Product Operators 6.1 A quick review of quantum mechanics

Size: px
Start display at page:

Download "Product Operators 6.1 A quick review of quantum mechanics"

Transcription

1 6 Product Operators The vector model, introduced in Chapter 3, is ver useful for describing basic NMR eperiments but unfortunatel is not applicable to coupled spin sstems. When it comes to two-dimensional NMR man of the eperiments are onl of interest in coupled spin sstems, so we reall must have some wa of describing the behaviour of such sstems under multiplepulse eperiments. The tools we need are provided b quantum mechanics, specificall in the form of densit matri theor which is the best wa to formulate quantum mechanics for NMR. However, we do not want to get involved in a great deal of comple quantum mechanics! Luckil, there is a wa of proceeding which we can use without a deep knowledge of quantum mechanics: this is the product operator formalism. The product operator formalism is a complete and rigorous quantum mechanical description of NMR eperiments and is well suited to calculating the outcome of modern multiple-pulse eperiments. One particularl appealing feature is the fact that the operators have a clear phsical meaning and that the effects of pulses and delas can be thought of as geometrical rotations, much in the same wa as we did for the vector model in Chapter A quick review of quantum mechanics n this section we will review a few ke concepts before moving on to a description of the product operator formalism. n quantum mechanics, two mathematical objects wavefunctions and operators are of central importance. The wavefunction describes the sstem of interest (such as a spin or an electron) completel; if the wavefunction is known it is possible to calculate all the properties of the sstem. The simplest eample of this that is frequentl encountered is when considering the wavefunctions which describe electrons in atoms (atomic orbitals) or molecules (molecular orbitals). One often used interpretation of such electronic wavefunctions is to sa that the square of the wavefunction gives the probabilit of finding the electron at that point. Wavefunctions are simpl mathematical functions of position, time etc. For eample, the s electron in a hdrogen atom is described b the function ep( ar), where r is the distance from the nucleus and a is a constant. n quantum mechanics, operators represent "observable quantities" such as position, momentum and energ; each observable has an operator associated with it. Operators "operate on" functions to give new functions, hence their name operator function = (new function) An eample of an operator is ( dd); in words this operator sas "differentiate with respect to ". ts effect on the function sin is Chapter 6 "Product Operators" James Keeler, 998, 2002 &

2 d ( sin )= cos d the "new function" is cos. Operators can also be simple functions, so for eample the operator 2 just means "multipl b 2 ". A mass going round a circular path possesses angular moment, represented b a vector which points perpendicular to the plane of rotation. p 6.. Spin operators A mass going round a circular path (an orbit) possesses angular momentum; it turns out that this is a vector quantit which points in a direction perpendicular to the plane of the rotation. The -, - and -components of this vector can be specified, and these are the angular momenta in the -, - and -directions. n quantum mechanics, there are operators which represent these three components of the angular momentum. Nuclear spins also have angular momentum associated with them called spin angular momentum. The three components of this spin angular momentum (along, and ) are represented b the operators, and Hamiltonians The Hamiltonian, H, is the special name given to the operator for the energ of the sstem. This operator is eceptionall important as its eigenvalues and eigenfunctions are the "energ levels" of the sstem, and it is transitions between these energ levels which are detected in spectroscop. To understand the spectrum, therefore, it is necessar to have a knowledge of the energ levels and this in turn requires a knowledge of the Hamiltonian operator. n NMR, the Hamiltonian is seen as having a more subtle effect than simpl determining the energ levels. This comes about because the Hamiltonian also affects how the spin sstem evolves in time. B altering the Hamiltonian the time evolution of the spins can be manipulated and it is precisel this that lies at the heart of multiple-pulse NMR. The precise mathematical form of the Hamiltonian is found b first writing down an epression for the energ of the sstem using classical mechanics and then "translating" this into quantum mechanical form according to a set of rules. n this chapter the form of the relevant Hamiltonians will simpl be stated rather than derived. n NMR the Hamiltonian changes depending on the eperimental situation. There is one Hamiltonian for the spin or spins in the presence of the applied magnetic field, but this Hamiltonian changes when a radiofrequenc pulse is applied. 6.2 Operators for one spin 6.2. Operators n quantum mechanics operators represent observable quantities, such an energ, angular momentum and magnetiation. For a single spin-half, the - - and -components of the magnetiation are represented b the spin angular momentum operators, and respectivel. Thus at an time the state of the spin sstem, in quantum mechanics the densit operator, σ, can be 6 2

3 represented as a sum of different amounts of these three operators σ()= t at () + bt () + ct () The amounts of the three operators will var with time during pulses and delas. This epression of the densit operator as a combination of the spin angular momentum operators is eactl analogous to specifing the three components of a magnetiation vector. At equilibrium the densit operator is proportional to (there is onl - magnetiation present). The constant of proportionalit is usuall unimportant, so it is usual to write σ eq = 6..2 Hamiltonians for pulses and delas n order to work out how the densit operator varies with time we need to know the Hamiltonian (which is also an operator) which is acting during that time. The free precession Hamiltonian (i.e. that for a dela), H free, is H free = Ω n the vector model free precession involves a rotation at frequenc Ω about the -ais; in the quantum mechanical picture the Hamiltonian involves the - angular momentum operator, there is a direct correspondence. The Hamiltonian for a pulse about the -ais, H pulse, is Hpulse, = ω and for a pulse about the -ais it is Hpulse, = ω Again there is a clear connection to the vector model where pulses result in rotations about the - or -aes Equation of motion The densit operator at time t, σ(t), is computed from that at time 0, σ(0), using the following relationship σ()= t ep( iht) σ( 0) ep( iht) where H is the relevant hamiltonian. f H and σ are epressed in terms of the angular momentum operators if turns out that this equation can be solved easil with the aid of a few rules. Suppose that an -pulse, of duration t p, is applied to equilibrium magnetiation. n this situation H = ω and σ(0) = ; the equation to be solved is σ( tp)= ep( iωtp) ep( iωtp ) Such equations involving angular momentum operators are common in quantum mechanics and the solution to them are alread all know. The identit required here to solve this equation is ( ) ( ) ep iβ ep iβ cosβ sin β [6.] This is interpreted as a rotation of b an angle β about the -ais. B 6 3

4 putting β= ω t p this identit can be used to solve Eqn. [6.] σ( tp)= cosωtp sinωtp The result is eactl as epected from the vector model: a pulse about the - ais rotates -magnetiation towards the -ais, with a sinusoidal dependence on the flip angle, β Standard rotations Given that there are onl three operators, there are a limited number of identities of the tpe of Eqn. [6.]. The all have the same form ( ) ( ) ep iθa {old operator} ep iθa cosθ {old operator} + sinθ {new operator} where {old operator}, {new operator} and a are determined from the three possible angular momentum operators according to the following diagrams; the label in the centre indicates which ais the rotation is about 6 4 Angle of rotation = Ωt for offsets and ω t p for pulses First eample: find the result of rotating the operator b θ about the -ais, that is ( ) ( ) ep iθ ep iθ For rotations about the middle diagram is required. The diagram shows that (the "old operator") is rotated to (the "new operator"). The required identit is therefore ( ) ( ) + ep iθ ep iθ cosθ sinθ Second eample: find the result of ( ){ } ( ) ep iθ ep iθ This is a rotation about, so diagram is required. The diagram shows that (the "old operator") is rotated to (the "new operator"). The required identit is therefore ep iθ ep iθ cosθ sin θ ( ) { } ( ) { }+ { } cosθ sinθ Finall, note that a rotation of an operator about its own ais has no effect e.g. a rotation of about leaves unaltered Shorthand notation To save writing, the arrow notation is often used. n this, the term Ht is written over an arrow which connects the old and new densit operators. So, for eample, the following

5 is written σ( tp)= ep iωtp σ 0 ep iωtp ( ) ( ) ( ) ωt p σ( 0) σ t ( p) For the case where σ(0) = p cos ω t sinω t ω t 6..6 Eample calculation: spin echo p p a b e f 90 delaτ 80 delaτ acquire ( ) ( ) At a the densit operator is. The transformation from a to b is free precession, for which the Hamiltonian is Ω ; the dela τ therefore corresponds to a rotation about the -ais at frequenc Ω. n the short-hand notation this is Ωτ σ b ( ) To solve this diagram above is needed with the angle = Ωτ; the "new operator" is Ωτ cosωτ + sin Ωτ n words this sas that the magnetiation precesses from towards +. The pulse about has the Hamiltonian ω ; the pulse therefore corresponds to a rotation about for a time t p such that the angle, ω t p, is π radians. n the shorthand notation ω cosωτ + sin Ωτ p t σ() e [6.2] Each term on the left is dealt with separatel. The first term is a rotation of about ; the relevant diagram is thus ω t p cosωτ cosωτcosω t cosωτsinω t p p However, the flip angle of the pulse, ω t p, is π so the second term on the right is ero and the first term just changes sign (cos π = ); overall the result is π cosωτ cosωτ The second term on the left of Eqn. [6.2] is eas to handle as it is unaffected b a rotation about. Overall, the effect of the 80 pulse is then π cosωτ + sin Ωτ cosωτ + sin Ωτ [6.3] As was shown using the vector model, the -component just changes sign. The net stage is the evolution of the offset for time τ. Again, each term on the right of Eqn. [6.3] is considered separatel Ωτ cosωτ cosωτcosωτ sin ΩτcosΩτ Ωτ sin Ωτ cosωτsin Ωτ + sin Ωτsin Ωτ Collecting together the terms in and the final result is cosωτcosωτ + sin Ωτsin Ωτ cosωτsin Ωτ sin ΩτcosΩτ ( ) + ( ) 6 5

6 The bracket multipling is ero and the bracket multipling is = because of the identit cos 2 θ + sin 2 θ =. Thus the overall result of the spin echo sequence can be summarised 90 ( ) 80 τ ( ) τ n words, the outcome is independent of the offset, Ω, and the dela τ, even though there is evolution during the delas. The offset is said to be refocused b the spin echo. This is eactl the result we found in section 3.8. n general the sequence τ 80 () τ [6.4] refocuses an evolution due to offsets; this is a ver useful feature which is much used in multiple-pulse NMR eperiments. One further point is that as far as the offset is concerned the spin echo sequence of Eqn. [6.4] is just equivalent to 80 (). J 2 J 2 Ω Ω 2 The spectrum from two coupled spins, with offsets Ω and Ω 2 (rad s ) and mutual coupling J 2 (H). 6.2 Operators for two spins The product operator approach comes into its own when coupled spin sstems are considered; such sstems cannot be treated b the vector model. However, product operators provide a clean and simple description of the important phenomena of coherence transfer and multiple quantum coherence. 6.. Product operators for two spins For a single spin the three operators needed for a complete description are, and. For two spins, three such operators are needed for each spin; an additional subscript, or 2, indicates which spin the refer to. spin : spin 2 : represents -magnetiation of spin, and 2 likewise for spin 2. represents -magnetiation on spin. As spin and 2 are coupled, the spectrum consists of two doublets and the operator can be further identified with the two lines of the spin- doublet. n the language of product operators is said to represent in-phase magnetiation of spin ; the description in-phase means that the two lines of the spin doublet have the same sign and lineshape. Following on in the same wa 2 represents in-phase magnetiation on spin 2. and 2 also represent in-phase magnetiation on spins and 2, respectivel, but this magnetiation is aligned along and so will give rise to a different lineshape. Arbitraril, an absorption mode lineshape will be assigned to magnetiation aligned along and a dispersion mode lineshape to magnetiation along. 6 6

7 absorption dispersion Ω Ω 2 2 Ω 2 There are four additional operators which represent anti-phase magnetiation: 2 2, 2 2, 2 2, 2 2 (the factors of 2 are needed for normaliation purposes). The operator 2 2 is described as magnetiation on spin which is anti-phase with respect to the coupling to spin 2. Ω Ω Ω 2 The absorption and dispersion lineshapes. The absorption lineshape is a maimum on resonance, whereas the dispersion goes through ero at this point. The "cartoon" forms of the lineshapes are shown in the lower part of the diagram. Ω 2 Note that the two lines of the spin- multiplet are associated with different spin states of spin-2, and that in an anti-phase multiplet these two lines have different signs. Anti-phase terms are thus sensitive to the spin states of the coupled spins. There are four remaining product operators which contain two transverse (i.e. - or -operators) terms and correspond to multiple-quantum coherences; the are not observable multiple quantum : Ω Finall there is the term 2 2 which is also not observable and corresponds to a particular kind of non-equilibrium population distribution. α Ω β spin state of spin 2 The two lines of the spin- doublet can be associated with different spin states of spin Evolution under offsets and pulses The operators for two spins evolve under offsets and pulses in the same wa as do those for a single spin. The rotations have to be applied separatel to each spin and it must be remembered that rotations of spin do not affect spin 2, and vice versa. For eample, consider evolving under the offset of spin and spin 2. The relevant Hamiltonian is H = Ω + Ω free 22 where Ω and Ω 2 are the offsets of spin and spin 2 respectivel. Evolution under this Hamiltonian can be considered b appling the two terms sequentiall (the order is immaterial) Hfreet Ωt+ Ω2t2 Ωt Ω2t2 The first "arrow" is a rotation about Ωt Ω2t2 cosω t + sin Ω t 6 7

8 The second arrow leaves the intermediate state unaltered as spin-2 operators have not effect on spin- operators. Overall, therefore Ωt+ Ω2t2 cosω t + sin Ω t A second eample is the term 2 2 evolving under a 90 pulse about the -ais applied to both spins. The relevant Hamiltonian is H = ω + ω 2 The evolution can be separated into two successive rotations ωt ωt2 2 2 The first arrow affects onl the spin- operators; a 90 rotation of about gives (remembering that ω t = π/2 for a 90 pulse) ω t cosω t2 sinω t π 2 ω t 2 The second arrow onl affects the spin 2 operators; a 90 rotation of about takes it to π The overall result is that anti-phase magnetiation of spin has been transferred into anti-phase magnetiation of spin 2. Such a process is called coherence transfer and is eceptionall important in multiple-pulse NMR Evolution under coupling The new feature which arises when considering two spins is the effect of coupling between them. The Hamiltonian representing this coupling is itself a product of two operators: H = 2 J πj2 2 where J 2 is the coupling in H. Evolution under coupling causes the interconversion of in-phase and antiphase magnetiation according to the following diagrams V π 2 V π 2 angle = πjt For eample, in-phase magnetiation along becomes anti-phase along according to the diagram V 2πJ t 2 2 cosπj t + sinπj t note that the angle is πj 2 t i.e. half the angle for the other rotations,. Anti-phase magnetiation along becomes in-phase magnetiation along ; using diagram V: 2πJ2t 2 2 cosπj t2 + sinπj t

9 The diagrams appl equall well to spin-2; for eample 2πJ2t 2 2 cosπj t2 + sinπj t Complete interconversion of in-phase and anti-phase magnetiation requires a dela such that πj2t = π 2 i.e. a dela of /(2J 2 ). A dela of /J 2 causes in-phase magnetiation to change its sign: 2πJ2t 2 t= 2J2 2πJ2t 2 t= J Spin echoes t was shown in section that the offset is refocused in a spin echo. n this section it will be shown that the evolution of the scalar coupling is not necessaril refocused Spin echoes in homonuclear spin sstem n this kind of spin echo the 80 pulse affects both spins i.e. it is a nonselective pulse: τ 80 (, to spin and spin 2) τ At the start of the sequence it will be assumed that onl in-phase - magnetiation on spin is present:. n fact the starting state is not important to the overall effect of the spin echo, so this choice is arbitrar. t was shown in section that the spin echo applied to one spin refocuses the offset; this conclusion is not altered b the presence of a coupling so the offset will be ignored in the present calculation. This greatl simplifies things. For the first dela τ onl the effect of evolution under coupling need be considered therefore: 2πJ2τ 2 cosπj τ + sinπj τ The 80 pulse affects both spins, and this can be calculated b appling the 80 rotation to each in succession π π2 cosπj τ + sinπj τ where it has alread been written in that ω t p = π, for a 80 pulse. The 80 rotation about for spin has no effect on the operator and 2, and it simpl reverses the sign of the operator π π2 cosπj τ + sinπj τ2 cosπj τ sinπj τ The 80 rotation about for spin 2 has no effect on the operators and, but simpl reverses the sign of the operator 2. The final result is thus π cosπj τ + sinπj τ2 cosπj τ sinπj τ π2 cosπj τ + sinπj τ Nothing has happened; the 80 pulse has left the operators unaffected! So, for the purposes of the calculation it is permissible to ignore the 80 pulse and simpl allow the coupling to evolve for 2τ. The final result can therefore just be written down: 2 6 9

10 τ 80 ( ) τ cos2πj τ + sin 2πJ τ From this it is eas to see that complete conversion to anti-phase magnetiation requires 2πJ 2 τ = π/2 i.e. τ = /(4 J 2 ). The calculation is not quite as simple if the initial state is chosen as, but the final result is just the same the coupling evolves for 2τ: τ 80 ( ) τ cos 2πJ τ + sin 2πJ τ 2 n fact, the general result is that the sequence τ 80 (, to spin and spin 2) τ is equivalent to the sequence 2τ 80 (, to spin and spin 2) in which the offset is ignored and coupling is allowed to act for time 2τ nterconverting in-phase and anti-phase states So far, spin echoes have been demonstrated as being useful for generating anti-phase terms, independent of offsets. For eample, the sequence 90 () /(4J 2 ) 80 () /(4J 2 ) generates pure anti-phase magnetiation. Equall useful is the sequence /(4J 2 ) 80 () /(4J 2 ) which will convert pure anti-phase magnetiation, such as 2 2 into inphase magnetiation,. a spin spin 2 b spin spin 2 c spin spin 2 τ τ τ Three different spin echo sequences that can be applied to heteronuclear spin sstems. The open rectangles represent 80 pulses. τ τ τ 6..3 Spin echoes in heteronuclear spin sstems f spin and spin 2 are different nuclear species, such as 3 C and H, it is possible to choose to appl the 80 pulse to either or both spins; the outcome of the sequence depends on the pattern of 80 pulses. Sequence a has alread been analsed: the result is that the offset is refocused but that the coupling evolves for time 2τ. Sequence b still refocuses the offset of spin, but it turns out that the coupling is also refocused. Sequence c refocuses the coupling but leaves the evolution of the offset unaffected. Sequence b t will be assumed that the offset is refocused, and attention will therefore be restricted to the effect of the coupling 2πJ2τ 2 cosπj τ + sinπj τ 2 The 80 () pulse is onl applied to spin π cosπj τ + sinπj τ 2 cosπj τ sinπj τ 2 [6.5] The two terms on the right each evolve under the coupling during the second dela: 6 0

11 cosπj 2πJ2τ 2 τ cosπj τcosπj τ + sinπj τcosπj τ πJ2τ 2 sinπj2τ 22 cosπj2τsinπj2τ 22 + sinπj2τ sinπj2τ Collecting the terms together and noting that cos 2 θ + sin 2 θ = the final result is just. n words, the effect of the coupling has been refocused. Sequence c As there is no 80 pulse applied to spin, the offset of spin is not refocused, but continues to evolve for time 2τ. The evolution of the coupling is eas to calculate: 2πJ2τ 2 cosπj τ + sinπj τ 2 This time the 80 () pulse is applied to spin π cosπj τ + sinπj τ 2 2 cosπj τ sinπj τ The results is eactl as for sequence b (Eqn. [6.5]), so the final result is the same i.e. the coupling is refocused. Summar n heteronuclear sstems it is possible to choose whether or not to allow the offset and the coupling to evolve; this gives great freedom in generating and manipulating anti-phase states which pla a ke role in multiple pulse NMR eperiments. 6.4 Multiple quantum terms 6.4. Coherence order n NMR the directl observable quantit is the transverse magnetiation, which in product operators is represented b terms such as and 2 2. Such terms are eamples of single quantum coherences, or more generall coherences with order, p, = ±. Other product operators can also be classified according to coherence order e.g. 2 2 has p = 0 and 2 2 has both p = 0 (ero-quantum coherence) and ±2 (double quantum coherence). Onl single quantum coherences are observable. n heteronuclear sstems it is sometimes useful to classif operators according to their coherence orders with respect to each spin. So, for eample, 2 2 has p = 0 for spin and p = ± for spin Raising and lowering operators The classification of operators according to coherence order is best carried out be re-epressing the Cartesian operators and in terms of the raising and lowering operators, + and, respectivel. These are defined as follows = + i = i [6.6] + where i is the square root of. + has coherence order + and has coherence order ; coherence order is a signed quantit. 6

12 Using the definitions of Eqn. [6.6] and can be epressed in terms of the raising and lowering operators ( ) = ( ) = i + [6.7] from which it is seen that and are both mitures of coherences with p = + and. The operator product 2 2 can be epressed in terms of the raising and lowering operators in the following wa (note that separate operators are used for each spin: ± and 2± ) 2 = 2 2 ( 2 + ) ( ) [6.8] = 2 ( )+ 2 ( ) The first term on the right of Eqn. [6.8] has p = (++) = 2 and the second term has p = ( ) = 2; both are double quantum coherences. The third and fourth terms both have p = (+ ) = 0 and are ero quantum coherences. The value of p can be found simpl b noting the number of raising and lowering operators in the product. The pure double quantum part of 2 2 is, from Eqn. [6.8], double quantum part[ 2 2 ]= 2 ( ) [6.9] The raising and lowering operators on the right of Eqn. [6.9] can be reepressed in terms of the Cartesian operators: 2 ( )= 2 ( + i) ( 2 + i2)+ ( i) ( 2 i2) [ ] [ ] = So, the pure double quantum part of 2 2 is 2 ( ); b a similar method the pure ero quantum part can be shown to be 2 ( 22 22). Some further useful relationships are given in section 6.9 J 3 J 2 Ω α α β β spin 2 α β α β spin 3 The doublet of doublets from spin coupled to two other spins. The spin states of the coupled spins are also indicated. 6.5 Three spins The product operator formalism can be etended to three or more spins. No reall new features arise, but some of the ke ideas will be highlighted in this section. The description will assume that spin is coupled to spins 2 and 3 with coupling constants J 2 and J 3 ; in the diagrams it will be assumed that J 2 > J Tpes of operators represents in-phase magnetiation on spin ; 2 2 represents magnetiation anti-phase with respect to the coupling to spin 2 and 2 3 represents magnetiation anti-phase with respect to the coupling to spin represents magnetiation which is doubl anti-phase with respect to the couplings to both spins 2 and

13 As in the case of two spins, the presence of more than one transverse operator in the product represents multiple quantum coherence. For eample, 2 2 is a miture of double- and ero-quantum coherence between spins and 2. The product is the same miture, but antiphase with respect to the coupling to spin 3. Products such as contain, amongst other things, triple-quantum coherences Evolution Evolution under offsets and pulses is simpl a matter of appling sequentiall the relevant rotations for each spin, remembering that rotations of spin do not affect operators of spins 2 and 3. For eample, the term 2 2 evolves under the offset in the following wa: Ωt Ω2t2 Ω3t3 2 cosω t 2 + sin Ω t The first arrow, representing evolution under the offset of spin, affects onl the spin operator. The second arrow has no effect as the spin 2 operator 2 and this is unaffected b a -rotation. The third arrow also has no effect as there are no spin 3 operators present. The evolution under coupling follows the same rules as for a two-spin sstem. For eample, evolution of under the influence of the coupling to spin 3 generates 2 3 2πJ t 3 3 cosπj t + sinπj t Further evolution of the term 2 3 under the influence of the coupling to spin 2 generates a double anti-phase term 2πJ2t 2 2 cosπj t 2 sinπj t n this evolution the spin 3 operator if unaffected as the coupling does not involve this spin. The connection with the evolution of under a coupling can be made more eplicit b writing 2 3 as a "constant" γ 2πJ t γ 2 2 cosπj t γ sinπj t 2 γ which compares directl to πJ t 2 2 cosπj t sinπj t Representations of different tpes of operators. 6.6 Alternative notation n this chapter different spins have been designated with a subscript, 2, 3... Another common notation is to distinguish the spins b using a different letter to represent their operators; commonl and S are used for two of the smbols 22 2S Note that the order in which the operators are written is not important, although it is often convenient (and tid) alwas to write them in the same sequence. n heteronuclear eperiments a notation is sometimes used where the letter represents the nucleus. So, for eample, operators referring to protons are given the letter H, carbon-3 atoms the letter C and nitrogen-5 atoms 6 3

14 the letter N; carbonl carbons are sometimes denoted C'. For eample, 4C H N denotes magnetiation on carbon-3 which is anti-phase with respect to coupling to both proton and nitrogen Conclusion The product operator method as described here onl applies to spin-half nuclei. t can be etended to higher spins, but significant etra compleit is introduced; details can be found in the article b Sørensen et al. (Prog. NMR Spectrosc. 6, 63 (983)). The main difficult with the product operator method is that the more pulses and delas that are introduced the greater becomes the number of operators and the more comple the trigonometrical epressions multipling them. f pulses are either 90 or 80 then there is some simplification as such pulses do not increase the number of terms. As will be seen in chapter 7, it is important to tr to simplif the calculation as much as possible, for eample b recogniing when offsets or couplings are refocused b spin echoes. A number of computer programs are available for machine computation using product operators within programs such as Mathematica. These can be ver labour saving. 6.8 Multiple -quantum coherence 6.8. Multiple-quantum terms n the product operator representation of multiple quantum coherences it is usual to distinguish between active and passive spins. Active spins contribute transverse operators, such as, and +, to the product; passive spins contribute onl -operators,. n a sense the spins contributing transverse operators are "involved" in the coherence, while those contributing -operators are simpl spectators. For double- and ero-quantum coherence in which spins i and j are active it is convenient to define the following set of operators which represent pure multiple quantum states of given order. The operators can be epressed in terms of the Cartesian or raising and lowering operators. double quantum, p =± 2 ( ij) DQ 2 ( 2ij 2ij ) 2 ( i+ j+ + i j ) ( ij) DQ 2 ( 2ij + 2ij ) 2i ( i+ j+ i j ) ero quantum, p = 0 ( ij) ZQ 2 ( 2ij + 2ij ) 2 ( i+ j + i j+ ) ( ij) ZQ 2 ( 2ij 2ij ) 2 i ( i+ j i j+ ) Evolution of multiple -quantum terms Evolution under offsets The double- and ero-quantum operators evolve under offsets in a wa 6 4

15 which is entirel analogous to the evolution of and under free precession ecept that the frequencies of evolution are (Ω i + Ω j ) and (Ω i Ω j ) respectivel: ( ij) Ωiti+ Ωjt j ( ij) ( ij) DQ cos Ω + Ω tdq sin Ω Ω tdq i i j j ij DQ cos Ω + Ω tdq sin Ω Ω tdq ZQ ( ) + ( + ) i j i j ( ij) Ωt + Ω t ( ) ( ij) ( i j) ( i + j) ( ij) Ωiti+ Ωjt j ( ij) ( ij) cos( Ωi Ωj) tzq + sin( Ωi Ωj) tzq ( ij) Ωiti+ Ωjt j ( ij) ( ij) cos Ωi Ωj t sin Ωi Ωj t ( ) ( ) ZQ ZQ ZQ Evolution under couplings Multiple quantum coherence between spins i and j does not evolve under the influence of the coupling between the two active spins, i and j. Double- and ero-quantum operators evolve under passive couplings in a wa which is entirel analogous to the evolution of and ; the resulting multiple quantum terms can be described as being anti-phase with respect to the effective couplings: ( ij) ( ij) ( ij) DQ cosπj t DQ + cosπj t 2 DQ ij ij DQ cosπj t DQ sinπj t 2 DQ ij ij ZQ cosπj tzq + sinπj t 2 ZQ ZQ DQ,eff DQ,eff k ( ) ( ) ( ij) DQ,eff DQ,eff k ( ) ( ) ( ij) ZQ,eff ZQ,eff k ( ij) ( ij) ( ij) cosπj ZQ,efftZQ sinπjzq,efft 2kZQ J DQ,eff is the sum of the couplings between spin i and all other spins plus the sum of the couplings between spin j and all other spins. J ZQ,eff is the sum of the couplings between spin i and all other spins minus the sum of the couplings between spin j and all other spins. For eample in a three-spin sstem the ero-quantum coherence between spins and 2, anti-phase with respect to spin 3, evolves according to ( 2) ( 2) ( 2) 23ZQ cosπjzq,efft 23ZQ sinπjzq,efft ZQ where J = J J ZQ,eff 2 23 Further details of multiple-quantum evolution can be found in section 5.3 of Ernst, Bodenhausen and Wokaun Principles of NMR in One and Two Dimensions (Oford Universit Press, 987). 6 5

Pulsed Fourier Transform NMR The rotating frame of reference. The NMR Experiment. The Rotating Frame of Reference.

Pulsed Fourier Transform NMR The rotating frame of reference. The NMR Experiment. The Rotating Frame of Reference. Pulsed Fourier Transform NR The rotating frame of reference The NR Eperiment. The Rotating Frame of Reference. When we perform a NR eperiment we disturb the equilibrium state of the sstem and then monitor

More information

Spin-lattice and spin-spin relaxation

Spin-lattice and spin-spin relaxation Spin-lattice and spin-spin relaation Sequence of events in the NMR eperiment: (i) application of a 90 pulse alters the population ratios, and creates transverse magnetic field components (M () ); (ii)

More information

Affine Transformations

Affine Transformations A P P E N D I X C Affine Transformations CONTENTS C The need for geometric transformations 335 C2 Affine transformations 336 C3 Matri representation of the linear transformations 338 C4 Homogeneous coordinates

More information

7 Two-dimensional NMR

7 Two-dimensional NMR 7 Two-dimensional NMR 7. Introduction The basic ideas of two-dimensional NMR will be introduced by reference to the appearance of a COSY spectrum; later in this chapter the product operator formalism will

More information

3 The vector model. Chapter 3 The vector model c James Keeler, 2002 & 2004. 3.1 Bulk magnetization

3 The vector model. Chapter 3 The vector model c James Keeler, 2002 & 2004. 3.1 Bulk magnetization 3 The vector model For most kinds of spectroscop it is sufficient to think about energ levels and selection rules; this is not true for NMR. For eample, using this energ level approach we cannot even describe

More information

Math, Trigonometry and Vectors. Geometry. Trig Definitions. sin(θ) = opp hyp. cos(θ) = adj hyp. tan(θ) = opp adj. Here's a familiar image.

Math, Trigonometry and Vectors. Geometry. Trig Definitions. sin(θ) = opp hyp. cos(θ) = adj hyp. tan(θ) = opp adj. Here's a familiar image. Math, Trigonometr and Vectors Geometr Trig Definitions Here's a familiar image. To make predictive models of the phsical world, we'll need to make visualizations, which we can then turn into analtical

More information

INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4. Example 1

INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4. Example 1 Chapter 1 INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4 This opening section introduces the students to man of the big ideas of Algebra 2, as well as different was of thinking and various problem solving strategies.

More information

sin(θ) = opp hyp cos(θ) = adj hyp tan(θ) = opp adj

sin(θ) = opp hyp cos(θ) = adj hyp tan(θ) = opp adj Math, Trigonometr and Vectors Geometr 33º What is the angle equal to? a) α = 7 b) α = 57 c) α = 33 d) α = 90 e) α cannot be determined α Trig Definitions Here's a familiar image. To make predictive models

More information

COMPONENTS OF VECTORS

COMPONENTS OF VECTORS COMPONENTS OF VECTORS To describe motion in two dimensions we need a coordinate sstem with two perpendicular aes, and. In such a coordinate sstem, an vector A can be uniquel decomposed into a sum of two

More information

SECTION 7-4 Algebraic Vectors

SECTION 7-4 Algebraic Vectors 7-4 lgebraic Vectors 531 SECTIN 7-4 lgebraic Vectors From Geometric Vectors to lgebraic Vectors Vector ddition and Scalar Multiplication Unit Vectors lgebraic Properties Static Equilibrium Geometric vectors

More information

Section V.2: Magnitudes, Directions, and Components of Vectors

Section V.2: Magnitudes, Directions, and Components of Vectors Section V.: Magnitudes, Directions, and Components of Vectors Vectors in the plane If we graph a vector in the coordinate plane instead of just a grid, there are a few things to note. Firstl, directions

More information

Addition and Subtraction of Vectors

Addition and Subtraction of Vectors ddition and Subtraction of Vectors 1 ppendi ddition and Subtraction of Vectors In this appendi the basic elements of vector algebra are eplored. Vectors are treated as geometric entities represented b

More information

2, 8, 20, 28, 50, 82, 126.

2, 8, 20, 28, 50, 82, 126. Chapter 5 Nuclear Shell Model 5.1 Magic Numbers The binding energies predicted by the Liquid Drop Model underestimate the actual binding energies of magic nuclei for which either the number of neutrons

More information

Physics 53. Kinematics 2. Our nature consists in movement; absolute rest is death. Pascal

Physics 53. Kinematics 2. Our nature consists in movement; absolute rest is death. Pascal Phsics 53 Kinematics 2 Our nature consists in movement; absolute rest is death. Pascal Velocit and Acceleration in 3-D We have defined the velocit and acceleration of a particle as the first and second

More information

A Pictorial Representation of Product Operator Formalism: Non-Classical Vector Diagrams for Multidimensional NMR

A Pictorial Representation of Product Operator Formalism: Non-Classical Vector Diagrams for Multidimensional NMR Chapter 8 A Pictorial Representation of Product Operator Formalism: Non-Classical Vector Diagrams for Multidimensional NMR DAVID G. DONNE 1 AND DAVID G. GORENSTEIN Department of Molecular Biology The Scripps

More information

C3: Functions. Learning objectives

C3: Functions. Learning objectives CHAPTER C3: Functions Learning objectives After studing this chapter ou should: be familiar with the terms one-one and man-one mappings understand the terms domain and range for a mapping understand the

More information

Downloaded from www.heinemann.co.uk/ib. equations. 2.4 The reciprocal function x 1 x

Downloaded from www.heinemann.co.uk/ib. equations. 2.4 The reciprocal function x 1 x Functions and equations Assessment statements. Concept of function f : f (); domain, range, image (value). Composite functions (f g); identit function. Inverse function f.. The graph of a function; its

More information

Introduction to polarization of light

Introduction to polarization of light Chapter 2 Introduction to polarization of light This Chapter treats the polarization of electromagnetic waves. In Section 2.1 the concept of light polarization is discussed and its Jones formalism is presented.

More information

Section 5: The Jacobian matrix and applications. S1: Motivation S2: Jacobian matrix + differentiability S3: The chain rule S4: Inverse functions

Section 5: The Jacobian matrix and applications. S1: Motivation S2: Jacobian matrix + differentiability S3: The chain rule S4: Inverse functions Section 5: The Jacobian matri and applications. S1: Motivation S2: Jacobian matri + differentiabilit S3: The chain rule S4: Inverse functions Images from Thomas calculus b Thomas, Wier, Hass & Giordano,

More information

Q (x 1, y 1 ) m = y 1 y 0

Q (x 1, y 1 ) m = y 1 y 0 . Linear Functions We now begin the stud of families of functions. Our first famil, linear functions, are old friends as we shall soon see. Recall from Geometr that two distinct points in the plane determine

More information

2.1 Three Dimensional Curves and Surfaces

2.1 Three Dimensional Curves and Surfaces . Three Dimensional Curves and Surfaces.. Parametric Equation of a Line An line in two- or three-dimensional space can be uniquel specified b a point on the line and a vector parallel to the line. The

More information

Module in Radio Propagation

Module in Radio Propagation 1 This chapter is a brief overview of the subject of radio waves: what the are, how the can be characterised, and how their properties are related to those of the media in which the travel. It discusses

More information

Identifying second degree equations

Identifying second degree equations Chapter 7 Identifing second degree equations 7.1 The eigenvalue method In this section we appl eigenvalue methods to determine the geometrical nature of the second degree equation a 2 + 2h + b 2 + 2g +

More information

NMR for Physical and Biological Scientists Thomas C. Pochapsky and Susan Sondej Pochapsky Table of Contents

NMR for Physical and Biological Scientists Thomas C. Pochapsky and Susan Sondej Pochapsky Table of Contents Preface Symbols and fundamental constants 1. What is spectroscopy? A semiclassical description of spectroscopy Damped harmonics Quantum oscillators The spectroscopic experiment Ensembles and coherence

More information

w = COI EYE view direction vector u = w ( 010,, ) cross product with y-axis v = w u up vector

w = COI EYE view direction vector u = w ( 010,, ) cross product with y-axis v = w u up vector . w COI EYE view direction vector u w ( 00,, ) cross product with -ais v w u up vector (EQ ) Computer Animation: Algorithms and Techniques 29 up vector view vector observer center of interest 30 Computer

More information

2.6. The Circle. Introduction. Prerequisites. Learning Outcomes

2.6. The Circle. Introduction. Prerequisites. Learning Outcomes The Circle 2.6 Introduction A circle is one of the most familiar geometrical figures and has been around a long time! In this brief Section we discuss the basic coordinate geometr of a circle - in particular

More information

10.2 The Unit Circle: Cosine and Sine

10.2 The Unit Circle: Cosine and Sine 0. The Unit Circle: Cosine and Sine 77 0. The Unit Circle: Cosine and Sine In Section 0.., we introduced circular motion and derived a formula which describes the linear velocit of an object moving on

More information

ACT Math Vocabulary. Altitude The height of a triangle that makes a 90-degree angle with the base of the triangle. Altitude

ACT Math Vocabulary. Altitude The height of a triangle that makes a 90-degree angle with the base of the triangle. Altitude ACT Math Vocabular Acute When referring to an angle acute means less than 90 degrees. When referring to a triangle, acute means that all angles are less than 90 degrees. For eample: Altitude The height

More information

Modelling musical chords using sine waves

Modelling musical chords using sine waves Modelling musical chords using sine waves Introduction From the stimulus word Harmon, I chose to look at the transmission of sound waves in music. As a keen musician mself, I was curious to understand

More information

2. Spin Chemistry and the Vector Model

2. Spin Chemistry and the Vector Model 2. Spin Chemistry and the Vector Model The story of magnetic resonance spectroscopy and intersystem crossing is essentially a choreography of the twisting motion which causes reorientation or rephasing

More information

Introduction to Matrices for Engineers

Introduction to Matrices for Engineers Introduction to Matrices for Engineers C.T.J. Dodson, School of Mathematics, Manchester Universit 1 What is a Matrix? A matrix is a rectangular arra of elements, usuall numbers, e.g. 1 0-8 4 0-1 1 0 11

More information

Classical Angular Momentum. The Physics of Rotational Motion.

Classical Angular Momentum. The Physics of Rotational Motion. 3. Angular Momentum States. We now employ the vector model to enumerate the possible number of spin angular momentum states for several commonly encountered situations in photochemistry. We shall give

More information

2 NMR and energy levels

2 NMR and energy levels NMR and energy levels The picture that we use to understand most kinds of spectroscopy is that molecules have a set of energy levels and that the lines we see in spectra are due to transitions between

More information

Core Maths C2. Revision Notes

Core Maths C2. Revision Notes Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...

More information

Pulsed Nuclear Magnetic Resonance Experiment

Pulsed Nuclear Magnetic Resonance Experiment Pulsed Nuclear agnetic Resonance Eperiment in LI Dept. of Phsics & Astronom, Univ. of Pittsburgh, Pittsburgh, PA 56, USA arch 8 th, Introduction. Simple Resonance heor agnetic resonance is a phenomenon

More information

STIFFNESS OF THE HUMAN ARM

STIFFNESS OF THE HUMAN ARM SIFFNESS OF HE HUMAN ARM his web resource combines the passive properties of muscles with the neural feedback sstem of the short-loop (spinal) and long-loop (transcortical) reflees and eamine how the whole

More information

Double Integrals in Polar Coordinates

Double Integrals in Polar Coordinates Double Integrals in Polar Coordinates. A flat plate is in the shape of the region in the first quadrant ling between the circles + and +. The densit of the plate at point, is + kilograms per square meter

More information

Graphing Linear Equations

Graphing Linear Equations 6.3 Graphing Linear Equations 6.3 OBJECTIVES 1. Graph a linear equation b plotting points 2. Graph a linear equation b the intercept method 3. Graph a linear equation b solving the equation for We are

More information

EQUILIBRIUM STRESS SYSTEMS

EQUILIBRIUM STRESS SYSTEMS EQUILIBRIUM STRESS SYSTEMS Definition of stress The general definition of stress is: Stress = Force Area where the area is the cross-sectional area on which the force is acting. Consider the rectangular

More information

D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review

D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review D0 APPENDIX D Precalculus Review SECTION D. The Cartesian Plane The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles The Cartesian Plane An ordered pair, of real numbers has as its

More information

Mathematics Placement Packet Colorado College Department of Mathematics and Computer Science

Mathematics Placement Packet Colorado College Department of Mathematics and Computer Science Mathematics Placement Packet Colorado College Department of Mathematics and Computer Science Colorado College has two all college requirements (QR and SI) which can be satisfied in full, or part, b taking

More information

P1. Plot the following points on the real. P2. Determine which of the following are solutions

P1. Plot the following points on the real. P2. Determine which of the following are solutions Section 1.5 Rectangular Coordinates and Graphs of Equations 9 PART II: LINEAR EQUATIONS AND INEQUALITIES IN TWO VARIABLES 1.5 Rectangular Coordinates and Graphs of Equations OBJECTIVES 1 Plot Points in

More information

Plane Stress Transformations

Plane Stress Transformations 6 Plane Stress Transformations ASEN 311 - Structures ASEN 311 Lecture 6 Slide 1 Plane Stress State ASEN 311 - Structures Recall that in a bod in plane stress, the general 3D stress state with 9 components

More information

COMPLEX STRESS TUTORIAL 3 COMPLEX STRESS AND STRAIN

COMPLEX STRESS TUTORIAL 3 COMPLEX STRESS AND STRAIN COMPLX STRSS TUTORIAL COMPLX STRSS AND STRAIN This tutorial is not part of the decel unit mechanical Principles but covers elements of the following sllabi. o Parts of the ngineering Council eam subject

More information

NMR Spectroscopy. Applications. Drug design MRI. Food quality. Structural biology. Metabonomics

NMR Spectroscopy. Applications. Drug design MRI. Food quality. Structural biology. Metabonomics Applications Drug design MRI Food qualit Metabonomics Structural biolog Basic Principles N.M.R. = Nuclear Magnetic Resonance Spectroscopic technique, thus relies on the interaction between material and

More information

that satisfies (2). Then (3) ax 0 + by 0 + cz 0 = d.

that satisfies (2). Then (3) ax 0 + by 0 + cz 0 = d. Planes.nb 1 Plotting Planes in Mathematica Copright 199, 1997, 1 b James F. Hurle, Universit of Connecticut, Department of Mathematics, Unit 39, Storrs CT 669-39. All rights reserved. This notebook discusses

More information

FURTHER VECTORS (MEI)

FURTHER VECTORS (MEI) Mathematics Revision Guides Further Vectors (MEI) (column notation) Page of MK HOME TUITION Mathematics Revision Guides Level: AS / A Level - MEI OCR MEI: C FURTHER VECTORS (MEI) Version : Date: -9-7 Mathematics

More information

In this this review we turn our attention to the square root function, the function defined by the equation. f(x) = x. (5.1)

In this this review we turn our attention to the square root function, the function defined by the equation. f(x) = x. (5.1) Section 5.2 The Square Root 1 5.2 The Square Root In this this review we turn our attention to the square root function, the function defined b the equation f() =. (5.1) We can determine the domain and

More information

NMR SPECTROSCOPY. Basic Principles, Concepts, and Applications in Chemistry. Harald Günther University of Siegen, Siegen, Germany.

NMR SPECTROSCOPY. Basic Principles, Concepts, and Applications in Chemistry. Harald Günther University of Siegen, Siegen, Germany. NMR SPECTROSCOPY Basic Principles, Concepts, and Applications in Chemistry Harald Günther University of Siegen, Siegen, Germany Second Edition Translated by Harald Günther JOHN WILEY & SONS Chichester

More information

2.6. The Circle. Introduction. Prerequisites. Learning Outcomes

2.6. The Circle. Introduction. Prerequisites. Learning Outcomes The Circle 2.6 Introduction A circle is one of the most familiar geometrical figures. In this brief Section we discuss the basic coordinate geometr of a circle - in particular the basic equation representing

More information

D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review

D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review D0 APPENDIX D Precalculus Review APPENDIX D. The Cartesian Plane The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles The Cartesian Plane Just as ou can represent real numbers b

More information

LESSON EIII.E EXPONENTS AND LOGARITHMS

LESSON EIII.E EXPONENTS AND LOGARITHMS LESSON EIII.E EXPONENTS AND LOGARITHMS LESSON EIII.E EXPONENTS AND LOGARITHMS OVERVIEW Here s what ou ll learn in this lesson: Eponential Functions a. Graphing eponential functions b. Applications of eponential

More information

EXPANDING THE CALCULUS HORIZON. Hurricane Modeling

EXPANDING THE CALCULUS HORIZON. Hurricane Modeling EXPANDING THE CALCULUS HORIZON Hurricane Modeling Each ear population centers throughout the world are ravaged b hurricanes, and it is the mission of the National Hurricane Center to minimize the damage

More information

I think that starting

I think that starting . Graphs of Functions 69. GRAPHS OF FUNCTIONS One can envisage that mathematical theor will go on being elaborated and etended indefinitel. How strange that the results of just the first few centuries

More information

Logic Design 2013/9/5. Introduction. Logic circuits operate on digital signals

Logic Design 2013/9/5. Introduction. Logic circuits operate on digital signals Introduction Logic Design Chapter 2: Introduction to Logic Circuits Logic circuits operate on digital signals Unlike continuous analog signals that have an infinite number of possible values, digital signals

More information

Chapter 8. Lines and Planes. By the end of this chapter, you will

Chapter 8. Lines and Planes. By the end of this chapter, you will Chapter 8 Lines and Planes In this chapter, ou will revisit our knowledge of intersecting lines in two dimensions and etend those ideas into three dimensions. You will investigate the nature of planes

More information

2D Geometrical Transformations. Foley & Van Dam, Chapter 5

2D Geometrical Transformations. Foley & Van Dam, Chapter 5 2D Geometrical Transformations Fole & Van Dam, Chapter 5 2D Geometrical Transformations Translation Scaling Rotation Shear Matri notation Compositions Homogeneous coordinates 2D Geometrical Transformations

More information

Lines and Planes 1. x(t) = at + b y(t) = ct + d

Lines and Planes 1. x(t) = at + b y(t) = ct + d 1 Lines in the Plane Lines and Planes 1 Ever line of points L in R 2 can be epressed as the solution set for an equation of the form A + B = C. The equation is not unique for if we multipl both sides b

More information

Line-Torus Intersection for Ray Tracing: Alternative Formulations

Line-Torus Intersection for Ray Tracing: Alternative Formulations Line-Torus Intersection for Ra Tracing: Alternative Formulations VACLAV SKALA Department of Computer Science Engineering Universit of West Bohemia Univerzitni 8, CZ 30614 Plzen CZECH REPUBLIC http://www.vaclavskala.eu

More information

Vector Calculus: a quick review

Vector Calculus: a quick review Appendi A Vector Calculus: a quick review Selected Reading H.M. Sche,. Div, Grad, Curl and all that: An informal Tet on Vector Calculus, W.W. Norton and Co., (1973). (Good phsical introduction to the subject)

More information

Precession of spin and Precession of a top

Precession of spin and Precession of a top 6. Classical Precession of the Angular Momentum Vector A classical bar magnet (Figure 11) may lie motionless at a certain orientation in a magnetic field. However, if the bar magnet possesses angular momentum,

More information

MAT188H1S Lec0101 Burbulla

MAT188H1S Lec0101 Burbulla Winter 206 Linear Transformations A linear transformation T : R m R n is a function that takes vectors in R m to vectors in R n such that and T (u + v) T (u) + T (v) T (k v) k T (v), for all vectors u

More information

Filling in Coordinate Grid Planes

Filling in Coordinate Grid Planes Filling in Coordinate Grid Planes A coordinate grid is a sstem that can be used to write an address for an point within the grid. The grid is formed b two number lines called and that intersect at the

More information

7.3 Parabolas. 7.3 Parabolas 505

7.3 Parabolas. 7.3 Parabolas 505 7. Parabolas 0 7. Parabolas We have alread learned that the graph of a quadratic function f() = a + b + c (a 0) is called a parabola. To our surprise and delight, we ma also define parabolas in terms of

More information

SECTION 2.2. Distance and Midpoint Formulas; Circles

SECTION 2.2. Distance and Midpoint Formulas; Circles SECTION. Objectives. Find the distance between two points.. Find the midpoint of a line segment.. Write the standard form of a circle s equation.. Give the center and radius of a circle whose equation

More information

Connecting Transformational Geometry and Transformations of Functions

Connecting Transformational Geometry and Transformations of Functions Connecting Transformational Geometr and Transformations of Functions Introductor Statements and Assumptions Isometries are rigid transformations that preserve distance and angles and therefore shapes.

More information

2.4 Orthogonal Coordinate Systems

2.4 Orthogonal Coordinate Systems 8/25/2005 section 2_4Orthogonal_Coordinate_Sstems_empt.doc 1/6 2.4 Orthogonal Coordinate Sstems Reading Assignment: pp.16-33 We live in a 3-dimensional world! Meaning: 1) 2) Q: What 3 scalar values and

More information

Section 5-9 Inverse Trigonometric Functions

Section 5-9 Inverse Trigonometric Functions 46 5 TRIGONOMETRIC FUNCTIONS Section 5-9 Inverse Trigonometric Functions Inverse Sine Function Inverse Cosine Function Inverse Tangent Function Summar Inverse Cotangent, Secant, and Cosecant Functions

More information

Mathematical goals. Starting points. Materials required. Time needed

Mathematical goals. Starting points. Materials required. Time needed Level A7 of challenge: C A7 Interpreting functions, graphs and tables tables Mathematical goals Starting points Materials required Time needed To enable learners to understand: the relationship between

More information

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 7 : Symmetries and the Quark Model. Introduction/Aims

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 7 : Symmetries and the Quark Model. Introduction/Aims Particle Physics Michaelmas Term 2011 Prof Mark Thomson Handout 7 : Symmetries and the Quark Model Prof. M.A. Thomson Michaelmas 2011 206 Introduction/Aims Symmetries play a central role in particle physics;

More information

Trigonometry Review Workshop 1

Trigonometry Review Workshop 1 Trigonometr Review Workshop Definitions: Let P(,) be an point (not the origin) on the terminal side of an angle with measure θ and let r be the distance from the origin to P. Then the si trig functions

More information

Proton Nuclear Magnetic Resonance Spectroscopy

Proton Nuclear Magnetic Resonance Spectroscopy Proton Nuclear Magnetic Resonance Spectroscopy Introduction: The NMR Spectrum serves as a great resource in determining the structure of an organic compound by revealing the hydrogen and carbon skeleton.

More information

Solutions manual for Understanding NMR spectroscopy second edition

Solutions manual for Understanding NMR spectroscopy second edition Solutions manual for Understanding NMR spectroscopy second edition James Keeler and Andrew J. Pell University of Cambridge, Department of Chemistry (a) (b) Ω Ω 2 Ω 2 Ω ω ω 2 Version 2.0 James Keeler and

More information

GRAPHS OF RATIONAL FUNCTIONS

GRAPHS OF RATIONAL FUNCTIONS 0 (0-) Chapter 0 Polnomial and Rational Functions. f() ( 0) ( 0). f() ( 0) ( 0). f() ( 0) ( 0). f() ( 0) ( 0) 0. GRAPHS OF RATIONAL FUNCTIONS In this section Domain Horizontal and Vertical Asmptotes Oblique

More information

6. The given function is only drawn for x > 0. Complete the function for x < 0 with the following conditions:

6. The given function is only drawn for x > 0. Complete the function for x < 0 with the following conditions: Precalculus Worksheet 1. Da 1 1. The relation described b the set of points {(-, 5 ),( 0, 5 ),(,8 ),(, 9) } is NOT a function. Eplain wh. For questions - 4, use the graph at the right.. Eplain wh the graph

More information

Basic Principles of Magnetic Resonance

Basic Principles of Magnetic Resonance Basic Principles of Magnetic Resonance Contents: Jorge Jovicich jovicich@mit.edu I) Historical Background II) An MR experiment - Overview - Can we scan the subject? - The subject goes into the magnet -

More information

Vector Fields and Line Integrals

Vector Fields and Line Integrals Vector Fields and Line Integrals 1. Match the following vector fields on R 2 with their plots. (a) F (, ), 1. Solution. An vector, 1 points up, and the onl plot that matches this is (III). (b) F (, ) 1,.

More information

Group Theory and Chemistry

Group Theory and Chemistry Group Theory and Chemistry Outline: Raman and infra-red spectroscopy Symmetry operations Point Groups and Schoenflies symbols Function space and matrix representation Reducible and irreducible representation

More information

3D Stress Components. From equilibrium principles: τ xy = τ yx, τ xz = τ zx, τ zy = τ yz. Normal Stresses. Shear Stresses

3D Stress Components. From equilibrium principles: τ xy = τ yx, τ xz = τ zx, τ zy = τ yz. Normal Stresses. Shear Stresses 3D Stress Components From equilibrium principles:, z z, z z The most general state of stress at a point ma be represented b 6 components Normal Stresses Shear Stresses Normal stress () : the subscript

More information

Section 1.1. Introduction to R n

Section 1.1. Introduction to R n The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

More information

3 Unit Circle Trigonometry

3 Unit Circle Trigonometry 0606_CH0_-78.QXP //0 :6 AM Page Unit Circle Trigonometr In This Chapter. The Circular Functions. Graphs of Sine and Cosine Functions. Graphs of Other Trigonometric Functions. Special Identities.5 Inverse

More information

1 Lecture 3: Operators in Quantum Mechanics

1 Lecture 3: Operators in Quantum Mechanics 1 Lecture 3: Operators in Quantum Mechanics 1.1 Basic notions of operator algebra. In the previous lectures we have met operators: ˆx and ˆp = i h they are called fundamental operators. Many operators

More information

Using the data above Height range: 6 1to 74 inches Weight range: 95 to 205

Using the data above Height range: 6 1to 74 inches Weight range: 95 to 205 Plotting When plotting data, ou will normall be using two numbers, one for the coordinate, another for the coordinate. In some cases, like the first assignment, ou ma have onl one value. There, the second

More information

Time dependence in quantum mechanics Notes on Quantum Mechanics

Time dependence in quantum mechanics Notes on Quantum Mechanics Time dependence in quantum mechanics Notes on Quantum Mechanics http://quantum.bu.edu/notes/quantummechanics/timedependence.pdf Last updated Thursday, November 20, 2003 13:22:37-05:00 Copyright 2003 Dan

More information

Application Note 3 Polarization and Polarization Control

Application Note 3 Polarization and Polarization Control Application Note 3 Polarization and Polarization Control 515 Heller Ave. San Jose, CA 95138 1001 USA phone: (408) 84 6808 fa: (408) 84 484 e-mail: contact@newfocus.com www.newfocus.com Polarization and

More information

C1: Coordinate geometry of straight lines

C1: Coordinate geometry of straight lines B_Chap0_08-05.qd 5/6/04 0:4 am Page 8 CHAPTER C: Coordinate geometr of straight lines Learning objectives After studing this chapter, ou should be able to: use the language of coordinate geometr find the

More information

Functions and Graphs CHAPTER INTRODUCTION. The function concept is one of the most important ideas in mathematics. The study

Functions and Graphs CHAPTER INTRODUCTION. The function concept is one of the most important ideas in mathematics. The study Functions and Graphs CHAPTER 2 INTRODUCTION The function concept is one of the most important ideas in mathematics. The stud 2-1 Functions 2-2 Elementar Functions: Graphs and Transformations 2-3 Quadratic

More information

4 Coherence Selection: Phase Cycling and Gradient Pulses

4 Coherence Selection: Phase Cycling and Gradient Pulses 4 Coherence Selection: Phase Cycling and Gradient Pulses,QWURGXFWLRQ A multiple-pulse NMR experiment is designed to manipulate the spins in a certain carefully defined way so as to produce a particular

More information

Figure 1.1 Vector A and Vector F

Figure 1.1 Vector A and Vector F CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have

More information

LINEAR FUNCTIONS OF 2 VARIABLES

LINEAR FUNCTIONS OF 2 VARIABLES CHAPTER 4: LINEAR FUNCTIONS OF 2 VARIABLES 4.1 RATES OF CHANGES IN DIFFERENT DIRECTIONS From Precalculus, we know that is a linear function if the rate of change of the function is constant. I.e., for

More information

Chapter 11 Equilibrium

Chapter 11 Equilibrium 11.1 The First Condition of Equilibrium The first condition of equilibrium deals with the forces that cause possible translations of a body. The simplest way to define the translational equilibrium of

More information

D.3. Angles and Degree Measure. Review of Trigonometric Functions

D.3. Angles and Degree Measure. Review of Trigonometric Functions APPENDIX D Precalculus Review D7 SECTION D. Review of Trigonometric Functions Angles and Degree Measure Radian Measure The Trigonometric Functions Evaluating Trigonometric Functions Solving Trigonometric

More information

f x a 0 n 1 a 0 a 1 cos x a 2 cos 2x a 3 cos 3x b 1 sin x b 2 sin 2x b 3 sin 3x a n cos nx b n sin nx n 1 f x dx y

f x a 0 n 1 a 0 a 1 cos x a 2 cos 2x a 3 cos 3x b 1 sin x b 2 sin 2x b 3 sin 3x a n cos nx b n sin nx n 1 f x dx y Fourier Series When the French mathematician Joseph Fourier (768 83) was tring to solve a problem in heat conduction, he needed to epress a function f as an infinite series of sine and cosine functions:

More information

6.3 Parametric Equations and Motion

6.3 Parametric Equations and Motion SECTION 6.3 Parametric Equations and Motion 475 What ou ll learn about Parametric Equations Parametric Curves Eliminating the Parameter Lines and Line Segments Simulating Motion with a Grapher... and wh

More information

Application of Nuclear Magnetic Resonance in Petroleum Exploration

Application of Nuclear Magnetic Resonance in Petroleum Exploration Application of Nuclear Magnetic Resonance in Petroleum Exploration Introduction Darko Tufekcic, consultant email: darkotufekcic@hotmail.com Electro-magnetic resonance method (GEO-EMR) is emerging as the

More information

2 Session Two - Complex Numbers and Vectors

2 Session Two - Complex Numbers and Vectors PH2011 Physics 2A Maths Revision - Session 2: Complex Numbers and Vectors 1 2 Session Two - Complex Numbers and Vectors 2.1 What is a Complex Number? The material on complex numbers should be familiar

More information

CHEM6085: Density Functional Theory Lecture 2. Hamiltonian operators for molecules

CHEM6085: Density Functional Theory Lecture 2. Hamiltonian operators for molecules CHEM6085: Density Functional Theory Lecture 2 Hamiltonian operators for molecules C.-K. Skylaris 1 The (time-independent) Schrödinger equation is an eigenvalue equation operator for property A eigenfunction

More information

Higher. Polynomials and Quadratics 64

Higher. Polynomials and Quadratics 64 hsn.uk.net Higher Mathematics UNIT OUTCOME 1 Polnomials and Quadratics Contents Polnomials and Quadratics 64 1 Quadratics 64 The Discriminant 66 3 Completing the Square 67 4 Sketching Parabolas 70 5 Determining

More information

SECTION 5-1 Exponential Functions

SECTION 5-1 Exponential Functions 354 5 Eponential and Logarithmic Functions Most of the functions we have considered so far have been polnomial and rational functions, with a few others involving roots or powers of polnomial or rational

More information