# CALCULATING WHEEL-OVER POINT

 To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Asia-Pacific Journal of Marine Science&Education, Vol. 2, No. 1, 2012, pp CALCULATING WHEEL-OVER POINT Vladimir N. Drachev The article consists of two parts. The first one presents a ship turning method in restricted waters that based on calculating the wheel-over point. The second part presents the method of ship s turning in shallow waters that taking into account the increasing radius of turning due to increase of resistance of water and large water masses. Keywords: ship, turning, radius of circulation, wheel-over point, turning radius, shallow waters, restricted water maneuvers. For safety sailing it is necessary for any vessel to take into account her ability to turn in restricted areas. A vessel cannot make a turning immediately and at one point. The simplest method is the method when the arc between a new course and an old one is drawn by a turning radius. Entering point A 0 and pull out point B 0 of a turning circle are the points of an arc contact with previous and new courses (see Figure 1.1). But actually if a vessel begins starting a wheelover at point A 0 she reaches a new course in point B 1 only. For big-sized vessels distance B 0 B 1 can reach a considerable value. This mistake can be worse if a vessel has a dead interval when ratio B 0 B 1 /RTR (TR turning radius) becomes more than a unit. Besides, within the opening period a vessel has a shift from her initial course to the side opposite to the turning. But usually, this value is not more than some tens of meters. However, due to drifting the extreme aft point of a vessel with an extended hull deviates to a distance A 0 A 0 ' which becomes commensurable with a fairway breadth. Therefore, safe maneuvering 27

2 Vladimir N. Drachev of big tonnage vessels in restricted areas can be obtained provided a seafarer has got full information about ship s ability to make a turn. A new method has been offered to find a wheelover point while performing a turning circle through deep water. This method is based on using tangent to a turning circle trajectory. Every vessel has the table of maneuvering characteristics for performing turning circles in deep water with 35, 20 and Fig Calculated and real circle 10 degrees rudder position. Turning circles are drawn so, that point A 0 is the point of starting wheelover. Figure 1.3 shows plotted TR1 (track 1) and TR2 (track 2) both of which cross at point C. Then a turning angle must be defined as the difference between TR1 and TR2 and marked as ΔTR. Figure 1.2 shows the tangent drawn to the trajectory with a 20 degrees rudder position. Point C is the intercept of the tangent with the line of the ship s initial track which is measured in cables. Thus value A 0 C is the advance whilst turning at angle ΔTR with a 20 degrees rudder angle. To find a starting wheel-over point on the TR1 (Figure 1.3) it is necessary to measure A 0 C Fig Deep water turning circle with 35, 20, 10 wheel position 28

3 Calculating Wheel-over Point (Figure 1.2) and to put the same value relevant to the chart scale on the TR1 (Figure 1.3) from the point C in opposite direction. The end of this segment is marked as point A 0 which is the starting wheel-over point. Thus wheel-over point A 0 is found through the turning circle which belongs to this vessel only. To change position of a rudder angle to perform a turning it is necessary to draw the tangent to any of the three trajectories. The Fig Course alteration and wheel-over value A 0 C will change the chosen trajectory. Accordingly, point A 0 will change its position on the TR1. Suitable visual bearing or radar distance should be drawn toward point A0 to determine a moment when a vessel is in the wheel-over position. Any trajectory of a turning is a moving vessel s center of gravity. Figure 4 shows the vessel heading to the upper point of the trajectory which has value of 90 degrees plus β (angle drift). This trajectory is performed with the rudder in unchanged position all the time. In realty at point A 0 rudder is put over at an indicated angle. Аt first a vessel begins moving according to the trajectory. Then at an appointed moment the rudder angle is reduced to an indicated value. The turning speed slowly begins to reduce and turning radius slowly to increase. The trajectory starts to change growing up. Fig.1.4. Vessel heading during turning 29

4 Vladimir N. Drachev At the next appointed by a seafarer moment value of the rudder angle is changed in position straight or the turning has to be met the helm which in this case has position with the rudder angle to the side opposite to the turning. At this time turning speed quickly reduces and turning radius sharply increases. And at a moment when she begins proceeding her course turning radius grows up to for ever and ever. To value the accuracy of a turning circle on a new course by a tangent method the mathematical model of the bulk carrier with next data is taken: Displacement t LOA in full load m LBP in full load m Breadth 22.6 m Draft (bow) 10.1 m Draft (stern) 10.7 m Draft middle in full loaded 10.4 m As an example the turns with the rudder in position starboard 20 degrees are examined. At first the turning circle is fulfilled. Turning data are written with the interval of five degrees. After that the turning circle is drawn. A turning angle is decomposed and each of components answers its angle rudder position only. In general case ΔTR will be presented in form of ΔTR = ΔTR1 + ΔTR2 + ΔTR3 + ΔTR4 where ΔTR turning angle ΔTR1 turning angle with the rudder in position 20 degrees ΔTR2 turning angle with the rudder in position 10 degrees ΔTR3 turning angle with the rudder in position straight ΔTR4 turning angle with the rudder in position 5 degrees to the side opposite to the turning. Any turning angle ΔTR is calculated for turning trajectory with the rudder in position 20 degrees. Therefore all tangents are drawn to this trajectory. The turnings are fulfilled from 20 to 90 degrees at intervals of ten degrees. To fulfilled turning at the appointed angle the rudder changes must 30

5 Calculating Wheel-over Point be the following (see Table 1.1 at the end of the first part of the article): 1. a) If value of ΔTR is from 20 to 60 degrees the rudder has to be in position 20 degrees for ½ΔTR or this angle value answers value ΔTR1 and which is written in the first column. b) If value of ΔTR is from 60 to 90 degrees the rudder has to be in position 20 degrees for ⅔ΔTR or this angle value answers value ΔTR1 and which is written in the first column. 2. On achievement of a turning with value of ΔTR1 the moment to start to change position of a rudder angle from 20 to 10 degrees the same board. The mathematical model continues turning until value which is 100 less than turning angle. At this time angle value is equal ΔTR1+ΔTR2 and is written in the third column. 3. a) When the turning reaches value ΔTR1+ΔTR2 and value of turning angle is 10 degrees less than set angle the rudder is changed in position straight. The mathematical model goes on turning before angle reaches appointed value. At this moment turning angle value is equal ΔTR1+ΔTR2+ΔTR3=ΔTR and is written in the fourth column. b) When the turning reaches value ΔTR1+ΔTR2 and value of turning angle is 10 degrees less than set angle the rudder is changed in position straight. The mathematical model goes on turning before angle reaches value which is 5 degrees less appointed angle. At this moment turning angle value is equal ΔTR1+ΔTR2+ΔTR3 and is written in the fourth column. 4. a) When the turning angle reaches value ΔTR1+ΔTR2+ΔTR3 and value of turning angle is 5 degrees less than set angle the rudder is changed in position 5 degrees to the side opposite to the turning. The mathematical model goes on turning before angle reaches appointed angle value or turning speed is around zero. At this moment turning angle value is equal ΔTR1+ΔTR2+ΔTR3+ΔTR4=ΔTR and it is written in the fifth column. b) When the turning angle reaches value ΔTR1+ΔTR2 and value of turning angle is 10 degrees less than set angle the rudder is changed in position 5 degrees to the side opposite to the turning. The mathematical model goes on turning before angle reaches appointed 31

6 Vladimir N. Drachev angle value or turning speed is around zero. At this moment turning angle value is equal ΔTR1+ΔTR2+ΔTR4=ΔTR and it is written in the fifth column. The movement parameters are written at each moment changing of the rudder position. The turning angles are examined from 20 to 90 degrees at intervals in 10 degrees. The tangents are drawn for each turning angle. A final turning angle is realized in three variants with different position of the rudder, therefore three turnings are made for each angle, three trajectories are drawn and three values are written in the Table 1.1 as a distance of each track between final turning point and the tan-gent. Then to value the accuracy of turning on a new course by a tangent method the ma-thematical model of the tanker with next data is taken: Displacement t LOA in full load m LBP in full load m Breadth 32.2 m Draft (bow) 12.5 m Draft (stern) 12.5 m At first the operations are fulfilled the same as for previous model. A turning angle is discomposed and each of components answers its angle rudder position only. In general case TR will be presented in form of ΔTR = ΔTR1 + ΔTR2 + ΔTR3 + ΔTR4, where ΔTR, ΔTR1, ΔTR2 same as for previous model; ΔTR3 turning angle with the rudder in position 10 degrees to the side opposite to the turning; ΔTR4 turning angle with the rudder in position 15 degrees to the side opposite to the turning. Then operations are fulfilled the same as for previous model with the exception that a final turning angle is realized in two variants and all data are written in the Table 1.2 (see at the end of the first part of the article). Then to value the accuracy of turning on a new course by a tangent 32

7 Calculating Wheel-over Point method the ma-thematical model of the RO-RO with next data is taken: Displacement t LOA in full load 184,2 m LBP in full load 174,0 m Breadth 30,6 m Draft (bow) 8,2 m Draft (stern) 8,2 m Then all operations are fulfilled the same as for previous model of the tanker with the exception that all data are written in the Table 1.3 (see at the end of the first part of the article). These way three mathematical models are taken to value the accuracy of a turning on a new course by tangent method. It is necessary to take notice that the final turning part differs from each other by the angle of rudder position. It is a necessity for this to stop turning speed. All vessels are fulfilled turnings with different position of the rudder at final part. Part-ly turning speed reduced to zero when a vessel did not reach appointed course and data was written in a table. In others cases a vessel reached appointed course although she had some turning speed but data was written. But if this turning was continued angle value did not reach more than 3,5 degrees above appointed when the turning speed was zero. In this case a vessel had to return to her course and distance did not increase between a vessel and tangent. The values of whole distance are written in the Table 1.4 (see at the end of the first part of the article). 33

8 Vladimir N. Drachev TR Table 1.1. of moving parameters mathematic model bulk carrier for turning TR1 TR1+ TR2 TR1+ TR2+ TR3 TR1+ TR2+ TR3+ TR4 Point to trajectory distance о о Point of contact with trajectory

9 Calculating Wheel-over Point K Table 1.2. of moving parameters mathematic model tanker for turning TR1 TR1+ TR2 TR1+ TR2+ TR3 TR1+ TR2+ TR3+ TR4 Point to trajectory distance Point of contact with trajectory

10 Vladimir N. Drachev K Table 1.3. of moving parameters mathematic model RO-RO for turning TR1 TR1+ TR2 TR1+ TR2+ TR3 TR1+ TR2+ TR3+ TR4 Point to trajectory distance Point of contact with trajectory

11 Calculating Wheel-over Point Table 1.4. Turning angle Distance from point when the vessel is on appointed course to the tangent Bulk carrier Tanker RO - RO

13 Calculating Wheel-over Point Table 2.1. Difference of advances in cables at depths of 120 m and 52 m for various positions of rudder and angle turning Rudder 35 Rudder 30 Rudder 25 Rudder 20 Rudder 15 Rudder 10 Angle of turning 120 m, cbl 52 m, cbl Difference advances, cbl 120 m, cbl 52 m, cbl Difference advances, cbl 120 m, cbl 52 m, cbl Difference advances, cbl 120 m, cbl 52 m, cbl Difference advances, cbl 120 m, cbl 52 m, cbl Difference advances, cbl 120 m, cbl 52 m, cbl Difference advances, cbl 20 1,40 1,34 0,06 1,35 1,36 0,01 1,46 1,52 0,06 1,54 1,58 0,04 1,75 1,76 0,01 2,12 2,15 0, ,60 1,51 0,09 1,63 1,62 0,01 1,76 1,81 0,05 1,86 1,90 0,04 2,11 2,13 0,02 2,60 2,56 0, ,78 1,73 0,05 1,86 1,86 0 2,03 2,07 0,04 2,15 2,20 0,05 2,46 2,46 0 3,03 3,02 0, ,02 1,97 0,05 2,10 2,10 0 2,28 2,32 0,04 2,47 2,51 0,04 2,81 2,81 0 3,47 3,43 0, ,24 2,22 0,02 2,33 2,35 0,02 2,57 2,62 0,05 2,82 2,83 0,01 3,16 3,19 0,03 3,93 3,90 0, ,49 2,47 0,02 2,61 2,61 0 2,87 2,94 0,07 3,16 3,19 0,03 3,56 3,61 0,05 4,41 4, ,78 2,78 0 2,92 2,93 0,01 3,23 3,26 0,03 3,55 3,56 0,01 4,02 4,03 0,01 4,92 4, ,08 3,07 0,01 3,27 3,29 0,02 3,57 3,65 0,08 3,98 3,98 0 4,51 4,51 0 5,52 5,54 0,02 39

17 Calculating Wheel-over Point The following depths are taken for a turning circle: m - deep water, 38.0 m - the depth equal to three draughts, 25.2 m - the depth equal to two draughts, 21.0 m, 18.0 m, 15.0 m - different depths. It is fulfilled operations the same as with the mathematical model of the bulk carrier and as a result of this the following data are received: values don not exceed difference of 0.3 cables (55.5 m) between the calculated and received values from the drawing (70.8%); - 70 values exceed the difference of 0.3 cables (55.5 m) between the calculated and received values from drawing (29.1%); - 38 values exceed the difference of 0.4 cables (74.1 m) between the calculated and received values from the drawing (15.8%). For the depths equal to two and three draughts of the mathematical model the tactical diameters are more than 0.3 cables (55.5 m) in 2 out of 12 values. If a depth is less two draughts a tactical diameters increase sharply and the difference between the calculated and measured values reach up to 4 cables. After estimating the coefficient of the above-mentioned two mathematical models the particulars of the m/v Norilsk are used: Displacement t Length full 173,5 m Breadth full 24,55 m Draught fore 10,00 m aft 10,70 m mean 10,35 m The deep water turning circle is drawn on basis of the real tests. However, there are no data are for drawing the turning circle in another scale. Therefore the turning circle is drawn in natural size (see Figure 2.1). The turning circle for shallow water is drawn on the basis of calculation and for ratio of the depth to the draught equal to 1.25 (see Figure 2.2). Therefore the calculation could be made with some mistakes which would arise because of increase of the turn circle. And as a result it is received 8 caparisons between of calculated advances and advances received from drawings (see Table 2.3). The comparison results are as follows: 5 values exceed the difference of 0.3 cables; 43

18 Vladimir N. Drachev 4 values exceed the difference of 0.4 cables; The maximum difference of 0.65 cable. The advance calculation method is offered on the basis comparisons which are received as shown above. Thus is possible to find wheel-over point with the help deep water turning circle easily. But for using this method a vessel must have turning circles which are received at different rudder angles and fulfilled more exactly then m/v Norilsk. M/V NORILSK Turning circle was made up in loaded condition and in deep water (result of real tests). The turning circle was fulfilled of rudder position of 35 starboard side and with the following particulars: Draught fore m, Draught aft m, Initial speed , Rudder position - 35 S/side, Advance cb, Maximum diameter cb Figure 2.1. Deep water turning circle Figure 2.2. Shallow water turning circle M/V NORILSK Turning circle was made up in loaded condition and in shallow water (result of calculating). The turning circle was fulfilled at rudder position 35 starboard side and with the following particulars: Draught fore m, Draft aft m, Initial speed , Rudder position - 35 S/side, Draught/depth ratio , Advance cb, Maximum diameter cb 44

19 Calculating Wheel-over Point Table 2.2 The distance from crossing tracks to wheel-over point depending on turning angle and manoeuvring depth depending on turning angle and manoeuvring depth with rudder position of 35 degrees, starboard side Turning angle T/H H k Tact. Diam. a/dr a/cal a/dr a/cal a/dr a/cal a/dr a/cal a/dr a/cal a/dr a/cal a/dr a/cal a/dr a/cal a/dr a/cal mm/cb mm/cb mm/cb mm/cb mm/cb mm/cb mm/cb mm/cb mm/cb ,200 65,0 74,0 82,5 93,5 103,5 115,5 128,5 142,5 160,0 1,000 1,40 1,60 1,78 2,02 2,24 2,49 2,78 3,08 3,46 32,1 0,324 70,0 77,7 89,0 101,0 113,0 125,5 140,5 160,0 190,0 1,124 1,51 1,58 1,68 1,80 1,92 2,00 2,18 2,27 2,44 2,51 2,71 2,80 3,03 3,12 3,46 3,46 4,10 3,88 21,4 0,486 69,0 88,0 99,5 112,0 127,0 142,0 158,0 178,0 223,5 1,286 1,49 1,81 1,90 2,06 2,15 2,29 2,42 2,60 2,74 2,87 3,07 3,21 3,41 3,57 3,84 3,96 4,83 4,44 18,0 0,578 74,0 89,0 104,5 120,0 138,0 156,5 179,0 205,0 281,5 1,378 1,60 1,93 1,92 2,20 2,26 2,46 2,59 2,78 2,98 3,08 3,38 3,44 3,87 3,82 4,43 4,24 6,08 4,76 16,0 0,650 77,0 94,5 113,0 130,0 150,5 171,5 194,5 219,5 319,0 1,450 1,66 2,04 2,04 2,32 2,44 2,58 2,81 2,93 3,25 3,24 3,70 3,62 4,20 4,02 4,74 4,46 6,89 5,01 14,5 0,717 85, ,5 141,5 161,0 184,0 207,5 235,5 340,0 1,517 1,84 2,13 2,22 2,42 2,65 2,70 3,06 3,06 3,48 3,39 3,97 3,78 4,48 4,21 5,09 4,67 7,34 5,24 13,0 0,800 87,0 106,0 129,5 150,5 175,0 201,0 228,5 262, ,600 1,88 2,25 2,29 2,56 2,80 2,85 3,25 3,23 3,78 3,58 4,34 3,99 4,94 4,44 5,66 4,92 8,53 5,53-0,32 +0,35 +0,50 +0,42-0,33 +0,74-0,38-0,37 Bulk carrier, D = t, L = 182,7 m, Lw = 173,9 m, В = 22,6 m; 1 cb =46,3 mm ;T F =10,1; T A =10,7; Т M =10,4 45

20 Vladimir N. Drachev Table 2.3 The distance from crossing tracks to wheel-over point depending on turning angle and maneuvering depth at rudder position of 35 degrees, starboard side Turning angle H T/H k a/dr a/cal a/dr a/cal a/dr a/cal a/dr a/cal a/dr a/cal a/dr a/cal a/dr a/cal a/dr a/cal mm/cb mm/cb mm/cb mm/cb mm/cb mm/cb mm/cb mm/cb Deep water 0,200 1,000 0,45 0,70 0,98 1,23 1,46 1,72 1,98 2,28 12,94 0,800 1,600 0,66 0,72 1,02 1,12 1,36 1,57 1,52 1,97 1,98 2,34 2,30 2,74 2,61 3,16 3,00 3,65 0,06 0,10 0,21 0,45 0,36 0,44 0,55 0,65 m/v NORILSK, = т, L = m, Lw = m, В = m, 1 cb=40 mm, Т F =10.0, Т A =10.7, Т M = Turning circle in loaded condition (result of real tests). 2. Turning circle in loaded condition in shallow water (on the basis calculation). 3. Depth to draught ratio of the ship is 1,25 Н / Т = 1,25; Н / 10,35 = 1,25; Н = 1,25 * 10,35 = 12,94 46

### Baltic Marine Environment Protection Commission

Baltic Marine Environment Protection Commission Group of Experts on Safety of Navigation Copenhagen, Denmark, 3 December 2014 SAFE NAV 5-2014 Document title Draft Guidelines on Under Keel Clearance Code

### CHAPTER 6 - MANEUVERING BOARD MANUAL PART ONE OWN SHIP AT CENTER

CHAPTER 6 - MANEUVERING BOARD MANUAL PART ONE OWN SHIP AT CENTER 243 EXAMPLE 1 CLOSEST POINT OF APPROACH Situation: Other ship M is observed as follows: Time Bearing Range (yards) Rel. position 0908...

### MECHANICAL PRINCIPLES HNC/D MOMENTS OF AREA. Define and calculate 1st. moments of areas. Define and calculate 2nd moments of areas.

MECHANICAL PRINCIPLES HNC/D MOMENTS OF AREA The concepts of first and second moments of area fundamental to several areas of engineering including solid mechanics and fluid mechanics. Students who are

### Software Solutions for Collision Avoidance using Common Maritime Information Environment.

Software Solutions for Collision Avoidance using Common Maritime Information Environment. Dr. Vladimir A. Petrov The increasing of a traffic density results in that it becomes too much more difficult for

### 1.1 The primary function of the ECDIS is to contribute to safe navigation.

IMO RESOLUTION A.817 (19) PERFORMANCE STANDARDS FOR ELECTRONIC CHART DISPLAY AND INFORMATION SYSTEMS (ECDIS) Note: The IMO Performance Standards for ECDIS are reproduced in this publication for convenience,

### Section 4: The Basics of Satellite Orbits

Section 4: The Basics of Satellite Orbits MOTION IN SPACE VS. MOTION IN THE ATMOSPHERE The motion of objects in the atmosphere differs in three important ways from the motion of objects in space. First,

### Prediction of Resistance and Propulsion Power of Ships

Prediction of Resistance and Propulsion Power of Ships Technical University of Denmark Hans Otto Kristensen University of Southern Denmark Marie Lützen Project no. 21-56, Emissionsbeslutningsstøttesystem

### Experiment 9. The Pendulum

Experiment 9 The Pendulum 9.1 Objectives Investigate the functional dependence of the period (τ) 1 of a pendulum on its length (L), the mass of its bob (m), and the starting angle (θ 0 ). Use a pendulum

### Fall 12 PHY 122 Homework Solutions #8

Fall 12 PHY 122 Homework Solutions #8 Chapter 27 Problem 22 An electron moves with velocity v= (7.0i - 6.0j)10 4 m/s in a magnetic field B= (-0.80i + 0.60j)T. Determine the magnitude and direction of the

### Training Circular No. 1 of 2002

Training Circular No. 1 of 2002 No.3-TR(24)/2001 Dated: January 24, 2002 Sub: Specifications for Ship Maneuvering Simulator Sir, I am directed to forward herewith the Guidelines/Specification to be followed

### Worked Examples of mathematics used in Civil Engineering

Worked Examples of mathematics used in Civil Engineering Worked Example 1: Stage 1 Engineering Surveying (CIV_1010) Tutorial - Transition curves and vertical curves. Worked Example 1 draws from CCEA Advanced

### Circle Name: Radius: Diameter: Chord: Secant:

12.1: Tangent Lines Congruent Circles: circles that have the same radius length Diagram of Examples Center of Circle: Circle Name: Radius: Diameter: Chord: Secant: Tangent to A Circle: a line in the plane

### Deck Watch Officer Study Guide Courtesy of BM3 Dareck Poirier

INTERNATIONAL; RULE 1 International Rules of the Road apply to All the waters which are not inland waters. Only to waters outside the territorial waters of the U.S. Only to waters where foreign vessels

### IMO. MSC/Circ.707 19 October 1995. Ref. T1/2.04 GUIDANCE TO THE MASTER FOR AVOIDING DANGEROUS SITUATIONS IN FOLLOWING AND QUARTERING SEAS

INTERNATIONAL MARITIME ORGANIZATION 4 ALBERT EMBANKMENT LONDON SE1 7SR Telephone: 020-7735 7611 Fax: 020-7587 3210 Telex: 23588 IMOLDN G IMO E MSC/Circ.707 19 October 1995 Ref. T1/2.04 GUIDANCE TO THE

### STANDARDS OF TRAINING, EVALUATION AND CERTIFICATION OF TURKISH MARITIME PILOTS

STANDARDS OF TRAINING, EVALUATION AND CERTIFICATION OF TURKISH MARITIME PILOTS Ali CÖMERT 1, Özkan POYRAZ 2 1 Captain, Maritime Pilot (Strait of Istanbul), Turkish Maritime Organisation Inc. (TDİ A.Ş.),

### PHY121 #8 Midterm I 3.06.2013

PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension

### MATHEMATICS 1112/01 Paper 1 For Examination from 2014 SPECIMEN MARK SCHEME MAXIMUM MARK: 50

Cambridge International Examinations Cambridge Secondary 1 Checkpoint MATHEMATICS 1112/01 Paper 1 For Examination from 2014 SPECIMEN MARK SCHEME MAXIMUM MARK: 50 This document consists of 11 printed pages

### Passenger Terminal Amsterdam

Fact sheet large cruise ships to Passenger Terminal Amsterdam Port of Amsterdam Amsterdam-IJmond Pilot Organization 2009 Version: November 6 th 2009 This fact sheet provides information on the passage

### Path Tracking for a Miniature Robot

Path Tracking for a Miniature Robot By Martin Lundgren Excerpt from Master s thesis 003 Supervisor: Thomas Hellström Department of Computing Science Umeå University Sweden 1 Path Tracking Path tracking

### Pilotage Service Harbor Setúbal TECHNYCAL STANDARDS

Pilotage Service Harbor Setúbal TECHNYCAL STANDARDS Foreword These procedures represent a guideline for safe navigation and maneuvers in the Porto of Setubal. They don t limit across the ship board action

### GUIDELINES FOR THE DRAINAGE OF FIRE-FIGHTING WATER FROM CLOSED VEHICLE AND RO-RO SPACES AND SPECIAL CATEGORY SPACES OF PASSENGER AND CARGO SHIPS

INTERNATIONAL MARITIME ORGANIZATION 4 ALBERT EMBANKMENT LONDON SE1 7SR Telephone: 020 7735 7611 Fax: 020 7587 3210 IMO E Ref. T4/4.01 MSC.1/Circ.1320 11 June 2009 GUIDELINES FOR THE DRAINAGE OF FIRE-FIGHTING

### Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress

Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation

### Adequate Theory of Oscillator: A Prelude to Verification of Classical Mechanics Part 2

International Letters of Chemistry, Physics and Astronomy Online: 213-9-19 ISSN: 2299-3843, Vol. 3, pp 1-1 doi:1.1852/www.scipress.com/ilcpa.3.1 212 SciPress Ltd., Switzerland Adequate Theory of Oscillator:

### NAV 100 Part II. Piloting & Chartwork Scenario

NAV 100 Part II Piloting & Chartwork Scenario Objectives Practice in measuring & calculating skills Integration of skills in a semi-realistic scenario Improved speed with maintained accuracy Introduction

### Applying a circular load. Immediate and consolidation settlement. Deformed contours. Query points and query lines. Graph query.

Quick Start Tutorial 1-1 Quick Start Tutorial This quick start tutorial will cover some of the basic features of Settle3D. A circular load is applied to a single soil layer and settlements are examined.

### Solutions to Exercises, Section 5.1

Instructor s Solutions Manual, Section 5.1 Exercise 1 Solutions to Exercises, Section 5.1 1. Find all numbers t such that ( 1 3,t) is a point on the unit circle. For ( 1 3,t)to be a point on the unit circle

### DWO Practice Exam Courtesy of BMC David Rice

1. INLAND ONLY When power-driven vessels are crossing, a signal of one short blast by either vessel means. A. "I intend to leave you on my port side" B. "I intend to hold course and speed" C. "I intend

### G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M

G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M CONTENTS Foreword... 2 Forces... 3 Circular Orbits... 8 Energy... 10 Angular Momentum... 13 FOREWORD

### NavRules Study Questions Card: 1

NavRules Study Questions Card: 1 Disclaimer: These flash cards are provided as a study aid for certain U.S. Coast Guard Auxiliary proficiency tests. They are in no way intended as a substitute for studying

### Guidance on ship s lights, shapes and sound signals

Translation: Only the Danish document has legal validity Guidance no. 3 of 8 September 2004 Guidance on ship s lights, shapes and sound signals This guidance provides guidelines on how to meet certain

### Experimental Question 1: Levitation of Conductors in an Oscillating Magnetic Field SOLUTION ( )

a. Using Faraday s law: Experimental Question 1: Levitation of Conductors in an Oscillating Magnetic Field SOLUTION The overall sign will not be graded. For the current, we use the extensive hints in the

### Convention on the International Regulations for Preventing Collisions at Sea (COLREG), Prof. Manuel Ventura

Convention on the International Regulations for Preventing Collisions at Sea (COLREG), 1972 Prof. Manuel Ventura MSc in Marine Engineering and Naval Architecture COLREG Application All ships in the sea

### CH-01.qxd 4~6~04 11:22 AM Page 1. Part 1 Ship Design

CH-01.qxd 4~6~04 11:22 AM Page 1 Part 1 Ship Design CH-01.qxd 4~6~04 11:22 AM Page 2 CH-01.qxd 4~6~04 11:22 AM Page 3 Chapter 1 Preliminary estimates for new ships: Main Dimensions It has been said that

### A MATTER OF STABILITY AND TRIM By Samuel Halpern

A MATTER OF STABILITY AND TRIM By Samuel Halpern INTRODUCTION This short paper deals with the location of Titanic s Center of Buoyancy (B), Center of Gravity (G) and Metacenter Height (M) on the night

### Solving Simultaneous Equations and Matrices

Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering

### People s Physics book 3e Ch 25-1

The Big Idea: In most realistic situations forces and accelerations are not fixed quantities but vary with time or displacement. In these situations algebraic formulas cannot do better than approximate

### Unit 4 Practice Test: Rotational Motion

Unit 4 Practice Test: Rotational Motion Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. How would an angle in radians be converted to an angle

### Lights. Navigation Lights. Lights. Lights. Lights. Lights. Definitions. These are the ship s Navigation Lights. Other Lights:

Navigation Definitions Masthead light - a white light placed over the centerline of the vessel with an unbroken arc of visibility of 225 o forward. Sidelights - a green light on the starboard side and

### REVISED GCSE Scheme of Work Mathematics Higher Unit T3. For First Teaching September 2010 For First Examination Summer 2011

REVISED GCSE Scheme of Work Mathematics Higher Unit T3 For First Teaching September 2010 For First Examination Summer 2011 Version 1: 28 April 10 Version 1: 28 April 10 Unit T3 Unit T3 This is a working

### Figure 1- Different parts of experimental apparatus.

Objectives Determination of center of buoyancy Determination of metacentric height Investigation of stability of floating objects Apparatus The unit shown in Fig. 1 consists of a pontoon (1) and a water

### Experiment 8. The Pendulum

Experiment 8 The Pendulum 8.1 Objectives Investigate the functional dependence of the period ( ) 1 of a pendulum on its length (L), the mass of its bob (m), and the starting angle ( 0 ). Use a pendulum

### Examination of ships passing distances distribution in the coastal waters in order to build a ship probabilistic domain

Scientific Journals Maritime University of Szczecin Zeszyty Naukowe Akademia Morska w Szczecinie 212, 32(14) z. 2 pp. 34 4 212, 32(14) z. 2 s. 34 4 Examination of ships passing distances distribution in

### INTEGRATED SYSTEM FOR DATA ACQUISITION AND NUMERICAL ANALYSIS OF THE SHIP RESISTANCE PERFORMANCE IN THE TOWING TANK OF GALAÞI UNIVERSITY

INTEGRATED SYSTEM FOR DATA ACQUISITION AND NUMERICAL ANALYSIS OF THE SHIP RESISTANCE PERFORMANCE IN THE TOWING TANK OF GALAÞI UNIVERSITY DAN OBREJA, LEONARD DOMNIªORU, FLORIN PÃCURARU University Dunãrea

### PSS 27.2 The Electric Field of a Continuous Distribution of Charge

Chapter 27 Solutions PSS 27.2 The Electric Field of a Continuous Distribution of Charge Description: Knight Problem-Solving Strategy 27.2 The Electric Field of a Continuous Distribution of Charge is illustrated.

### CHAPTER 11 VESSEL LIGHTS, DAY SHAPES AND SOUND SIGNALS

CHAPTER 11 VESSEL LIGHTS, DAY SHAPES AND SOUND SIGNALS Vessel navigation lights 126 Minimum visibility for length of vessel 126 Vessel navigation light mounting and sectors 126 Vessel navigation lights

### MA 323 Geometric Modelling Course Notes: Day 02 Model Construction Problem

MA 323 Geometric Modelling Course Notes: Day 02 Model Construction Problem David L. Finn November 30th, 2004 In the next few days, we will introduce some of the basic problems in geometric modelling, and

### SIMON STEVIN. 24,350kw Diesel-Electric Propulsion 19,500m 3 Capacity of Rock Storage Dynamic Positioning System DP-2

SIMON STEVIN The world s largest FALL PIPE & ROCK DUMPING Vessel 24,350kw Diesel-Electric Propulsion 19,500m 3 Capacity of Rock Storage Dynamic Positioning System DP-2 The world s largest fall pipe & rock

### Oceans Practice Questions and Answers Revised August 2008

Oceans Practice Questions and Answers Revised August 2008 1. In the following illustration what do you call the land that borders the oceans? All of the landmass to the left of this line lies adjacent

### Physics 201 Homework 5

Physics 201 Homework 5 Feb 6, 2013 1. The (non-conservative) force propelling a 1500-kilogram car up a mountain -1.21 10 6 joules road does 4.70 10 6 joules of work on the car. The car starts from rest

### Geometry SOL G.11 G.12 Circles Study Guide

Geometry SOL G.11 G.1 Circles Study Guide Name Date Block Circles Review and Study Guide Things to Know Use your notes, homework, checkpoint, and other materials as well as flashcards at quizlet.com (http://quizlet.com/4776937/chapter-10-circles-flashcardsflash-cards/).

### YEAR 8 SCHEME OF WORK - SECURE

YEAR 8 SCHEME OF WORK - SECURE Autumn Term 1 Number Spring Term 1 Real-life graphs Summer Term 1 Calculating with fractions Area and volume Decimals and ratio Straight-line graphs Half Term: Assessment

### Report of Investigation. into the fatal accident. on a mooring gang crew. at government mooring buoy A43. on 6 April 2007

Report of Investigation into the fatal accident on a mooring gang crew at government mooring buoy A43 on 6 April 2007 2 Purpose of Investigation This incident is investigated, and published in accordance

### LABORATORY 9. Simple Harmonic Motion

LABORATORY 9 Simple Harmonic Motion Purpose In this experiment we will investigate two examples of simple harmonic motion: the mass-spring system and the simple pendulum. For the mass-spring system we

### HDS Gen2 RTM 4.0 software update

HDS Gen2 RTM 4.0 software update The HDS RTM 4.0 software update enables autopilot control of outboard motors and includes features for Jeppesen 4D charts. Outboard motor autopilot To use outboard autopilot

### Analysis of Experimental Uncertainties: Density Measurement Physics Lab II

Analysis of Experimental Uncertainties: Density Measurement Physics Lab II Objective This laboratory exercise allows students to estimate and analyze experimental uncertainties. Students will calculate

### ST. VINCENT AND THE GRENADINES

ST. VINCENT AND THE GRENADINES MARITIME ADMINISTRATION CIRCULAR N SOL 007 Rev. 4 ELECTRONIC CHART DISPLAY AND INFORMATION AND BACK-UP ARRANGEMENTS SOLAS 74 as amended (Consolidated Edition 2004) Ch.V Reg.

### SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS

SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS This work covers elements of the syllabus for the Engineering Council exams C105 Mechanical and Structural Engineering

### PSSVTS004 Apply nautical knowledge to Vessel Traffic Services operations

Apply nautical knowledge to Vessel Traffic Services operations Overview This standard covers the competence required to apply nautical knowledge to Vessel Traffic Services operations A Vessel Traffic Services

### Maximum Range Explained range Figure 1 Figure 1: Trajectory Plot for Angled-Launched Projectiles Table 1

Maximum Range Explained A projectile is an airborne object that is under the sole influence of gravity. As it rises and falls, air resistance has a negligible effect. The distance traveled horizontally

### Excel / Education. GCSE Mathematics. Paper 3A (Non-Calculator) Higher Tier. Time: 2 hours. Turn over

Excel / Education GCSE Mathematics Paper 3A (Non-Calculator) Higher Tier Time: 2 hours 3A Materials required for examination Ruler graduated in centimetres and millimetres, protractor, compasses, pen,

### Paths Between Points on Earth: Great Circles, Geodesics, and Useful Projections

Paths Between Points on Earth: Great Circles, Geodesics, and Useful Projections I. Historical and Common Navigation Methods There are an infinite number of paths between two points on the earth. For navigation

### United Kingdom Maritime Pilot s Association. Piloting Vessels Fitted With Azimuthing Control Devices (ACD s)

United Kingdom Maritime Pilot s Association Piloting Vessels Fitted With Azimuthing Control Devices (ACD s) Azimuth Controlled Device (ACD) Vessel MPX The purpose of this booklet is to assist the pilot

### Procedures for determination of light ship displacement and centre of gravity of Norwegian ships

Procedures for determination of light ship displacement Rev.: 23.09.2013 Page 1 of 13 Contents: DETERMINATION OF LIGHT SHIP DISPLACEMENT AND CENTRES OF GRAVITY... 3 1. INTRODUCTION... 3 3. RESPONSIBILITIES...

### + 4θ 4. We want to minimize this function, and we know that local minima occur when the derivative equals zero. Then consider

Math Xb Applications of Trig Derivatives 1. A woman at point A on the shore of a circular lake with radius 2 miles wants to arrive at the point C diametrically opposite A on the other side of the lake

### 3. Resistance of a Ship 3.2 Estimates based on statistical methods

In the preliminary stages of ship design, the resistance coefficient is estimated with approximate methods based on systematic series or statistical regressions to experimental data. A systematic series

### M OTION. Chapter2 OUTLINE GOALS

Chapter2 M OTION OUTLINE Describing Motion 2.1 Speed 2.2 Vectors 2.3 Acceleration 2.4 Distance, Time, and Acceleration Acceleration of Gravity 2.5 Free Fall 2.6 Air Resistence Force and Motion 2.7 First

### ANGULAR POSITION. 4. Rotational Kinematics and Dynamics

ANGULAR POSITION To describe rotational motion, we define angular quantities that are analogous to linear quantities Consider a bicycle wheel that is free to rotate about its axle The axle is the axis

### The shortest path between two points, Geodesics and Mechanics

Raynaud, X., 2010: The shortest path between two points, Geodesics and Mechanics, In: W. Østreng (ed): Transference. Interdisciplinary Communications 2008/2009, CAS, Oslo. (Internet publication, http://www.cas.uio.no/publications_/transference.php,

### Research question: How does the velocity of the balloon depend on how much air is pumped into the balloon?

Katie Chang 3A For this balloon rocket experiment, we learned how to plan a controlled experiment that also deepened our understanding of the concepts of acceleration and force on an object. My partner

### Marine Order 4 (Transitional modifications) 2013 provides for this Order to have effect and makes modifications for it.

Marine Order 30 (Prevention of collisions) 2009 in effect under the Navigation Act 2012 This is a compilation of Marine Order 30 (Prevention of collisions) 2009, prepared on 3 June 2013, taking into account

### Safety of Life at Sea, 1974 (SOLAS)

Safety of Life at Sea, 1974 (SOLAS) Prof. Manuel Ventura Ship Design I MSc in Marine Engineering and Naval Architecture Chap. III. Lifesaving Appliances and Arrangements 1 Cargo Ships Cargo Ships - Case

### Applications for Triangles

Not drawn to scale Applications for Triangles 1. 36 in. 40 in. 33 in. 1188 in. 2 69 in. 2 138 in. 2 1440 in. 2 2. 188 in. 2 278 in. 2 322 in. 2 none of these Find the area of a parallelogram with the given

### INDUSTRIAL TECHNOLOGY TECHNICAL DRAWING LEVEL 9

INDUSTRIAL TECHNOLOGY TECHNICAL DRAWING LEVEL 9 Reduction and enlargement of plane figures to reduce plane figure by lengths of sides using the polar method. - Reading Suppose the ratio is skills. 1:3.

### EXCEL EXERCISE AND ACCELERATION DUE TO GRAVITY

EXCEL EXERCISE AND ACCELERATION DUE TO GRAVITY Objective: To learn how to use the Excel spreadsheet to record your data, calculate values and make graphs. To analyze the data from the Acceleration Due

### Circumference and Area of a Circle

Overview Math Concepts Materials Students explore how to derive pi (π) as a ratio. Students also study the circumference and area of a circle using formulas. numbers and operations TI-30XS MultiView two-dimensional

### Total Time: 90 mins Practise Exercise no. 1 Total no. Of Qs: 51

Mensuration (3-D) Total Time: 90 mins Practise Exercise no. 1 Total no. Of Qs: 51 Q1. A wooden box of dimensions 8m x 7m x 6m is to carry rectangular boxes of dimensions 8cm x 7cm x 6cm. The maximum number

### Characteristics of Ship Movements in a Fairway

International Journal of Fuzzy Logic and Intelligent Systems, vol. 1, no. 4, December 1, pp. 85-89 http:// dx.doi.org/ 1.5391/IJFIS.1.1.4.85 PISSN 1598-645 eissn 93-744X Characteristics of Ship Movemen

### MANOEUVRING CRITERIA: MORE THAN IMO A751 REQUIREMENTS ALONE! F.H.H.A. Quadvlieg (MARIN, The Netherlands) P. van Coevorden (Royal Netherlands Navy)

MANOEUVRING CRITERIA: MORE THAN IMO A71 REQUIREMENTS ALONE! F.H.H.A. Quadvlieg (MARIN, The Netherlands) P. van Coevorden (Royal Netherlands Navy) In 1993, IMO resolution A71(18) was accepted. Since 1993,

### f max s = µ s N (5.1)

Chapter 5 Forces and Motion II 5.1 The Important Stuff 5.1.1 Friction Forces Forces which are known collectively as friction forces are all around us in daily life. In elementary physics we discuss the

### ECONOMY. October 13 th, Ir. Frans Quadvlieg, Senior Project Manager. MARIN (MAritime Research Institute Netherlands)

MARINE PROPULSION AND FUEL ECONOMY October 13 th, 2009 Ir. Frans Quadvlieg, Senior Project Manager MARIN (MAritime Research Institute Netherlands) CONTENTS: MARIN (short introduction) GREEN awareness GREEN

### Newton s Laws. Newton s Imaginary Cannon. Michael Fowler Physics 142E Lec 6 Jan 22, 2009

Newton s Laws Michael Fowler Physics 142E Lec 6 Jan 22, 2009 Newton s Imaginary Cannon Newton was familiar with Galileo s analysis of projectile motion, and decided to take it one step further. He imagined

### 4th Grade Common Core Math Vocabulary

4th Grade Common Core Math Vocabulary a.m. A time between 12:00 midnight and 12:00 noon. acute angle An angle with a measure less than 90. acute triangle A triangle with no angle measuring 90º or more.

### A vector is a directed line segment used to represent a vector quantity.

Chapters and 6 Introduction to Vectors A vector quantity has direction and magnitude. There are many examples of vector quantities in the natural world, such as force, velocity, and acceleration. A vector

### Uncertainties and Error Propagation

Uncertainties and Error Propagation By Vern Lindberg 1. Systematic and random errors. No measurement made is ever exact. The accuracy (correctness) and precision (number of significant figures) of a measurement

### Bridge Team Management. Bridge Team Management Model Course 1.22. 11. Course Framework. 3. Entry standards

11. Course Framework Bridge Team Management 1. Scope This course is practical and theoretical and consists of a series of a series of exercises performed on a ship handling simularoe. classroom lectures,

### DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION

1 DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION Daniel S. Orton email: dsorton1@gmail.com Abstract: There are many longstanding

### MS Excel as Tool for Modeling, Dynamic Simulation and Visualization ofmechanical Motion

MS Excel as Tool for Modeling, Dynamic Simulation and Visualization ofmechanical Motion MARIE HUBALOVSKA, STEPAN HUBALOVSKY, MARCELA FRYBOVA Department of Informatics Faculty of Science University of Hradec

### Ampere's Law. Introduction. times the current enclosed in that loop: Ampere's Law states that the line integral of B and dl over a closed path is 0

1 Ampere's Law Purpose: To investigate Ampere's Law by measuring how magnetic field varies over a closed path; to examine how magnetic field depends upon current. Apparatus: Solenoid and path integral

### Projectile Motion. Equations of Motion for Constant Acceleration

Projectile Motion Projectile motion is a special case of two-dimensional motion. A particle moving in a vertical plane with an initial velocity and experiencing a free-fall (downward) acceleration, displays

### Physics Midterm Review Packet January 2010

Physics Midterm Review Packet January 2010 This Packet is a Study Guide, not a replacement for studying from your notes, tests, quizzes, and textbook. Midterm Date: Thursday, January 28 th 8:15-10:15 Room:

### The influence of ship operational parameters on fuel consumption

Scientific Journals Maritime University of Szczecin Zeszyty Naukowe Akademia Morska w Szczecinie 2013, 36(108) z. 1 pp. 2013, 36(108) z. 1 s. ISSN 1733-8670 The influence of ship operational parameters

### USING MS EXCEL FOR DATA ANALYSIS AND SIMULATION

USING MS EXCEL FOR DATA ANALYSIS AND SIMULATION Ian Cooper School of Physics The University of Sydney i.cooper@physics.usyd.edu.au Introduction The numerical calculations performed by scientists and engineers

### Hydrostatic Pressure on a Partially and Fully Submerged Vertical Rectangular Surface R. Helm

Hydrostatic Pressure on a Partially and Fully Submerged Vertical Rectangular Surface R. Helm ABSTRACT. Hydrostatic Pressure Systems allow for the measurement and development of hydrostatic force and center

### PLANNING AND EXECUTION OF BLIND PILOTAGE AND ANCHORAGE

PLANNING AND EXECUTION OF BLIND PILOTAGE AND ANCHORAGE 1 SIVRIU GEORGIANA, 2 GEORGESCU STEFAN 1,2 Constanta Maritime University, Romania ABSTRACT Blind pilotage means the navigation of the ship through

### Considerations When Securing to a Buoy

Mooring Equipment A Conservancy maintained mooring consists of a heavy black iron chain riser, which is attached to a sinker or ground chain. The swivel allows the boat to swing freely at the mooring without

### DRAFTING MANUAL. Gears (Bevel and Hypoid) Drafting Practice

Page 1 1.0 General This section provides the basis for uniformity in engineering gears drawings and their technical data for gears with intersecting axes (bevel gears), and nonparallel, nonintersecting

### Position, Velocity, and Acceleration

Chapter 2 Position, Velocity, and Acceleration In this section, we will define the first set of quantities (position, velocity, and acceleration) that will form a foundation for most of what we do in this

### User s Guide by David Burch

TrueWind by David Burch About TrueWind...2 How to use TrueWind...3 Definitions Wind direction...4 Apparent wind...4 Apparent wind angle...4 Apparent wind speed... 5 True wind angle... 5 True wind speed...

### Physics Exam 1 Review - Chapter 1,2

Physics 1401 - Exam 1 Review - Chapter 1,2 13. Which of the following is NOT one of the fundamental units in the SI system? A) newton B) meter C) kilogram D) second E) All of the above are fundamental

### Assignment Work (Physics) Class :Xi Chapter :04: Motion In PLANE

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. Assignment Work (Physics) Class :Xi Chapter :04: Motion In PLANE State law of parallelogram of vector addition and derive expression for resultant of two vectors