopic data basis and railway simulation techniques

Automated planning of timetables in large railway networks using a microscopic data basis and railway simulation techniques Automated planning of timetables in large railway networks using a microscopic data basis and railway simulation techniques A. Radtke 1 & D. Hauptmann 2 1 Institut für Verkehrswesen, Eisenbahnbau und betrieb,

More information

A Reference Point Method to Triple-Objective Assignment of Supporting Services in a Healthcare Institution. Bartosz Sawik

A Reference Point Method to Triple-Objective Assignment of Supporting Services in a Healthcare Institution. Bartosz Sawik Decision Making in Manufacturing and Services Vol. 4 2010 No. 1 2 pp. 37 46 A Reference Point Method to Triple-Objective Assignment of Supporting Services in a Healthcare Institution Bartosz Sawik Abstract.

More information

WORKFLOW ENGINE FOR CLOUDS

WORKFLOW ENGINE FOR CLOUDS WORKFLOW ENGINE FOR CLOUDS By SURAJ PANDEY, DILEBAN KARUNAMOORTHY, and RAJKUMAR BUYYA Prepared by: Dr. Faramarz Safi Islamic Azad University, Najafabad Branch, Esfahan, Iran. Workflow Engine for clouds

More information

Index Terms- Batch Scheduling, Evolutionary Algorithms, Multiobjective Optimization, NSGA-II.

Index Terms- Batch Scheduling, Evolutionary Algorithms, Multiobjective Optimization, NSGA-II. Batch Scheduling By Evolutionary Algorithms for Multiobjective Optimization Charmi B. Desai, Narendra M. Patel L.D. College of Engineering, Ahmedabad Abstract - Multi-objective optimization problems are

More information

Administration. Instruction scheduling. Modern processors. Examples. Simplified architecture model. CS 412 Introduction to Compilers

Administration. Instruction scheduling. Modern processors. Examples. Simplified architecture model. CS 412 Introduction to Compilers CS 4 Introduction to Compilers ndrew Myers Cornell University dministration Prelim tomorrow evening No class Wednesday P due in days Optional reading: Muchnick 7 Lecture : Instruction scheduling pr 0 Modern

More information

Strategic planning in LTL logistics increasing the capacity utilization of trucks

Strategic planning in LTL logistics increasing the capacity utilization of trucks Strategic planning in LTL logistics increasing the capacity utilization of trucks J. Fabian Meier 1,2 Institute of Transport Logistics TU Dortmund, Germany Uwe Clausen 3 Fraunhofer Institute for Material

More information

MAC Scheduling for High Throughput Underwater Acoustic Networks

MAC Scheduling for High Throughput Underwater Acoustic Networks MAC Scheduling for High Throughput Underwater Acoustic Networks Yang Guan Chien-Chung Shen Department of Computer and Information Sciences University of Delaware, Newark, DE, USA {yguan,cshen}@cis.udel.edu

More information

Dynamic Network Resources Allocation in Grids through a Grid Network Resource Broker

Dynamic Network Resources Allocation in Grids through a Grid Network Resource Broker INGRID 2007 Instrumenting the GRID Second International Workshop on Distributed Cooperative Laboratories Session 2: Networking for the GRID Dynamic Network Resources Allocation in Grids through a Grid

More information

Modeling and Solving the Capacitated Vehicle Routing Problem on Trees

Modeling and Solving the Capacitated Vehicle Routing Problem on Trees in The Vehicle Routing Problem: Latest Advances and New Challenges Modeling and Solving the Capacitated Vehicle Routing Problem on Trees Bala Chandran 1 and S. Raghavan 2 1 Department of Industrial Engineering

More information

ERASMUS CENTER OF OPTIMIZATION IN PUBLIC TRANSPORT MAINTENANCE IN RAILWAY ROLLING STOCK RESCHEDULING FOR PASSENGER RAILWAYS

ERASMUS CENTER OF OPTIMIZATION IN PUBLIC TRANSPORT MAINTENANCE IN RAILWAY ROLLING STOCK RESCHEDULING FOR PASSENGER RAILWAYS ERASMUS CENTER OF OPTIMIZATION IN PUBLIC TRANSPORT MAINTENANCE IN RAILWAY ROLLING STOCK RESCHEDULING FOR PASSENGER RAILWAYS J.C. Wagenaar & L.G. Kroon (jwagenaar@rsm.nl) Rotterdam School of Management,

More information

Routing in Line Planning for Public Transport

Routing in Line Planning for Public Transport Konrad-Zuse-Zentrum für Informationstechnik Berlin Takustraße 7 D-14195 Berlin-Dahlem Germany MARC E. PFETSCH RALF BORNDÖRFER Routing in Line Planning for Public Transport Supported by the DFG Research

More information

Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits

Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits Outline NP-completeness Examples of Easy vs. Hard problems Euler circuit vs. Hamiltonian circuit Shortest Path vs. Longest Path 2-pairs sum vs. general Subset Sum Reducing one problem to another Clique

More information

24. The Branch and Bound Method

24. The Branch and Bound Method 24. The Branch and Bound Method It has serious practical consequences if it is known that a combinatorial problem is NP-complete. Then one can conclude according to the present state of science that no

More information

Network Optimization using AIMMS in the Analytics & Visualization Era

Network Optimization using AIMMS in the Analytics & Visualization Era Network Optimization using AIMMS in the Analytics & Visualization Era Dr. Ovidiu Listes Senior Consultant AIMMS Analytics and Optimization Outline Analytics, Optimization, Networks AIMMS: The Modeling

More information

Multi-objective Traffic Engineering for Data Center Networks

Multi-objective Traffic Engineering for Data Center Networks Noname manuscript No. (will be inserted by the editor) Multi-objective Traffic Engineering for Data Center Networks Trong-Viet Ho Yves Deville Olivier Bonaventure Received: date / Accepted: date Abstract

More information

Railway Simulation & Timetable Planning

Railway Simulation & Timetable Planning Your Local Partner for Railway Projects Anywhere in South East Asia Railway Simulation & Timetable Planning Engineering & Maintenance CONSULTING SIMULATION PLANNING ENGINEERING PRODUCTS TECH SUPPORT Simulation

More information

Recovery of primal solutions from dual subgradient methods for mixed binary linear programming; a branch-and-bound approach

Recovery of primal solutions from dual subgradient methods for mixed binary linear programming; a branch-and-bound approach MASTER S THESIS Recovery of primal solutions from dual subgradient methods for mixed binary linear programming; a branch-and-bound approach PAULINE ALDENVIK MIRJAM SCHIERSCHER Department of Mathematical

More information

OPTIMIZED STAFF SCHEDULING AT SWISSPORT

OPTIMIZED STAFF SCHEDULING AT SWISSPORT Gurobi User Conference, Frankfurt, 01.02.2016 OPTIMIZED STAFF SCHEDULING AT SWISSPORT Prof. Dr. Andreas Klinkert Dr. Peter Fusek Dipl. Ing. Roman Berner Rita Thalmann Simona Segessenmann Zurich University

More information

Optimization with Big Data: Network Flows

Optimization with Big Data: Network Flows Optimization with Big Data: Network Flows Sertac Karaman Assistant Professor of Aeronautics and Astronautics Laboratory for Information and Decision Systems Institute for Data, Systems, and Society Massachusetts

More information

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm.

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm. Approximation Algorithms 11 Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of three

More information

Lecture 11: 0-1 Quadratic Program and Lower Bounds

Lecture 11: 0-1 Quadratic Program and Lower Bounds Lecture : - Quadratic Program and Lower Bounds (3 units) Outline Problem formulations Reformulation: Linearization & continuous relaxation Branch & Bound Method framework Simple bounds, LP bound and semidefinite

More information

Appendix A. About RailSys 3.0. A.1 Introduction

Appendix A. About RailSys 3.0. A.1 Introduction Appendix A About RailSys 3.0 This appendix describes the software system for analysis RailSys used to carry out the different computational experiments and scenario designing required for the research

More information

Software Pipelining. Y.N. Srikant. NPTEL Course on Compiler Design. Department of Computer Science Indian Institute of Science Bangalore 560 012

Software Pipelining. Y.N. Srikant. NPTEL Course on Compiler Design. Department of Computer Science Indian Institute of Science Bangalore 560 012 Department of Computer Science Indian Institute of Science Bangalore 560 2 NPTEL Course on Compiler Design Introduction to Overlaps execution of instructions from multiple iterations of a loop Executes

More information

USING SMART CARD DATA FOR BETTER DISRUPTION MANAGEMENT IN PUBLIC TRANSPORT Predicting travel behavior of passengers

USING SMART CARD DATA FOR BETTER DISRUPTION MANAGEMENT IN PUBLIC TRANSPORT Predicting travel behavior of passengers 11 th TRAIL Congress November 2010 USING SMART CARD DATA FOR BETTER DISRUPTION MANAGEMENT IN PUBLIC TRANSPORT Predicting travel behavior of passengers Evelien van der Hurk MSc, Prof. dr. Leo Kroon, Dr.

More information

Creating a More Efficient Course Schedule at WPI Using Linear Optimization

Creating a More Efficient Course Schedule at WPI Using Linear Optimization Project Number: ACH1211 Creating a More Efficient Course Schedule at WPI Using Linear Optimization A Major Qualifying Project Report submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial

More information

Frans J.C.T. de Ruiter, Norman L. Biggs Applications of integer programming methods to cages

Frans J.C.T. de Ruiter, Norman L. Biggs Applications of integer programming methods to cages Frans J.C.T. de Ruiter, Norman L. Biggs Applications of integer programming methods to cages Article (Published version) (Refereed) Original citation: de Ruiter, Frans and Biggs, Norman (2015) Applications

More information

Scheduling Shop Scheduling. Tim Nieberg

Scheduling Shop Scheduling. Tim Nieberg Scheduling Shop Scheduling Tim Nieberg Shop models: General Introduction Remark: Consider non preemptive problems with regular objectives Notation Shop Problems: m machines, n jobs 1,..., n operations

More information

Bilevel Models of Transmission Line and Generating Unit Maintenance Scheduling

Bilevel Models of Transmission Line and Generating Unit Maintenance Scheduling Bilevel Models of Transmission Line and Generating Unit Maintenance Scheduling Hrvoje Pandžić July 3, 2012 Contents 1. Introduction 2. Transmission Line Maintenance Scheduling 3. Generating Unit Maintenance

More information

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE/ACM TRANSACTIONS ON NETWORKING 1 A Greedy Link Scheduler for Wireless Networks With Gaussian Multiple-Access and Broadcast Channels Arun Sridharan, Student Member, IEEE, C Emre Koksal, Member, IEEE,

More information

Lecture 7: NP-Complete Problems

Lecture 7: NP-Complete Problems IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Basic Course on Computational Complexity Lecture 7: NP-Complete Problems David Mix Barrington and Alexis Maciel July 25, 2000 1. Circuit

More information

An optimisation framework for determination of capacity in railway networks

An optimisation framework for determination of capacity in railway networks CASPT 2015 An optimisation framework for determination of capacity in railway networks Lars Wittrup Jensen Abstract Within the railway industry, high quality estimates on railway capacity is crucial information,

More information

Batch Production Scheduling in the Process Industries. By Prashanthi Ravi

Batch Production Scheduling in the Process Industries. By Prashanthi Ravi Batch Production Scheduling in the Process Industries By Prashanthi Ravi INTRODUCTION Batch production - where a batch means a task together with the quantity produced. The processing of a batch is called

More information

Equilibrium computation: Part 1

Equilibrium computation: Part 1 Equilibrium computation: Part 1 Nicola Gatti 1 Troels Bjerre Sorensen 2 1 Politecnico di Milano, Italy 2 Duke University, USA Nicola Gatti and Troels Bjerre Sørensen ( Politecnico di Milano, Italy, Equilibrium

More information

THE PROBLEM WORMS (1) WORMS (2) THE PROBLEM OF WORM PROPAGATION/PREVENTION THE MINIMUM VERTEX COVER PROBLEM

THE PROBLEM WORMS (1) WORMS (2) THE PROBLEM OF WORM PROPAGATION/PREVENTION THE MINIMUM VERTEX COVER PROBLEM 1 THE PROBLEM OF WORM PROPAGATION/PREVENTION I.E. THE MINIMUM VERTEX COVER PROBLEM Prof. Tiziana Calamoneri Network Algorithms A.y. 2014/15 2 THE PROBLEM WORMS (1)! A computer worm is a standalone malware

More information

Fairness in Routing and Load Balancing

Fairness in Routing and Load Balancing Fairness in Routing and Load Balancing Jon Kleinberg Yuval Rabani Éva Tardos Abstract We consider the issue of network routing subject to explicit fairness conditions. The optimization of fairness criteria

More information

How To Solve A Minimum Set Covering Problem (Mcp)

How To Solve A Minimum Set Covering Problem (Mcp) Measuring Rationality with the Minimum Cost of Revealed Preference Violations Mark Dean and Daniel Martin Online Appendices - Not for Publication 1 1 Algorithm for Solving the MASP In this online appendix

More information