The point-estimate method with large numbers of variables

Save this PDF as:

Size: px
Start display at page:

Transcription

1 INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS Int. J. Numer. Anal. Meth. Geomech., 00; 6: (DOI: /nag.56) The point-estimate method with large numbers of variables John T. Christian 1,n,y,z and Gregory B. Baecher,} 1 3 Fredana Road, Waban, MA 0468, USA Department of Civil and Environmental Engineering, University of Maryland, College Park, MD 074, USA SUMMARY Rosenbleuth s point-estimate method has become widely used in geotechnical practice for reliability calculations. Although the point-estimate method is a powerful and simple method for evaluating the moments of functions of random variables, it is limited by the need to make n evaluations when there are n random variables. Modifications of the method reduce this to n evaluations by using points on the diameters of a hypersphere instead of at the corners of the inscribed hypercube. However, these techniques force the co-ordinates of the evaluation points farther from the means of the variables; for a bounded variable, the points may easily fall outside the domain of definition of the variable. The problem can be avoided by using other techniques for some special cases or by reducing the number of random variables that must be considered. Copyright # 00 John Wiley & Sons, Ltd. THE BASIC METHOD The point-estimate method, originally proposed by Rosenblueth [1, ], is a simple but powerful technique for evaluating the moments of functions of random variables, and has been adopted in many geotechnical reliability analyses [3]. Miller and Rice [4] and Christian and Baecher [5] have shown that the point-estimate method is a form of Gaussian quadrature. Despite its simplicity, it can be accurate in many practical situations [3 5]. In this paper the authors describe current methods for dealing with the computational burdens that arise when the number of variables becomes large and show that these methods are themselves problematical. Examples from geotechnical reliability practice are used to illustrate both difficulties and alternative approaches. As in any Gaussian quadrature scheme, including more points in the calculation increases the order of polynomial functions that are integrated exactly, but the most widely used form of the method employs two points per variable. When there is one independent variable X ; the two values of X where calculations are made are chosen such that " rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi# n X x 1 ¼ m X þ s X 1 þ n X ð1þ n Correspondence to: J. T. Christian, Consulting Engineer, 3 Fredana Road, Waban, MA 0468, USA y z Consulting Engineer. } Professor and Chairman. Copyright # 00 John Wiley & Sons, Ltd. Received 18 June 00 Revised 17 August 00

2 1516 J. T. CHRISTIAN AND G. B. BAECHER " rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi# n X x ¼ m X þ s X þ 1 þ n X ðþ where m X is the mean of X ; s X is the standard deviation, and n X is the skewness coefficient. The function Y ðx Þ is then evaluated at each of the points and the moments of Y estimated using a weighted sum as E½Y m ŠP 1 y1 m þ P y m ð3þ where y 1 ; y ¼ values of Y at x 1 ; x ; and 3 P 1 ¼ þ n x qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi5 ð4þ 1 þðn x =Þ 3 P ¼ n x qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi5 ð5þ 1 þðn x =Þ When n X ¼ 0; Equations (1) (5) reduce to x 1 ¼ m X s X x ¼ m X þ s X ð6þ ð7þ P 1 ¼ P ¼ 1 ð8þ As an example, consider a bearing capacity prediction based on Terzaghi s superposition method [6], which is partly theoretical and partly empirical. The ultimate bearing capacity of a shallow, concentrically loaded strip footing on a homogeneous soil is commonly determined from this method as q v ¼ cn c þ qn q þ 1 gbn g ð9þ in which q v is the ultimate bearing capacity for a vertical concentric load, N c ; N q ; and N g are the bearing capacity factors, B the foundation width, q the uniform surcharge around the foundation, c the effective soil cohesion, and g the unit weight. For a foundation initially on the surface of a cohesionless soil ðc ¼ q ¼ 0Þ; this reduces to, q v ¼ 1 gbn g ð10þ Ingra and Baecher [7] performed logarithmic regression analyses on 145 model and prototype footing tests results (Figure 1) to estimate the expected value and variance of N g for footings of length to width ratio of 1.0 as E½N g Š ¼ expf :064 þ 0:173fg ð11þ Var½N g Š ¼ ð0:090þexpf 4:18 þ 0:346fg The uncertainty in N g is lognormally distributed, with skewness coefficient 0.98 [8]. Using the point-estimate method to obtain the mean and variance of the bearing capacity, from Equations (1) and (), the calculations would be made at the two values of the bearing capacity coefficient

3 THE POINT-ESTIMATE METHOD 1517 Figure 1. Theoretical and empirical results for N g for length=width ¼ 1: x 1 ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ½expf :064 þ 0:173fgŠ ð0:638þ ð0:090þexpf 4:18 þ 0:346fg x ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ½expf :064 þ 0:173fgŠ þ ð1:566þ ð0:090þexpf 4:18 þ 0:346fg ð1þ which for f ¼ 358; become, x 1 ¼ 43:7 and x ¼ 79:6; with respective weights P 1 =0.710 and P ¼ 0:90: Figure shows the probability density function of Ng and the locations of points x 1 and x : When there are n independent variables, the procedure is to select two values for each X i and to establish the integration points as the n points defined by the intersections of these values. These are the corners of a hypercube (or hyperparallelepiped) in n-dimensional space. They also lie on a circumscribing hyperellipsoid. Figures 3(a) and 3(b) illustrate the case for three variables. Subtracting the mean from each variable and dividing the result by the standard deviation normalizes the co-ordinates; thus, the mean of each normalized variable is at the origin and the ordinates are expressed in units of standard deviation. The weight assigned to the value of Y at each point is the product of the n values of P computed from Equations (4) and (5) or (8). The analogy to the so-called Gauss points used to integrate finite element terms will be obvious. If the variables are correlated, the weight is multiplied by a factor ½1 P n P n i¼1 j¼iþ1 ðr ij ÞŠ; where r ij is the correlation coefficient between variables X i and X j : The positive sign is used if the values of X i and X j are both above or both below the means, and the negative sign is

4 1518 J. T. CHRISTIAN AND G. B. BAECHER lower calculation upper calculation lognormal PDF (over ln Nγ ) uncertainty in Nγ Bearing Capacity Factor (B/L=1) Figure. Points at which the bearing capacity is calculated using the point-estimate method with the one uncertain variable, bearing capacity factor Ng; using empirical results from Ingra and Baecher [7]. used if one value is above its mean and the other below. This is all part of Rosenblueth s original method. MODIFICATIONS FOR LARGE NUMBERS OF VARIABLES A disadvantage of the method is that the number of points used in the calculation is equal to n ; where n is the number of random variables. Most analysts find the threshold for practical computation to be at n ¼ 5 or 6, depending on the complexity of the function Y : For example, the literature on bearing capacity contains many theoretical derivations, as well as experimental results from model tests and footings in the field. Modification of Equation (10) for load eccentricity, load inclination, foundation shape, and foundation size introduces several correction factors, so that Equation (10) becomes q v ¼ 1 gbn gr g S g E g I g ð13þ in which R g ; S g ; E g ; I g are, respectively, corrections factors for size, shape, load eccentricity, and load inclination [7]. This generates n ¼ 5 uncertain quantities, leading to 3 calculations, simply for the case that g and f are known. If g and f are not known, then n ¼ 7 and the number of calculations becomes 18. The number of variables in a reliability analysis can easily exceed this; structural reliability problems often involve thousands of random variables. In a case closer to geotechnical practice, when using any method of slices for limiting equilibrium slope stability calculation and presuming the slices are taken wide enough to

5 THE POINT-ESTIMATE METHOD 1519 Figure 3. Distribution of evaluation points for three uncertain variables. The variables have been normalized by subtracting the means and dividing by the standard deviations. (a) Co-ordinate system. (b) Black squares are the eight points in the original Rosenblueth procedure. (c) Ellipses are circular arcs defining a sphere circumscribed around the Rosenblueth points. (d) Black dots are the intersections of the circumscribed sphere with the co-ordinate axes, which are the six points in the Harr, Hong, and Lind procedures. minimize the complicating effects of spatial correlation, the number of uncertain quantities could be two, three, or even more, times the number of slices (i.e. at least g; c; and f for each slice). Several authors have proposed methods to deal with this problem, in particular Lind [9], Harr [3, 10], and Hong [11, 1]. Lind [9] developed methods for locating the evaluation points when the variables are unskewed but correlated. Lind s first method is similar to Harr s, which is described in the next paragraph. Lind s second method develops a set of equally weighted points whose co-ordinates are found from a Cholesky decomposition of the correlation matrix. The coordinates of the evaluation points pffiffihave a term added to or subtracted from the mean coordinates that is proportional to n modified by the contributions of the correlation terms. In

6 150 J. T. CHRISTIAN AND G. B. BAECHER the limiting case of uncorrelated variables, the co-ordinates and the weights of the evaluation points are identical to those from Harr s and Hong s methods. Harr [10] deals primarily with the case in which all the skewness coefficients are zero but the variables may be correlated. The first step is to normalize each variable with respect to its standard deviation and to rotate the co-ordinate system into one defined by the eigenvectors of the correlation matrix. If each of the n new co-ordinates is denoted Z i ; the co-ordinates of the new evaluation points are defined by Equations (6) and (7) with the X s replaced by Z s. This defines a hypercube in the Z co-ordinate system. Harr then circumscribes a hypersphere that touches the hypercube at the evaluation points. Considering each variable Z i in turn, he holds the other n 1 variables constant at their mean values and extends the Z i variable until it intersects the surface of the hypersphere. The effect is the same as passing each of the orthogonal eigenvectors through the centroid of the circumscribing hypersphere and finding its intersection with the p surface of the hypersphere. The co-ordinates of the two points for variable Z i are m Z ffiffi n sz : The procedure gives n points, each weighted by 1/n: Harr also recommends further weighting the contribution at each point in proportion to the eigenvalue of the vector that defined it. Hong [11, 1] deals with the case in which the variables are uncorrelated but may be skewed. He proceeds with each variable in turn, holding the other n 1 variables at their means, and selects the co-ordinates of two points at " rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi# n X x j ¼ m X þ s X n þ n X ð14þ The corresponding weights are 3 P j ¼ 1 6 n 1 n x qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi5 ð15þ n þðn x =Þ This gives n points. It is equivalent to circumscribing a hyperellipsoid through the n points of the Rosenblueth hyperparallelepiped and then choosing points at the opposite ends of each axis of the hyperellipsoid. When the variables are all independent and not skewed, Harr s and Hong s methods are identical. Figures 3(c) and 3(d) illustrate the above procedures for three variables that are uncorrelated and unskewed. When the number of variables n exceeds three, the procedures are the same but involve n-dimensional space, which is difficult to visualize or to draw. Others have also proposed methods of reducing the number of evaluation points. In his original English-language paper Rosenblueth [1] proposed that (in his notation) %Y y % Y 1 y %Y y %Y n y and 1 þ VY ð1 þ V Y 1 Þð1 þ VY Þð1 þ VY n Þ ð17þ where %Y ¼ E½Y Š; y is the value of Y calculated with all variables at their mean values, %Y i is the mean value of Y calculated with all but the ith variable held constant at their mean values, V Y is the coefficient of variation that is to be found (i.e. s Y =m Y ), and V Yi is the coefficient of variation ð16þ

7 THE POINT-ESTIMATE METHOD 151 calculated as if the ith variable were the only random variable and all others held constant at their mean values. The method requires n þ 1 evaluations of Y ; but it applies only to the case of independent and unskewed variables. Li [13] developed a special procedure that applies in the special case that Y is of the form Y ðx Þ¼f ðmþþ X ða i x i þ b i x i þ c i x 3 i þ d i x 4 i ÞþX e ij x i x j ð18þ i i5j This requires ðn 3 þ 3n þ Þ= evaluations for n correlated variables and reduces to n þ 1 evaluations when the variables are uncorrelated. Figure 4 shows how the number of calculations increases with increasing n for the various point allocation schemes. The vertical scale is logarithmic, so it is clear that there is much to be gained by reducing the number of evaluation points when the number of uncertain variables is large. It should be noted that similar schemes to reduce the number of computational points are found in the literature on numerical analysis, composite experiment design, and importance sampling for Monte Carlo simulation. HOW A LARGE NUMBER OF VARIABLES AFFECTS THE LOCATION OF THE POINTS The distance between the meanp of ffiffiffi each variable and the value that is to be entered pin ffiffi the calculations is proportionate to n in Harr s method and approaches proportionality to n in Hong s and Lind s methods as n becomes large. This happens because (a) the procedures 1E+07 1E+06 Number of Calculations 1E+05 1E+04 1E+03 1E+0 ^n (n^3+3n=)/ n+1 1E+01 1E Number of Uncertain Quantities Figure 4. Numbers of calculations by various algorithms.

8 15 J. T. CHRISTIAN AND G. B. BAECHER Figure 5. Evaluation points. Black points are the original Rosenblueth points for two uncorrelated, unskewed variables. Open points are those defined by a point reduction scheme on a circle circumscribed around the four points. Large circle is a two-dimensional cut through the nine-dimensional hypersphere for nine variables, and open points on this circle are the locations of points used in point reduction schemes. identify the calculation point as the intersection of a radius with the surface p ffiffi of a hypersphere and (b) the radius of a hypersphere circumscribing a unit hypercube is n : Regardless of the distributions of the other variables, the computational procedure will move the evaluation point farther away from the mean for each variable as the number of variables increases. Figure 5 illustrates this point. Once again, the co-ordinates have been normalized. The four black points are the four points in the conventional Rosenblueth procedure for two unskewed, uncorrelated variables. The four open points on the circle drawn through the black points are the evaluation points that would be used in the Harr, Lind, or Hong procedures. There is obviously no advantage in doing this for two variables as four points are needed in either case. However, if there were nine variables, a reduction from 51 to 18 evaluations would be well worth the effort. The outer circle in Figure 5 represents a two-dimensional section through the nine-dimensional hypersphere, and the evaluation points now lie three standard deviations from the mean. If there were sixteen variables, the evaluation points would be four standard deviations away. Thus, critical values of the variables will be located far from the domain where the distributions are best known. Figure 6 shows the effect for the lognormally distributed N g factor. This is the same as Figure, except that the evaluation points for n ¼ 5 and 10 have been added. Especially when n ¼ 10; the evaluation points have now moved quite far from the central region, where the original data were densest. Because the distributions of many variables encountered in civil engineering are not well known, and because there may be physical reasons for limiting their ranges, it is common practice to use uniform, triangular, or Beta distributions. When a variable has such a bounded distribution, the values of the variable to be used in the point-estimate calculations may fall outside the bounds. Figure 7 shows what happens in the case of a triangular distribution

9 THE POINT-ESTIMATE METHOD lower calculation upper calculation lognormal PDF (over ln Nγ ) uncertainty in Nγ n =10 n = 5 n = 5 n = Bearing Capacity Factor (B/L=1) Figure 6. Points at which the bearing capacity is calculated using the point-estimate method with 5 and 10 variables for bearing capacity factor Ng; using empirical results from Ingra and Baecher [7]. n Limit on Number of Variables Triangular Distribution between 0 and 1 Legend low point < 0 high point > c Figure 7. The number of uncertain variables necessary to move the evaluation points in Hong s method below 0 (solid lines) or above 1 (dashed lines) for a triangular distribution between 0 and 1. The parameter c is the co-ordinate of the third or peak point defining the triangular distribution.

10 154 J. T. CHRISTIAN AND G. B. BAECHER f ðxþ between 0 and 1 with its peak at x ¼ c; 05c51: The solid lines describe, as a function of c; the number of uncertain variables necessary to move the co-ordinate of the lower evaluation point in Hong s method below zero, and the dashed lines depict the number of uncertain variables that move the upper point above unity. Thus, when c ¼ 0:; five variables will move the low point below zero, and seven variables will move the upper point above unity. Both evaluation points fall outside the range of definition when n > 7: In the extreme case that the peak of the triangle occurs at one end of the distribution (i.e. c ¼ 0 or 1), one evaluation point falls outside that end when the number of variables is as low as 3. The Beta distribution allows a large range of distribution shapes between finite bounds. ( f ðxjr; qþ / xr 1 ð1 xþ q 1 for 05x51 ð19þ 0 otherwise Table I shows that for combinations of parameters typical of those that are encountered in practice the evaluation points fall outside the boundaries of definition even for relatively small numbers of variables. Only in the strongly skewed case of q ¼ and r ¼ 8 does the number of variables needed to push the evaluation point beyond the upper limit of the distribution become large (39), and in that case the number of variables required to locate the second evaluation point below the lower limit is only 5. A value of a variable falling outside its limits of definition can be physically unreasonable, for example, negative values of cohesive strength, friction angle, or construction time. Values outside the limits or far from the means may also be unacceptable because they are used in functions that become unrealistic for the extreme values of the arguments. Some functions, such as ln X for X 50; may not even have a real definition. A PRACTICAL CASE WITH BOUNDED DISTRIBUTIONS A recent study [14] of the reliability of the slopes of the Chuquicamata copper mine (Figure 8) dealt with two typical cases: one a failure of a particular bench, and the other a failure of a 190 m high wedge. Both analyses used the sliding wedge analytical procedures well known in rock mechanics. For the bench failure seven variables were identified as uncertain; for the large Table I. Number of variables causing evaluation points to fall outside the limits of a beta distribution. Beta parameters Number of variables for q r Lower limit Upper limit

11 THE POINT-ESTIMATE METHOD 155 Figure 8. Photograph of Chuquicamata copper mine in northern Chile, at 750 m one of the deepest excavations in the world. Table II. Parameters for uncertain variables in reliability analysis of mine slopes. Variable Distribution Low High Mode Bench wedge Cohesion Uniform 0 MPa 0:1 MPa 0:06 MPa Friction angle Triangular Joint continuity Triangular 90% 100% 95% Depth to water Uniform 0 m 5 m :5m Dip: joint set 1 Uniform 77SW 80SW 78.5SW Dip: joint set Uniform 75NE 80NE 77.5NE Strike: joint set Uniform N50W N55W N5.5W 190 m High wedge Cohesion Normal 30 kpa ðm sþ 70 kpa (m þ s) 50 kpa Friction angle Triangular Joint continuity Uniform 0% 100% 50% Depth to water Uniform 0 m 190 m 95 m wedge, four uncertain variables were used. Table II gives the parameters for the uncertain variables in both cases. The reliability analyses used the first-order second moment (FOSM) and the original point-estimate methods. The FOSM method involves expanding the functions in Taylor series about the means, linearizing by discarding terms of order two or higher, and computing the first and second moments from the results. To reduce computational effort, the

12 156 J. T. CHRISTIAN AND G. B. BAECHER number of uncertain variables in the bench case for the point-estimate method was reduced to four (joint continuity, cohesion, and the dips of the two joint sets) by ignoring the contributions of the other three. The original Rosenblueth formulations were used with no attempt to employ any of the point reduction techniques described above. The factor of safety was taken to be Normally distributed. Riela and her colleagues [14] reported the results listed in Table III. The last two rows show that the results for FOSM and PE methods are in good agreement for the large wedge (190 m). FOSM requires nine evaluations, and PE requires 16, so the computational efforts are comparable. These results indicate that the probability of failure of this wedge is in the region of 13 17%. If more accurate estimates are needed, the analysis should resort to more methods such as the Hasofer Lind first-order reliability method (FORM) or Monte Carlo simulation. For most purposes, the results are adequate. The results for the bench, in the second and third rows of Table III, show quite a different situation. While the values of reliability index and probability of failure are reasonably close, the expected values of the factor of safety and the standard deviations are radically different. Part of the explanation lies in the fact that the failure wedges in this case are very narrow with nearly parallel failure planes. Small differences in many of the parameters throws the sliding wedge analysis into a different failure mode. In other words, this is a very non-linear problem, and different results by different analytical approaches alert the analyst to the need for the use of more accurate techniques. EFFECT OF POINT-REDUCTION SCHEMES ON EVALUATION POINTS The point-estimate analyses for the Chuquicamata mine slopes were carried out with the original Rosenblueth distribution of points; there was no effort to reduce the computation points by any of the above schemes. To illustrate the effect that would have occurred for the distribution of evaluation points, it is instructive to look at the friction angle f; which has a symmetric triangular distribution. Figure 9 shows the probability density function (pdf) for f as well as the values of f at several evaluation points. Those labelled n ¼ 1 are the points from the original Rosenblueth formulation actually used in the analysis. Those labelled n ¼ 4 are the values that would be used in the evaluation reduction schemes when there are four variables. Those labelled n ¼ 7 are the values for the evaluation reduction schemes for seven variables. In the latter case the points fall outside the range of definition of the variable. Figure 10 shows the results if f were assumed to vary uniformly between 11 and 458: Then the evaluation points would fall outside the range of definition even when there were only four uncertain variables. Table III. Reliability analysis results for two cases at Chuquicamata copper mine. Case E½FSŠ s FS b p f (%) Small bench failure}fosm Small bench failure}pem Large wedge failure}fosm Large wedge failure}pem

13 THE POINT-ESTIMATE METHOD 157 Lines indicate location of points for different numbers of variables, n. pdf pdf n=7 n=4 n=1 n=1 n=4 n=7 mean Friction Angle (deg) Figure 9. Probability density function (pdf) for triangularly distributed friction angle in Chuquicamata analysis and points for evaluation for one, four, and seven variables. Lines indicate location of points for different numbers of variables, n. pdf pdf n=7 n=4 n=1 n=1 n=4 n=7 mean Friction Angle (deg) Figure 10. Probability density function (pdf) for uniformly distributed friction angle in Chuquicamata analysis and points for evaluation for one, four, and seven variables.

14 158 J. T. CHRISTIAN AND G. B. BAECHER CONCLUSIONS AND RECOMMENDATIONS All three of the simple ways to modify the point-estimate method to reduce the number of evaluations cause the locations of the evaluation points to move far from the central region of the distributions. In the case of bounded distributions the evaluation points may move beyond the domain of the distribution. This can happen even when n is quite small}sometimes with as few as three variables. The phenomenon is controlled by the number of variables and does not result from a poor choice of probability distributions. Since the main reason for adopting the modified point-estimate methods is to make it feasible to deal with large numbers of variables, this problem is a serious impediment. Lind s, Harr s, and Hong s methods all involve replacing the points at the n corners of the hypercube with n points at or near the intersections of the circumscribing hypersurface with its principal axes. p ffiffi Since the radius of a hypersphere circumscribing a unit hypercube of n dimensions is n ; any of these procedures must move the evaluation points farther away from the means as n increases. Locating the evaluation points on the surface of the hypercube could prevent this, but at the price of destroying the basis of the point-estimate method, which is Gaussian quadrature. There seem to be no simple, elegant ways out of this dilemma, but several alternatives suggest themselves: 1. One could use the unmodified point-estimate method. The number of evaluations will be large ( n ), but the cost may be bearable.. When the variables are uncorrelated and unskewed, Rosenblueth s [1] own modification as presented in Equations (16) and (17) could be used. 3. Under the conditions of Equation (13), Li s [13] method is appropriate. 4. Monte Carlo simulation, especially incorporating variance reduction schemes, is an increasingly attractive alternative in view of the greatly reduced cost of simulation in recent years. Finally, when faced with a large number of uncertain variables, the analyst would do well to ask whether all of them need to be carried along in the analysis. Relatively simple sensitivity studies will often reveal that uncertainties in many of the variables have little effect on the results and that other variables can be combined. The reduction in the number of active variables not only makes the computations more tractable but also increases the chances that the results can be interpreted. However, Lind [9] warns that removing some of the smaller contributors will reduce the overall variance, and one should be mindful of this phenomenon. REFERENCES 1. Rosenblueth E. Point estimates for probability moments. Proceedings of the National Academy of Science 1975; 7(10): Rosenblueth E. Two-point estimates in probabilities. Applied Mathematical Modelling 1981; 5(): Harr ME. Reliability-Based Design in Civil Engineering. McGraw-Hill Book Company: New York, Miller III AC, Rice TR. Discrete approximations of probability distributions. Management Science 1983; 9(3): Christian JT, Baecher GB. The point-estimate method as numerical quadrature. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 1999; 15(9): Terzaghi K. Theoretical Soil Mechanics. Wiley: New York, Ingra TS, Baecher G. Uncertainty in bearing capacity of sands. Journal of Geotechnical Engineering 1983; 109(7):

15 THE POINT-ESTIMATE METHOD Aitchison J, Brown JAC. The lognormal distribution: with special reference to its uses in economics. Monographs, University of Cambridge Dept of Applied Economics; vol. 5. University Press: Cambridge, Lind NC. Modelling uncertainty in discrete dynamical systems. Applied Mathematical Modelling 1983; 7(3): Harr ME. Probabilistic estimates for multivariate analyses. Applied Mathematical Modelling 1989; 13(5): Hong HP. Point-estimate moment-based reliability analysis. Civil Engineering Systems 1996; 13(4): Hong HP. An efficient point estimate method for probabilistic analysis. Reliability Engineering and System Safety 1998; 59(3): Li KS. Point-estimate method for calculating statistical moments. Journal of Engineering Mechanics, ASCE 199; 118(7): Riela J, et al. Sliding rock wedge reliability analysis of Chuquicamata mine slopes. In Panamerican Conference on Soil Mechanics and Geotechnical Engineering, Foz do Iguaçu, Brazil, 1999.

Solving Simultaneous Equations and Matrices

Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering

Senior Secondary Australian Curriculum

Senior Secondary Australian Curriculum Mathematical Methods Glossary Unit 1 Functions and graphs Asymptote A line is an asymptote to a curve if the distance between the line and the curve approaches zero

15.062 Data Mining: Algorithms and Applications Matrix Math Review

.6 Data Mining: Algorithms and Applications Matrix Math Review The purpose of this document is to give a brief review of selected linear algebra concepts that will be useful for the course and to develop

Dimensionality Reduction: Principal Components Analysis

Dimensionality Reduction: Principal Components Analysis In data mining one often encounters situations where there are a large number of variables in the database. In such situations it is very likely

Academic Content Standards Grade Eight and Grade Nine Ohio Algebra 1 2008 Grade Eight STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express

Foundation Engineering Prof. Mahendra Singh Department of Civil Engineering Indian Institute of Technology, Roorkee

Foundation Engineering Prof. Mahendra Singh Department of Civil Engineering Indian Institute of Technology, Roorkee Module - 03 Lecture - 09 Stability of Slopes Welcome back to the classes of on this Stability

Detailed simulation of mass spectra for quadrupole mass spectrometer systems

Detailed simulation of mass spectra for quadrupole mass spectrometer systems J. R. Gibson, a) S. Taylor, and J. H. Leck Department of Electrical Engineering and Electronics, The University of Liverpool,

BINOMIAL OPTIONS PRICING MODEL. Mark Ioffe. Abstract

BINOMIAL OPTIONS PRICING MODEL Mark Ioffe Abstract Binomial option pricing model is a widespread numerical method of calculating price of American options. In terms of applied mathematics this is simple

Current Standard: Mathematical Concepts and Applications Shape, Space, and Measurement- Primary

Shape, Space, and Measurement- Primary A student shall apply concepts of shape, space, and measurement to solve problems involving two- and three-dimensional shapes by demonstrating an understanding of:

CHAPTER 8 FACTOR EXTRACTION BY MATRIX FACTORING TECHNIQUES. From Exploratory Factor Analysis Ledyard R Tucker and Robert C.

CHAPTER 8 FACTOR EXTRACTION BY MATRIX FACTORING TECHNIQUES From Exploratory Factor Analysis Ledyard R Tucker and Robert C MacCallum 1997 180 CHAPTER 8 FACTOR EXTRACTION BY MATRIX FACTORING TECHNIQUES In

Advanced Algebra 2. I. Equations and Inequalities

Advanced Algebra 2 I. Equations and Inequalities A. Real Numbers and Number Operations 6.A.5, 6.B.5, 7.C.5 1) Graph numbers on a number line 2) Order real numbers 3) Identify properties of real numbers

Stress Analysis Verification Manual

Settle3D 3D settlement for foundations Stress Analysis Verification Manual 007-01 Rocscience Inc. Table of Contents Settle3D Stress Verification Problems 1 Vertical Stresses underneath Rectangular Footings

CHAPTER 13: SENSITIVITY, PROBABILITY AND RELIABILITY ANALYSIS

CHAPTER 13: SENSITIVITY, PROBABILITY AND RELIABILITY ANALYSIS 1 13.1 Sensitivity Analysis Principles of static equilibrium to evaluate the balance of driving and resisting forces are used in limit equilibrium

Probabilistic Analysis

Probabilistic Analysis Tutorial 8-1 Probabilistic Analysis This tutorial will familiarize the user with the basic probabilistic analysis capabilities of Slide. It will demonstrate how quickly and easily

Middle Grades Mathematics 5 9 Section 25 1 Knowledge of mathematics through problem solving 1. Identify appropriate mathematical problems from real-world situations. 2. Apply problem-solving strategies

GLOSSARY FOR DESIGN OF EXPERIMENTS

GLOSSARY FOR DESIGN OF EXPERIMENTS Adaptation provenant du site Internet http://www.mathoptions.com ANOVA -- An acronym for "ANalysis Of VAriance," a statistical technique that separates the variation

METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION

International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 45-66, Article ID: IJCIET_07_02_004 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

MA 323 Geometric Modelling Course Notes: Day 02 Model Construction Problem

MA 323 Geometric Modelling Course Notes: Day 02 Model Construction Problem David L. Finn November 30th, 2004 In the next few days, we will introduce some of the basic problems in geometric modelling, and

Common Core Unit Summary Grades 6 to 8

Common Core Unit Summary Grades 6 to 8 Grade 8: Unit 1: Congruence and Similarity- 8G1-8G5 rotations reflections and translations,( RRT=congruence) understand congruence of 2 d figures after RRT Dilations

Section 1.1. Introduction to R n

The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

We call this set an n-dimensional parallelogram (with one vertex 0). We also refer to the vectors x 1,..., x n as the edges of P.

Volumes of parallelograms 1 Chapter 8 Volumes of parallelograms In the present short chapter we are going to discuss the elementary geometrical objects which we call parallelograms. These are going to

Appendix C: Graphs. Vern Lindberg

Vern Lindberg 1 Making Graphs A picture is worth a thousand words. Graphical presentation of data is a vital tool in the sciences and engineering. Good graphs convey a great deal of information and can

Least-Squares Intersection of Lines

Least-Squares Intersection of Lines Johannes Traa - UIUC 2013 This write-up derives the least-squares solution for the intersection of lines. In the general case, a set of lines will not intersect at a

Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass

Centre of Mass A central theme in mathematical modelling is that of reducing complex problems to simpler, and hopefully, equivalent problems for which mathematical analysis is possible. The concept of

Probability and Statistics

CHAPTER 2: RANDOM VARIABLES AND ASSOCIATED FUNCTIONS 2b - 0 Probability and Statistics Kristel Van Steen, PhD 2 Montefiore Institute - Systems and Modeling GIGA - Bioinformatics ULg kristel.vansteen@ulg.ac.be

Nonlinear Iterative Partial Least Squares Method

Numerical Methods for Determining Principal Component Analysis Abstract Factors Béchu, S., Richard-Plouet, M., Fernandez, V., Walton, J., and Fairley, N. (2016) Developments in numerical treatments for

Algebra 1 Course Information

Course Information Course Description: Students will study patterns, relations, and functions, and focus on the use of mathematical models to understand and analyze quantitative relationships. Through

SYSM 6304: Risk and Decision Analysis Lecture 3 Monte Carlo Simulation

SYSM 6304: Risk and Decision Analysis Lecture 3 Monte Carlo Simulation M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas Email: M.Vidyasagar@utdallas.edu September 19, 2015 Outline

Interactive Math Glossary Terms and Definitions

Terms and Definitions Absolute Value the magnitude of a number, or the distance from 0 on a real number line Additive Property of Area the process of finding an the area of a shape by totaling the areas

APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications

REVISED GCSE Scheme of Work Mathematics Higher Unit 6. For First Teaching September 2010 For First Examination Summer 2011 This Unit Summer 2012

REVISED GCSE Scheme of Work Mathematics Higher Unit 6 For First Teaching September 2010 For First Examination Summer 2011 This Unit Summer 2012 Version 1: 28 April 10 Version 1: 28 April 10 Unit T6 Unit

Pre-Algebra 2008. Academic Content Standards Grade Eight Ohio. Number, Number Sense and Operations Standard. Number and Number Systems

Academic Content Standards Grade Eight Ohio Pre-Algebra 2008 STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express large numbers and small

Introduction to Principal Components and FactorAnalysis

Introduction to Principal Components and FactorAnalysis Multivariate Analysis often starts out with data involving a substantial number of correlated variables. Principal Component Analysis (PCA) is a

Introduction to Matrix Algebra

Psychology 7291: Multivariate Statistics (Carey) 8/27/98 Matrix Algebra - 1 Introduction to Matrix Algebra Definitions: A matrix is a collection of numbers ordered by rows and columns. It is customary

State of Stress at Point

State of Stress at Point Einstein Notation The basic idea of Einstein notation is that a covector and a vector can form a scalar: This is typically written as an explicit sum: According to this convention,

Mathematics (MAT) MAT 061 Basic Euclidean Geometry 3 Hours. MAT 051 Pre-Algebra 4 Hours

MAT 051 Pre-Algebra Mathematics (MAT) MAT 051 is designed as a review of the basic operations of arithmetic and an introduction to algebra. The student must earn a grade of C or in order to enroll in MAT

4.3 Results... 27 4.3.1 Drained Conditions... 27 4.3.2 Undrained Conditions... 28 4.4 References... 30 4.5 Data Files... 30 5 Undrained Analysis of

Table of Contents 1 One Dimensional Compression of a Finite Layer... 3 1.1 Problem Description... 3 1.1.1 Uniform Mesh... 3 1.1.2 Graded Mesh... 5 1.2 Analytical Solution... 6 1.3 Results... 6 1.3.1 Uniform

Exercise 1.12 (Pg. 22-23)

Individuals: The objects that are described by a set of data. They may be people, animals, things, etc. (Also referred to as Cases or Records) Variables: The characteristics recorded about each individual.

NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS

NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS TEST DESIGN AND FRAMEWORK September 2014 Authorized for Distribution by the New York State Education Department This test design and framework document

Factoring Patterns in the Gaussian Plane

Factoring Patterns in the Gaussian Plane Steve Phelps Introduction This paper describes discoveries made at the Park City Mathematics Institute, 00, as well as some proofs. Before the summer I understood

FCAT Math Vocabulary

FCAT Math Vocabulary The terms defined in this glossary pertain to the Sunshine State Standards in mathematics for grades 3 5 and the content assessed on FCAT in mathematics. acute angle an angle that

Least Squares Estimation

Least Squares Estimation SARA A VAN DE GEER Volume 2, pp 1041 1045 in Encyclopedia of Statistics in Behavioral Science ISBN-13: 978-0-470-86080-9 ISBN-10: 0-470-86080-4 Editors Brian S Everitt & David

GRADES 7, 8, AND 9 BIG IDEAS

Table 1: Strand A: BIG IDEAS: MATH: NUMBER Introduce perfect squares, square roots, and all applications Introduce rational numbers (positive and negative) Introduce the meaning of negative exponents for

Example: Credit card default, we may be more interested in predicting the probabilty of a default than classifying individuals as default or not.

Statistical Learning: Chapter 4 Classification 4.1 Introduction Supervised learning with a categorical (Qualitative) response Notation: - Feature vector X, - qualitative response Y, taking values in C

Prentice Hall Mathematics Courses 1-3 Common Core Edition 2013

A Correlation of Prentice Hall Mathematics Courses 1-3 Common Core Edition 2013 to the Topics & Lessons of Pearson A Correlation of Courses 1, 2 and 3, Common Core Introduction This document demonstrates

Outline. Random Variables. Examples. Random Variable

Outline Random Variables M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno Random variables. CDF and pdf. Joint random variables. Correlated, independent, orthogonal. Correlation,

DATA ANALYSIS II. Matrix Algorithms

DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson

Performance Level Descriptors Grade 6 Mathematics

Performance Level Descriptors Grade 6 Mathematics Multiplying and Dividing with Fractions 6.NS.1-2 Grade 6 Math : Sub-Claim A The student solves problems involving the Major Content for grade/course with

NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )

Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates

Multivariate Analysis of Ecological Data

Multivariate Analysis of Ecological Data MICHAEL GREENACRE Professor of Statistics at the Pompeu Fabra University in Barcelona, Spain RAUL PRIMICERIO Associate Professor of Ecology, Evolutionary Biology

Direct Methods for Solving Linear Systems. Linear Systems of Equations

Direct Methods for Solving Linear Systems Linear Systems of Equations Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University

6.4 Normal Distribution

Contents 6.4 Normal Distribution....................... 381 6.4.1 Characteristics of the Normal Distribution....... 381 6.4.2 The Standardized Normal Distribution......... 385 6.4.3 Meaning of Areas under

Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions.

Chapter 1 Vocabulary identity - A statement that equates two equivalent expressions. verbal model- A word equation that represents a real-life problem. algebraic expression - An expression with variables.

11. THE STABILITY OF SLOPES

11-1 11. THE STABILITY OF SLOPES 11.1 INTRODUCTION The quantitative determination of the stability of slopes is necessary in a number of engineering activities, such as: (a) (b) (c) (d) the design of earth

BX in ( u, v) basis in two ways. On the one hand, AN = u+

1. Let f(x) = 1 x +1. Find f (6) () (the value of the sixth derivative of the function f(x) at zero). Answer: 7. We expand the given function into a Taylor series at the point x = : f(x) = 1 x + x 4 x

Common Curriculum Map. Discipline: Math Course: College Algebra

Common Curriculum Map Discipline: Math Course: College Algebra August/September: 6A.5 Perform additions, subtraction and multiplication of complex numbers and graph the results in the complex plane 8a.4a

Common Core State Standards for Mathematics Accelerated 7th Grade

A Correlation of 2013 To the to the Introduction This document demonstrates how Mathematics Accelerated Grade 7, 2013, meets the. Correlation references are to the pages within the Student Edition. Meeting

Algebra II. Larson, Boswell, Kanold, & Stiff (2001) Algebra II, Houghton Mifflin Company: Evanston, Illinois. TI 83 or 84 Graphing Calculator

Algebra II Text: Supplemental Materials: Larson, Boswell, Kanold, & Stiff (2001) Algebra II, Houghton Mifflin Company: Evanston, Illinois. TI 83 or 84 Graphing Calculator Course Description: The purpose

Moore Catholic High School Math Department COLLEGE PREP AND MATH CONCEPTS

Moore Catholic High School Math Department COLLEGE PREP AND MATH CONCEPTS The following is a list of terms and properties which are necessary for success in Math Concepts and College Prep math. You will

NEW MEXICO Grade 6 MATHEMATICS STANDARDS

PROCESS STANDARDS To help New Mexico students achieve the Content Standards enumerated below, teachers are encouraged to base instruction on the following Process Standards: Problem Solving Build new mathematical

Geostatistics Exploratory Analysis

Instituto Superior de Estatística e Gestão de Informação Universidade Nova de Lisboa Master of Science in Geospatial Technologies Geostatistics Exploratory Analysis Carlos Alberto Felgueiras cfelgueiras@isegi.unl.pt

MECHANICS OF SOLIDS - BEAMS TUTORIAL 1 STRESSES IN BEAMS DUE TO BENDING. On completion of this tutorial you should be able to do the following.

MECHANICS OF SOLIDS - BEAMS TUTOIAL 1 STESSES IN BEAMS DUE TO BENDING This is the first tutorial on bending of beams designed for anyone wishing to study it at a fairly advanced level. You should judge

Chapter 15 Introduction to Linear Programming

Chapter 15 Introduction to Linear Programming An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Brief History of Linear Programming The goal of linear programming is to determine the values of

Overview of Math Standards

Algebra 2 Welcome to math curriculum design maps for Manhattan- Ogden USD 383, striving to produce learners who are: Effective Communicators who clearly express ideas and effectively communicate with diverse

AP Physics 1 and 2 Lab Investigations

AP Physics 1 and 2 Lab Investigations Student Guide to Data Analysis New York, NY. College Board, Advanced Placement, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks

Solutions to Exercises, Section 5.1

Instructor s Solutions Manual, Section 5.1 Exercise 1 Solutions to Exercises, Section 5.1 1. Find all numbers t such that ( 1 3,t) is a point on the unit circle. For ( 1 3,t)to be a point on the unit circle

Relating Vanishing Points to Catadioptric Camera Calibration

Relating Vanishing Points to Catadioptric Camera Calibration Wenting Duan* a, Hui Zhang b, Nigel M. Allinson a a Laboratory of Vision Engineering, University of Lincoln, Brayford Pool, Lincoln, U.K. LN6

CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA

We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical

1 Determinants and the Solvability of Linear Systems

1 Determinants and the Solvability of Linear Systems In the last section we learned how to use Gaussian elimination to solve linear systems of n equations in n unknowns The section completely side-stepped

D-optimal plans in observational studies

D-optimal plans in observational studies Constanze Pumplün Stefan Rüping Katharina Morik Claus Weihs October 11, 2005 Abstract This paper investigates the use of Design of Experiments in observational

Assessment Anchors and Eligible Content

M07.A-N The Number System M07.A-N.1 M07.A-N.1.1 DESCRIPTOR Assessment Anchors and Eligible Content Aligned to the Grade 7 Pennsylvania Core Standards Reporting Category Apply and extend previous understandings

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 6 Three Approaches to Classification Construct

Chapter 6: Constructing and Interpreting Graphic Displays of Behavioral Data

Chapter 6: Constructing and Interpreting Graphic Displays of Behavioral Data Chapter Focus Questions What are the benefits of graphic display and visual analysis of behavioral data? What are the fundamental

Higher Education Math Placement

Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication

Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year.

This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra

Overview Mathematical Practices Congruence

Overview Mathematical Practices Congruence 1. Make sense of problems and persevere in Experiment with transformations in the plane. solving them. Understand congruence in terms of rigid motions. 2. Reason

Coefficient of Potential and Capacitance

Coefficient of Potential and Capacitance Lecture 12: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay We know that inside a conductor there is no electric field and that

Java Modules for Time Series Analysis

Java Modules for Time Series Analysis Agenda Clustering Non-normal distributions Multifactor modeling Implied ratings Time series prediction 1. Clustering + Cluster 1 Synthetic Clustering + Time series

What Does the Correlation Coefficient Really Tell Us About the Individual?

What Does the Correlation Coefficient Really Tell Us About the Individual? R. C. Gardner and R. W. J. Neufeld Department of Psychology University of Western Ontario ABSTRACT The Pearson product moment

C4 Computer Vision. 4 Lectures Michaelmas Term Tutorial Sheet Prof A. Zisserman. fundamental matrix, recovering ego-motion, applications.

C4 Computer Vision 4 Lectures Michaelmas Term 2004 1 Tutorial Sheet Prof A. Zisserman Overview Lecture 1: Stereo Reconstruction I: epipolar geometry, fundamental matrix. Lecture 2: Stereo Reconstruction

Summary of Probability

Summary of Probability Mathematical Physics I Rules of Probability The probability of an event is called P(A), which is a positive number less than or equal to 1. The total probability for all possible

Structural Integrity Analysis

Structural Integrity Analysis 1. STRESS CONCENTRATION Igor Kokcharov 1.1 STRESSES AND CONCENTRATORS 1.1.1 Stress An applied external force F causes inner forces in the carrying structure. Inner forces

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION Introduction In the previous chapter, we explored a class of regression models having particularly simple analytical

The Method of Least Squares

The Method of Least Squares Steven J. Miller Mathematics Department Brown University Providence, RI 0292 Abstract The Method of Least Squares is a procedure to determine the best fit line to data; the

Ordered Pairs. Graphing Lines and Linear Inequalities, Solving System of Linear Equations. Cartesian Coordinates System.

Ordered Pairs Graphing Lines and Linear Inequalities, Solving System of Linear Equations Peter Lo All equations in two variables, such as y = mx + c, is satisfied only if we find a value of x and a value

The Basics of FEA Procedure

CHAPTER 2 The Basics of FEA Procedure 2.1 Introduction This chapter discusses the spring element, especially for the purpose of introducing various concepts involved in use of the FEA technique. A spring

Appendix A. Comparison. Number Concepts and Operations. Math knowledge learned not matched by chess

Appendix A Comparison Number Concepts and Operations s s K to 1 s 2 to 3 Recognize, describe, and use numbers from 0 to 100 in a variety of familiar settings. Demonstrate and use a variety of methods to

KEANSBURG SCHOOL DISTRICT KEANSBURG HIGH SCHOOL Mathematics Department. HSPA 10 Curriculum. September 2007

KEANSBURG HIGH SCHOOL Mathematics Department HSPA 10 Curriculum September 2007 Written by: Karen Egan Mathematics Supervisor: Ann Gagliardi 7 days Sample and Display Data (Chapter 1 pp. 4-47) Surveys and

12-1 Representations of Three-Dimensional Figures

Connect the dots on the isometric dot paper to represent the edges of the solid. Shade the tops of 12-1 Representations of Three-Dimensional Figures Use isometric dot paper to sketch each prism. 1. triangular

Integration of a fin experiment into the undergraduate heat transfer laboratory

Integration of a fin experiment into the undergraduate heat transfer laboratory H. I. Abu-Mulaweh Mechanical Engineering Department, Purdue University at Fort Wayne, Fort Wayne, IN 46805, USA E-mail: mulaweh@engr.ipfw.edu

Swedge. Verification Manual. Probabilistic analysis of the geometry and stability of surface wedges. 1991-2013 Rocscience Inc.

Swedge Probabilistic analysis of the geometry and stability of surface wedges Verification Manual 1991-213 Rocscience Inc. Table of Contents Introduction... 3 1 Swedge Verification Problem #1... 4 2 Swedge

2. Simple Linear Regression

Research methods - II 3 2. Simple Linear Regression Simple linear regression is a technique in parametric statistics that is commonly used for analyzing mean response of a variable Y which changes according

INDUSTRIAL TECHNOLOGY TECHNICAL DRAWING LEVEL 9

INDUSTRIAL TECHNOLOGY TECHNICAL DRAWING LEVEL 9 Reduction and enlargement of plane figures to reduce plane figure by lengths of sides using the polar method. - Reading Suppose the ratio is skills. 1:3.

Probability & Statistics Primer Gregory J. Hakim University of Washington 2 January 2009 v2.0

Probability & Statistics Primer Gregory J. Hakim University of Washington 2 January 2009 v2.0 This primer provides an overview of basic concepts and definitions in probability and statistics. We shall

Summary of week 8 (Lectures 22, 23 and 24)

WEEK 8 Summary of week 8 (Lectures 22, 23 and 24) This week we completed our discussion of Chapter 5 of [VST] Recall that if V and W are inner product spaces then a linear map T : V W is called an isometry