Application. Outline 40,000 35,000 30,000 25,000 20,000 15,000 10,000 5,000

Size: px
Start display at page:

Download "Application. Outline 40,000 35,000 30,000 25,000 20,000 15,000 10,000 5,000"

Transcription

1 Inverse Functions; Eponential and Logarithmic Functions Outline 4-1 Operations on Functions; Composition 4-2 Inverse Functions 4-3 Eponential Functions 4-4 The Eponential Function with Base e 4- Logarithmic Functions 4-6 Common and Natural Logarithms 4-7 Eponential and Logarithmic Equations Chapter 4 Group Activit: Comparing Regression Models Chapter 4 Review Cumulative Review Eercise for Chapters 3 and 4 Application You have just inherited a trust fund of $18,000 that ou cannot access for 8 more ears. You are hoping that this investment will double b then, as ou have plans to purchase a sports car for $3,000. The Rule of 72 can be used to quickl determine how long it will take an investment to double at a given interest rate. If r is the annual rate, then the Rule of 72 states that an investment at this rate will double in approimatel 72/(100r) ears. If our trust fund is invested at 10.4% compounded annuall, how accurate is the Rule of 72 approimation? 40,000 3,000 30,000 2,000 20,000 1,000 10,000,000 0

2 Most of the functions we have considered so far have been polnomial and rational functions, with a few others involving roots or powers of polnomial or rational functions. The general class of functions defined b means of the algebraic operations of addition, subtraction, multiplication, division, and the taking of powers and roots on variables and constants are called algebraic functions. In the first two sections of this chapter, we discuss some operations that can be performed on functions to produce new functions, including the ver important concept of an inverse function. Net, we define and investigate the properties of two new and important tpes of functions called eponential functions and logarithmic functions. These functions are not algebraic, but are members of another class of functions called transcendental functions. The eponential functions and logarithmic functions are used in describing and solving a wide variet of real-world problems, including growth of populations of people, animals, and bacteria; radioactive deca; growth of mone at compound interest; absorption of light as it passes through air, water, or glass; and magnitudes of sounds and earthquakes. We consider applications in these areas plus man more in the sections that follow. Preparing for This Chapter Before getting started on this chapter, review the following concepts: Eponents (Appendi A, Sections and 6) Functions (Chapter 1, Section 3) Graphs of Functions (Chapter 1, Section 4) Quadratic Equations (Chapter 2, Section ) Equation Solving Techniques (Chapter 2, Section 6) Section 4-1 Operations on Functions; Composition Operations on Functions Composition Applications 244 If two functions f and g are both defined at a real number, and if f() and g() are both real numbers, then it is possible to perform real number operations such as addition, subtraction, multiplication, or division with f() and g(). Furthermore, if g() is a number in the domain of f, then it is also possible to evaluate f at g(). In this section we see how operations on the values of functions can be used to define operations on the functions themselves.

3 4-1 Operations on Functions; Composition 24 Operations on Functions The functions f and g given b f() 2 3 and g() 2 4 are defined for all real numbers. Thus, for an real we can perform the following operations: f() g() f() g() 2 3 ( 2 4) f()g() (2 3)( 2 4) For 2 we can also form the quotient f() 2 3 g() Notice that the result of each operation is a new function. Thus, we have ( f g)() f() g() ( f g)() f() g() ( fg)() f()g() g f f() 2 3 () g() Sum Difference Product Quotient Notice that the sum, difference, and product functions are defined for all values of, as were f and g, but the domain of the quotient function must be restricted to eclude those values where g() 0. DEFINITION 1 OPERATIONS ON FUNCTIONS The sum, difference, product, and quotient of the functions f and g are the functions defined b ( f g)() f() g() ( f g)() f() g() ( fg)() f()g() g f f() () g() g() 0 Sum function Difference function Product function Quotient function Each function is defined on the intersection of the domains of f and g, with the eception that the values of where g() 0 must be ecluded from the domain of the quotient function.

4 246 4 INVERSE FUNCTIONS; EXPONENTIAL AND LOGARITHMIC FUNCTIONS Eplore/Discuss 1 FIGURE 1 Graphing sum, difference, product, and quotient functions. Enter 1 4 and 2 3 in the equation editor of a graphing utilit [Fig. 1(a)], graph 1 and 2 in the same viewing window* [Fig. 1(b)], and use Trace to determine the values of for which each function is defined. Use Trace in Figures 1(c) through 1(f) to determine the domains of the corresponding functions (a) Equation editor (b) 1 and (c) 3 (d) (e) (f) 6 EXAMPLE 1 Solution Finding the Sum, Difference, Product, and Quotient Functions Let f() 4 and g() 3. Find the functions f g, f g, fg, and f/g, and find their domains. ( f g)() f() g() 4 3 ( f g)() f() g() 4 3 ( fg)() f()g() 4 3 (4 )(3 ) 12 2 g f f() 4 () g() *It is convenient to choose Xmin and Xma so that the piels have one-decimal-place screen coordinates. See Problems 3 and 36 in Eercise 1-2 or consult our manual.

5 4-1 Operations on Functions; Composition [ Domain of f Domain of g Domain of f g, f g, and fg [ f Domain of g [ [ ) [ The domains of f and g are Domain of f: 4 or (, 4] Domain of g: 3 or [ 3, ) The intersection of these domains is (, 4] [ 3, ) [ 3, 4] This is the domain of the functions f g, f g, and fg. Since g( 3) 0, 3 must be ecluded from the domain of the quotient function. Thus, Domain of f : ( 3, 4] g MATCHED PROBLEM 1 Let f() and g() 10. Find the functions f g, f g, fg, and f/g, and find their domains. Composition Consider the function h given b the equation Inside the radical is a first-degree polnomial that defines a linear function. So the function h is reall a combination of a square root function and a linear function. We can see this more clearl as follows. Let Then h() 2 1 u 2 1 g() u f(u) h() f(g()) The function h is said to be the composite of the two functions f and g. (Loosel speaking, we can think of h as a function of a function.) What can we sa about the domain of h given the domains of f and g? In forming the composite h() f(g()): must be restricted so that is in the domain of g and g() is in the domain of f. Since the domain of f, where f(u) u, is the set of nonnegative real numbers, we see that g() must be nonnegative; that is, g() Thus, the domain of h is this restricted domain of g.

6 248 4 INVERSE FUNCTIONS; EXPONENTIAL AND LOGARITHMIC FUNCTIONS A special function smbol is often used to represent the composite of two functions, which we define in general terms below. DEFINITION 2 COMPOSITE FUNCTIONS Given functions f and g, then f g is called their composite and is defined b the equation ( f g)() f(g()) The domain of f g is the set of all real numbers in the domain of g where g() is in the domain of f. As an immediate consequence of Definition 2, we have (see Fig. 2): The domain of f g is alwas a subset of the domain of g, and the range of f g is alwas a subset of the range of f. FIGURE 2 Composite functions. Domain f g f g (f g)() f [g()] Range f g g f g() Domain g Range g Domain f Range f EXAMPLE 2 Finding the Composition of Two Functions Find ( f g)() and (g f )() and their domains for f() 10 and g() Solution ( f g)() f(g()) f(3 4 1) (3 4 1) 10 (g f )() g( f()) g( 10 ) 3( 10 ) The functions f and g are both defined for all real numbers. If is an real number, then is in the domain of g, g() is in the domain of f, and, consequentl, is in the domain of f g. Thus, the domain of f g is the set of all real numbers. Using similar reasoning, the domain of g f also is the set of all real numbers. MATCHED PROBLEM 2 Find ( f g)() and (g f )() and their domains for f() 2 1 and g() ( 1)/2. If two functions are both defined for all real numbers, then so is their composition.

7 4-1 Operations on Functions; Composition 249 Eplore/Discuss 2 Verif that if f() 1/(1 2) and g() 1/, then ( f g)() /( 2). Clearl, f g is not defined at 2. Are there an other values of where f g is not defined? Eplain. If either function in a composition is not defined for some real numbers, then, as Eample 3 illustrates, the domain of the composition ma not be what ou first think it should be. EXAMPLE 3 Solution Finding the Composition of Two Functions Find ( f g)() and its domain for f() 4 2 and g() 3. We begin b stating the domains of f and g, a good practice in an composition problem: Domain f: 2 2 or [ 2, 2] Domain g: 3 or (, 3] Net we find the composition: ( f g)() f(g()) f( 3 4 ( 3 ) 2 4 (3 ) 1 ( t) 2 t, t 0 Even though 1 is defined for all 1, we must restrict the domain of f g to those values that also are in the domain of g. Thus, Domain f g: 1 and 3 or [ 1, 3] MATCHED PROBLEM 3 Find ( f g)() and its domain for f() 9 2 and g() 1. CAUTION The domain of f g cannot alwas be determined simpl b eamining the final form of ( f g)(). An numbers that are ecluded from the domain of g must also be ecluded from the domain of f g.

8 20 4 INVERSE FUNCTIONS; EXPONENTIAL AND LOGARITHMIC FUNCTIONS Eplore/Discuss 3 Refer to Eample 3. Enter 1 4 2, 2 3, and 3 1 ( 2 ()) in the equation editor of our graphing utilit and graph 3. Does this graph agree with the answer we found in Eample 3? Does our graphing utilit seem to handle composition correctl? (Not all do!) Applications In calculus, it is not onl important to be able to find the composition of two functions, but also to recognize when a given function is the composition of two simpler functions. EXAMPLE 4 Recognizing Composition Forms Epress h as a composition of two simpler functions for h() (3 ) Solution If we let f() and g() 3, then h() (3 ) f(3 ) f(g()) ( f g)() and we have epressed h as the composition of f and g. MATCHED PROBLEM 4 Epress h as a composition of the square root function and a linear function for h() 4 7. You will encounter the operations discussed in this section in man different situations. The net eample shows how these operations are used in economic analsis. EXAMPLE Market Research The research department for an electronics firm estimates that the weekl demand for a certain brand of audiocassette plaers is given b f( p) 20,000 1,000p Demand function where is the number of cassette plaers retailers are likel to bu per week at $p per plaer. The research department also has determined that the total cost (in dollars) of producing cassette plaers per week is given b C() 7,000 4 Cost function

9 4-1 Operations on Functions; Composition 21 and the total weekl revenue (in dollars) obtained from the sale of these cassette plaers is given b R() ,000 2 Revenue function Epress the firm s weekl profit as a function of the price p. Solution Since profit is revenue minus cost, the profit function is the difference of the revenue and cost functions, P R C. Since R and C are given as functions of, we first epress P as a function of : P() (R C)() R() C() ,000 2 (7,000 4) , ,000 Net, we use composition to epress P as a function of the price p: (P f )( p) P( f( p)) P(20,000 1,000p) 16(20,000 1,000p) 1 1,000 (20,000 1,000p)2 7, ,000 16,000p 400,000 40,000p 1,000p 2 7,000 1,000 24,000p 1,000p 2 Technicall, P f and P are different functions since the first has independent variable p and the second has independent variable. However, since both functions represent the same quantit, it is customar to use the same smbol to name each function. Thus, P( p) 1,000 24,000p 1,000p 2 epresses the weekl profit P as a function of price p. MATCHED PROBLEM Repeat Eample for the functions f(p) 10,000 1,000p C() 90,000 R() ,000 2

10 22 4 INVERSE FUNCTIONS; EXPONENTIAL AND LOGARITHMIC FUNCTIONS Answers to Matched Problems 1. ( f g)() 10 ; ( f g)() 10 ; ( fg)() 10 2 ; ( f/g)() /(10 ) ; the functions f g, f g, and fg have domain [0, 10], the domain of f/g is [0, 10) 2. ( f g)(), domain (, ); (g f )(), domain (, ) 3. ( f g)() 10 ; domain: 1 and 10 or [1, 10] 4. h() ( f g)(), where f() and g() 4 7. P( p) 140,000 1,000p 1,000p 2 EXERCISE 4-1 A Problems 1 10 refer to the graphs of f and g shown below. f() g() 18. f() 2 ; g() f() 1 ; g() f() ; g() f() 1/3 ; g() f() 2/3 ; g() 8 3 B In Problems 23 26, find f g and g f. Graph f, g, f g, and g f in a squared viewing window and describe an apparent smmetr between these graphs. 1. Construct a table of values of ( f g)() for 3, 2, 1, 0, 1, 2, and 3, and sketch the graph of f g. 2. Construct a table of values of (g f )() for 3, 2, 1, 0, 1, 2, and 3, and sketch the graph of g f f() 1 2 1; g() 2 2 f() 3 2; g() f() ; g() f() 2 3; g() Use the graphs of f and g to find each of the following: 3. ( f g)( 1) 4. ( f g)(2). (g f )( 2) 6. (g f )(3) 7. f(g(1)) 8. f(g(0)) 9. g( f(2)) 10. g( f( 3)) In Problems 11 16, for the indicated functions f and g, find the functions f g, f g, fg, and f/g, and find their domains. 11. f() 4; g() f() 3; g() f() 2 2 ; g() f() 3; g() f() 3 ; g() f() 2 7; g() 9 2 In Problems 17 22, for the indicated functions f and g, find the functions f g and g f, and find their domains. 17. f() 3 ; g() 2 1 In Problems 27 32, for the indicated functions f and g, find the functions f g, f g, fg, and f/g, and find their domains In Problems 33 38, for the indicated functions f and g, find the functions f g and g f, and find their domains f() 2; g() f() 3; g() f() 2 ; g() 3 f() 4; g() 3 f() 2; g() 4 f() 1 ; g() 2 f() 2 6; g() f() ; g() f() ; g() 4 f() ; g() 2 f() 1 ; g() f() 1 ; g() 1

11 4-1 Operations on Functions; Composition 23 Use the graphs of functions f and g shown below to match each function in Problems with one of graphs (a) (f). 39. ( f g)() 40. ( f g)() 41. (g f )() 42. ( fg)() f() f g () g() g f () 4. h() (2 7) h() (3 ) h() h() h() h() h() 4 2. h() Are the functions fg and gfidentical? Justif our answer. 4. Are the functions f g and g f identical? Justif our answer.. Is there a function g that satisfies f g g f f for all functions f? If so, what is it? 6. Is there a function g that satisfies fg gf f for all functions f? If so, what is it? In Problems 7 60, for the indicated functions f and g, find the functions f g, f g, fg, and f/g, and find their domains. 7. f() 1 ; g() 1 8. f() 1; g() 6 1 (a) (b) 9. f() 1 ; g() f() ; g() In Problems 61 66, for the indicated functions f and g, find the functions f g and g f, and find their domains. 61. f() 4 ; g() f() 1; g() 2 f() ; g() 2 (c) (d) 64. f() 2 4 ; g() 1 6. f() 2 2 ; g() f() 2 9; g() 2 2 (e) In Problems 4 2, epress h as a composition of two simpler functions f and g of the form f() n and g() a b, where n is a rational number and a and b are integers. (f) In Problems 67 72, enter the given epression for (f g)() eactl as it is written and graph on a graphing utilit for Then simplif the epression, enter the result, and graph in a new viewing window, again for Find the domain of f g. Which is the correct graph of f g? f() 2 ; g() 3 ; ( f g)() ( 3 ) 2 f() 6 2 ; g() 1; ( f g)() 6 ( 1) 2

12 24 4 INVERSE FUNCTIONS; EXPONENTIAL AND LOGARITHMIC FUNCTIONS f() 2 ; g() 2 4; ( f g)() ( 2 4) 2 f() 2 ; g() 4 2 ; ( f g) ( 4 2 ) 2 f() 2 7; g() 9 2 ; ( f g)() ( 9 2 ) 2 7 f() 2 7; g() 2 9; ( f g)() ( 2 9) 2 7 APPLICATIONS 73. Market Research. The demand and the price p (in dollars) for a certain product are related b f(p) 4, p The revenue (in dollars) from the sale of units is given b R() and the cost (in dollars) of producing units is given b C() 10 30,000 Epress the profit as a function of the price p. 74. Market Research. The demand and the price p (in dollars) for a certain product are related b f(p), p The revenue (in dollars) from the sale of units and the cost (in dollars) of producing units are given, respectivel, b R() 0 1 and C() 20 40, Epress the profit as a function of the price p. 7. Pollution. An oil tanker aground on a reef is leaking oil that forms a circular oil slick about 0.1 foot thick (see the figure). The radius of the slick (in feet) t minutes after the leak first occurred is given b r(t) 0.4t 1/3 Epress the volume of the oil slick as a function of t. (A) Epress the distance d between the balloon and the observer as a function of the balloon s distance h above the ground. (B) If the balloon s distance above ground after t seconds is given b h t, epress the distance d between the balloon and the observer as a function of t. 77. Fluid Flow. A conical paper cup with diameter 4 inches and height 4 inches is initiall full of water. A small hole is made in the bottom of the cup and the water begins to flow out of the cup. Let h and r be the height and radius, respectivel, of the water in the cup t minutes after the water begins to flow. (A) Epress r as a function of h. (B) Epress the volume V as a function of h. (C) If the height of the water after t minutes is given b h(t) 0. t epress V as a function of t. 78. Evaporation. A water trough with triangular ends is 6 feet long, 4 feet wide, and 2 feet deep. Initiall, the trough is full of water, but due to evaporation, the volume of the water is decreasing. Let h and w be the height and width, respectivel, of the water in the tank t hours after it began to evaporate. 6 feet 4 inches h r 1 V r 2 h 3 4 inches 4 feet r 2 feet h w V 3wh A r 2 V 0.1A 76. Weather Balloon. A weather balloon is rising verticall. An observer is standing on the ground 100 meters from the point where the weather balloon was released. (A) Epress w as a function of h. (B) Epress V as a function of h. (C) If the height of the water after t hours is given b h(t) t epress V as a function of t.

SECTION 5-1 Exponential Functions

SECTION 5-1 Exponential Functions 354 5 Eponential and Logarithmic Functions Most of the functions we have considered so far have been polnomial and rational functions, with a few others involving roots or powers of polnomial or rational

More information

LESSON EIII.E EXPONENTS AND LOGARITHMS

LESSON EIII.E EXPONENTS AND LOGARITHMS LESSON EIII.E EXPONENTS AND LOGARITHMS LESSON EIII.E EXPONENTS AND LOGARITHMS OVERVIEW Here s what ou ll learn in this lesson: Eponential Functions a. Graphing eponential functions b. Applications of eponential

More information

FINAL EXAM REVIEW MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

FINAL EXAM REVIEW MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. FINAL EXAM REVIEW MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Determine whether or not the relationship shown in the table is a function. 1) -

More information

Functions and Graphs CHAPTER INTRODUCTION. The function concept is one of the most important ideas in mathematics. The study

Functions and Graphs CHAPTER INTRODUCTION. The function concept is one of the most important ideas in mathematics. The study Functions and Graphs CHAPTER 2 INTRODUCTION The function concept is one of the most important ideas in mathematics. The stud 2-1 Functions 2-2 Elementar Functions: Graphs and Transformations 2-3 Quadratic

More information

1.6. Piecewise Functions. LEARN ABOUT the Math. Representing the problem using a graphical model

1.6. Piecewise Functions. LEARN ABOUT the Math. Representing the problem using a graphical model . Piecewise Functions YOU WILL NEED graph paper graphing calculator GOAL Understand, interpret, and graph situations that are described b piecewise functions. LEARN ABOUT the Math A cit parking lot uses

More information

INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4. Example 1

INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4. Example 1 Chapter 1 INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4 This opening section introduces the students to man of the big ideas of Algebra 2, as well as different was of thinking and various problem solving strategies.

More information

THE POWER RULES. Raising an Exponential Expression to a Power

THE POWER RULES. Raising an Exponential Expression to a Power 8 (5-) Chapter 5 Eponents and Polnomials 5. THE POWER RULES In this section Raising an Eponential Epression to a Power Raising a Product to a Power Raising a Quotient to a Power Variable Eponents Summar

More information

Zero and Negative Exponents and Scientific Notation. a a n a m n. Now, suppose that we allow m to equal n. We then have. a am m a 0 (1) a m

Zero and Negative Exponents and Scientific Notation. a a n a m n. Now, suppose that we allow m to equal n. We then have. a am m a 0 (1) a m 0. E a m p l e 666SECTION 0. OBJECTIVES. Define the zero eponent. Simplif epressions with negative eponents. Write a number in scientific notation. Solve an application of scientific notation We must have

More information

Downloaded from www.heinemann.co.uk/ib. equations. 2.4 The reciprocal function x 1 x

Downloaded from www.heinemann.co.uk/ib. equations. 2.4 The reciprocal function x 1 x Functions and equations Assessment statements. Concept of function f : f (); domain, range, image (value). Composite functions (f g); identit function. Inverse function f.. The graph of a function; its

More information

Solving Quadratic Equations by Graphing. Consider an equation of the form. y ax 2 bx c a 0. In an equation of the form

Solving Quadratic Equations by Graphing. Consider an equation of the form. y ax 2 bx c a 0. In an equation of the form SECTION 11.3 Solving Quadratic Equations b Graphing 11.3 OBJECTIVES 1. Find an ais of smmetr 2. Find a verte 3. Graph a parabola 4. Solve quadratic equations b graphing 5. Solve an application involving

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Chapter 6 Eponential and Logarithmic Functions Section summaries Section 6.1 Composite Functions Some functions are constructed in several steps, where each of the individual steps is a function. For eample,

More information

In this this review we turn our attention to the square root function, the function defined by the equation. f(x) = x. (5.1)

In this this review we turn our attention to the square root function, the function defined by the equation. f(x) = x. (5.1) Section 5.2 The Square Root 1 5.2 The Square Root In this this review we turn our attention to the square root function, the function defined b the equation f() =. (5.1) We can determine the domain and

More information

Quadratic Equations and Functions

Quadratic Equations and Functions Quadratic Equations and Functions. Square Root Propert and Completing the Square. Quadratic Formula. Equations in Quadratic Form. Graphs of Quadratic Functions. Verte of a Parabola and Applications In

More information

When I was 3.1 POLYNOMIAL FUNCTIONS

When I was 3.1 POLYNOMIAL FUNCTIONS 146 Chapter 3 Polnomial and Rational Functions Section 3.1 begins with basic definitions and graphical concepts and gives an overview of ke properties of polnomial functions. In Sections 3.2 and 3.3 we

More information

1. a. standard form of a parabola with. 2 b 1 2 horizontal axis of symmetry 2. x 2 y 2 r 2 o. standard form of an ellipse centered

1. a. standard form of a parabola with. 2 b 1 2 horizontal axis of symmetry 2. x 2 y 2 r 2 o. standard form of an ellipse centered Conic Sections. Distance Formula and Circles. More on the Parabola. The Ellipse and Hperbola. Nonlinear Sstems of Equations in Two Variables. Nonlinear Inequalities and Sstems of Inequalities In Chapter,

More information

6. The given function is only drawn for x > 0. Complete the function for x < 0 with the following conditions:

6. The given function is only drawn for x > 0. Complete the function for x < 0 with the following conditions: Precalculus Worksheet 1. Da 1 1. The relation described b the set of points {(-, 5 ),( 0, 5 ),(,8 ),(, 9) } is NOT a function. Eplain wh. For questions - 4, use the graph at the right.. Eplain wh the graph

More information

Students Currently in Algebra 2 Maine East Math Placement Exam Review Problems

Students Currently in Algebra 2 Maine East Math Placement Exam Review Problems Students Currently in Algebra Maine East Math Placement Eam Review Problems The actual placement eam has 100 questions 3 hours. The placement eam is free response students must solve questions and write

More information

Zeros of Polynomial Functions. The Fundamental Theorem of Algebra. The Fundamental Theorem of Algebra. zero in the complex number system.

Zeros of Polynomial Functions. The Fundamental Theorem of Algebra. The Fundamental Theorem of Algebra. zero in the complex number system. _.qd /7/ 9:6 AM Page 69 Section. Zeros of Polnomial Functions 69. Zeros of Polnomial Functions What ou should learn Use the Fundamental Theorem of Algebra to determine the number of zeros of polnomial

More information

MATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60

MATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60 MATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60 A Summar of Concepts Needed to be Successful in Mathematics The following sheets list the ke concepts which are taught in the specified math course. The sheets

More information

9.3 OPERATIONS WITH RADICALS

9.3 OPERATIONS WITH RADICALS 9. Operations with Radicals (9 1) 87 9. OPERATIONS WITH RADICALS In this section Adding and Subtracting Radicals Multiplying Radicals Conjugates In this section we will use the ideas of Section 9.1 in

More information

2.7 Applications of Derivatives to Business

2.7 Applications of Derivatives to Business 80 CHAPTER 2 Applications of the Derivative 2.7 Applications of Derivatives to Business and Economics Cost = C() In recent ears, economic decision making has become more and more mathematicall oriented.

More information

C3: Functions. Learning objectives

C3: Functions. Learning objectives CHAPTER C3: Functions Learning objectives After studing this chapter ou should: be familiar with the terms one-one and man-one mappings understand the terms domain and range for a mapping understand the

More information

M122 College Algebra Review for Final Exam

M122 College Algebra Review for Final Exam M122 College Algebra Review for Final Eam Revised Fall 2007 for College Algebra in Contet All answers should include our work (this could be a written eplanation of the result, a graph with the relevant

More information

Section 5-9 Inverse Trigonometric Functions

Section 5-9 Inverse Trigonometric Functions 46 5 TRIGONOMETRIC FUNCTIONS Section 5-9 Inverse Trigonometric Functions Inverse Sine Function Inverse Cosine Function Inverse Tangent Function Summar Inverse Cotangent, Secant, and Cosecant Functions

More information

SECTION 2.2. Distance and Midpoint Formulas; Circles

SECTION 2.2. Distance and Midpoint Formulas; Circles SECTION. Objectives. Find the distance between two points.. Find the midpoint of a line segment.. Write the standard form of a circle s equation.. Give the center and radius of a circle whose equation

More information

5.2 Inverse Functions

5.2 Inverse Functions 78 Further Topics in Functions. Inverse Functions Thinking of a function as a process like we did in Section., in this section we seek another function which might reverse that process. As in real life,

More information

More Equations and Inequalities

More Equations and Inequalities Section. Sets of Numbers and Interval Notation 9 More Equations and Inequalities 9 9. Compound Inequalities 9. Polnomial and Rational Inequalities 9. Absolute Value Equations 9. Absolute Value Inequalities

More information

North Carolina Community College System Diagnostic and Placement Test Sample Questions

North Carolina Community College System Diagnostic and Placement Test Sample Questions North Carolina Communit College Sstem Diagnostic and Placement Test Sample Questions 0 The College Board. College Board, ACCUPLACER, WritePlacer and the acorn logo are registered trademarks of the College

More information

Polynomials. Jackie Nicholas Jacquie Hargreaves Janet Hunter

Polynomials. Jackie Nicholas Jacquie Hargreaves Janet Hunter Mathematics Learning Centre Polnomials Jackie Nicholas Jacquie Hargreaves Janet Hunter c 26 Universit of Sdne Mathematics Learning Centre, Universit of Sdne 1 1 Polnomials Man of the functions we will

More information

Algebra II. Administered May 2013 RELEASED

Algebra II. Administered May 2013 RELEASED STAAR State of Teas Assessments of Academic Readiness Algebra II Administered Ma 0 RELEASED Copright 0, Teas Education Agenc. All rights reserved. Reproduction of all or portions of this work is prohibited

More information

Mathematical goals. Starting points. Materials required. Time needed

Mathematical goals. Starting points. Materials required. Time needed Level A7 of challenge: C A7 Interpreting functions, graphs and tables tables Mathematical goals Starting points Materials required Time needed To enable learners to understand: the relationship between

More information

Core Maths C3. Revision Notes

Core Maths C3. Revision Notes Core Maths C Revision Notes October 0 Core Maths C Algebraic fractions... Cancelling common factors... Multipling and dividing fractions... Adding and subtracting fractions... Equations... 4 Functions...

More information

Section 3-7. Marginal Analysis in Business and Economics. Marginal Cost, Revenue, and Profit. 202 Chapter 3 The Derivative

Section 3-7. Marginal Analysis in Business and Economics. Marginal Cost, Revenue, and Profit. 202 Chapter 3 The Derivative 202 Chapter 3 The Derivative Section 3-7 Marginal Analysis in Business and Economics Marginal Cost, Revenue, and Profit Application Marginal Average Cost, Revenue, and Profit Marginal Cost, Revenue, and

More information

MPE Review Section III: Logarithmic & Exponential Functions

MPE Review Section III: Logarithmic & Exponential Functions MPE Review Section III: Logarithmic & Eponential Functions FUNCTIONS AND GRAPHS To specify a function y f (, one must give a collection of numbers D, called the domain of the function, and a procedure

More information

SECTION P.5 Factoring Polynomials

SECTION P.5 Factoring Polynomials BLITMCPB.QXP.0599_48-74 /0/0 0:4 AM Page 48 48 Chapter P Prerequisites: Fundamental Concepts of Algebra Technology Eercises Critical Thinking Eercises 98. The common cold is caused by a rhinovirus. The

More information

Complex Numbers. (x 1) (4x 8) n 2 4 x 1 2 23 No real-number solutions. From the definition, it follows that i 2 1.

Complex Numbers. (x 1) (4x 8) n 2 4 x 1 2 23 No real-number solutions. From the definition, it follows that i 2 1. 7_Ch09_online 7// 0:7 AM Page 9-9. Comple Numbers 9- SECTION 9. OBJECTIVES Epress square roots of negative numbers in terms of i. Write comple numbers in a bi form. Add and subtract comple numbers. Multipl

More information

Section 3-3 Approximating Real Zeros of Polynomials

Section 3-3 Approximating Real Zeros of Polynomials - Approimating Real Zeros of Polynomials 9 Section - Approimating Real Zeros of Polynomials Locating Real Zeros The Bisection Method Approimating Multiple Zeros Application The methods for finding zeros

More information

SUNY ECC. ACCUPLACER Preparation Workshop. Algebra Skills

SUNY ECC. ACCUPLACER Preparation Workshop. Algebra Skills SUNY ECC ACCUPLACER Preparation Workshop Algebra Skills Gail A. Butler Ph.D. Evaluating Algebraic Epressions Substitute the value (#) in place of the letter (variable). Follow order of operations!!! E)

More information

Core Maths C2. Revision Notes

Core Maths C2. Revision Notes Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...

More information

Skills Practice Skills Practice for Lesson 1.1

Skills Practice Skills Practice for Lesson 1.1 Skills Practice Skills Practice for Lesson. Name Date Tanks a Lot Introduction to Linear Functions Vocabular Define each term in our own words.. function A function is a relation that maps each value of

More information

Polynomial and Rational Functions

Polynomial and Rational Functions Polnomial and Rational Functions 3 A LOOK BACK In Chapter, we began our discussion of functions. We defined domain and range and independent and dependent variables; we found the value of a function and

More information

Functions and Their Graphs

Functions and Their Graphs 3 Functions and Their Graphs On a sales rack of clothes at a department store, ou see a shirt ou like. The original price of the shirt was $00, but it has been discounted 30%. As a preferred shopper, ou

More information

15.1. Exact Differential Equations. Exact First-Order Equations. Exact Differential Equations Integrating Factors

15.1. Exact Differential Equations. Exact First-Order Equations. Exact Differential Equations Integrating Factors SECTION 5. Eact First-Order Equations 09 SECTION 5. Eact First-Order Equations Eact Differential Equations Integrating Factors Eact Differential Equations In Section 5.6, ou studied applications of differential

More information

Exponential equations will be written as, where a =. Example 1: Determine a formula for the exponential function whose graph is shown below.

Exponential equations will be written as, where a =. Example 1: Determine a formula for the exponential function whose graph is shown below. .1 Eponential and Logistic Functions PreCalculus.1 EXPONENTIAL AND LOGISTIC FUNCTIONS 1. Recognize eponential growth and deca functions 2. Write an eponential function given the -intercept and another

More information

Graphing Linear Equations

Graphing Linear Equations 6.3 Graphing Linear Equations 6.3 OBJECTIVES 1. Graph a linear equation b plotting points 2. Graph a linear equation b the intercept method 3. Graph a linear equation b solving the equation for We are

More information

We start with the basic operations on polynomials, that is adding, subtracting, and multiplying.

We start with the basic operations on polynomials, that is adding, subtracting, and multiplying. R. Polnomials In this section we want to review all that we know about polnomials. We start with the basic operations on polnomials, that is adding, subtracting, and multipling. Recall, to add subtract

More information

The numerical values that you find are called the solutions of the equation.

The numerical values that you find are called the solutions of the equation. Appendi F: Solving Equations The goal of solving equations When you are trying to solve an equation like: = 4, you are trying to determine all of the numerical values of that you could plug into that equation.

More information

D.3. Angles and Degree Measure. Review of Trigonometric Functions

D.3. Angles and Degree Measure. Review of Trigonometric Functions APPENDIX D Precalculus Review D7 SECTION D. Review of Trigonometric Functions Angles and Degree Measure Radian Measure The Trigonometric Functions Evaluating Trigonometric Functions Solving Trigonometric

More information

1.6. Piecewise Functions. LEARN ABOUT the Math. Representing the problem using a graphical model

1.6. Piecewise Functions. LEARN ABOUT the Math. Representing the problem using a graphical model 1. Piecewise Functions YOU WILL NEED graph paper graphing calculator GOAL Understand, interpret, and graph situations that are described b piecewise functions. LEARN ABOUT the Math A cit parking lot uses

More information

135 Final Review. Determine whether the graph is symmetric with respect to the x-axis, the y-axis, and/or the origin.

135 Final Review. Determine whether the graph is symmetric with respect to the x-axis, the y-axis, and/or the origin. 13 Final Review Find the distance d(p1, P2) between the points P1 and P2. 1) P1 = (, -6); P2 = (7, -2) 2 12 2 12 3 Determine whether the graph is smmetric with respect to the -ais, the -ais, and/or the

More information

Shake, Rattle and Roll

Shake, Rattle and Roll 00 College Board. All rights reserved. 00 College Board. All rights reserved. SUGGESTED LEARNING STRATEGIES: Shared Reading, Marking the Tet, Visualization, Interactive Word Wall Roller coasters are scar

More information

Systems of Linear Equations: Solving by Substitution

Systems of Linear Equations: Solving by Substitution 8.3 Sstems of Linear Equations: Solving b Substitution 8.3 OBJECTIVES 1. Solve sstems using the substitution method 2. Solve applications of sstems of equations In Sections 8.1 and 8.2, we looked at graphing

More information

Higher. Polynomials and Quadratics 64

Higher. Polynomials and Quadratics 64 hsn.uk.net Higher Mathematics UNIT OUTCOME 1 Polnomials and Quadratics Contents Polnomials and Quadratics 64 1 Quadratics 64 The Discriminant 66 3 Completing the Square 67 4 Sketching Parabolas 70 5 Determining

More information

Graphing Quadratic Equations

Graphing Quadratic Equations .4 Graphing Quadratic Equations.4 OBJECTIVE. Graph a quadratic equation b plotting points In Section 6.3 ou learned to graph first-degree equations. Similar methods will allow ou to graph quadratic equations

More information

Partial Fractions. and Logistic Growth. Section 6.2. Partial Fractions

Partial Fractions. and Logistic Growth. Section 6.2. Partial Fractions SECTION 6. Partial Fractions and Logistic Growth 9 Section 6. Partial Fractions and Logistic Growth Use partial fractions to find indefinite integrals. Use logistic growth functions to model real-life

More information

Colegio del mundo IB. Programa Diploma REPASO 2. 1. The mass m kg of a radio-active substance at time t hours is given by. m = 4e 0.2t.

Colegio del mundo IB. Programa Diploma REPASO 2. 1. The mass m kg of a radio-active substance at time t hours is given by. m = 4e 0.2t. REPASO. The mass m kg of a radio-active substance at time t hours is given b m = 4e 0.t. Write down the initial mass. The mass is reduced to.5 kg. How long does this take?. The function f is given b f()

More information

Section 2-3 Quadratic Functions

Section 2-3 Quadratic Functions 118 2 LINEAR AND QUADRATIC FUNCTIONS 71. Celsius/Fahrenheit. A formula for converting Celsius degrees to Fahrenheit degrees is given by the linear function 9 F 32 C Determine to the nearest degree the

More information

D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review

D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review D0 APPENDIX D Precalculus Review SECTION D. The Cartesian Plane The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles The Cartesian Plane An ordered pair, of real numbers has as its

More information

Solving Systems of Equations

Solving Systems of Equations Solving Sstems of Equations When we have or more equations and or more unknowns, we use a sstem of equations to find the solution. Definition: A solution of a sstem of equations is an ordered pair that

More information

SECTION 2-2 Straight Lines

SECTION 2-2 Straight Lines - Straight Lines 11 94. Engineering. The cross section of a rivet has a top that is an arc of a circle (see the figure). If the ends of the arc are 1 millimeters apart and the top is 4 millimeters above

More information

Chapter 6 Quadratic Functions

Chapter 6 Quadratic Functions Chapter 6 Quadratic Functions Determine the characteristics of quadratic functions Sketch Quadratics Solve problems modelled b Quadratics 6.1Quadratic Functions A quadratic function is of the form where

More information

TSI College Level Math Practice Test

TSI College Level Math Practice Test TSI College Level Math Practice Test Tutorial Services Mission del Paso Campus. Factor the Following Polynomials 4 a. 6 8 b. c. 7 d. ab + a + b + 6 e. 9 f. 6 9. Perform the indicated operation a. ( +7y)

More information

Lesson 9.1 Solving Quadratic Equations

Lesson 9.1 Solving Quadratic Equations Lesson 9.1 Solving Quadratic Equations 1. Sketch the graph of a quadratic equation with a. One -intercept and all nonnegative y-values. b. The verte in the third quadrant and no -intercepts. c. The verte

More information

ALGEBRA 1 SKILL BUILDERS

ALGEBRA 1 SKILL BUILDERS ALGEBRA 1 SKILL BUILDERS (Etra Practice) Introduction to Students and Their Teachers Learning is an individual endeavor. Some ideas come easil; others take time--sometimes lots of time- -to grasp. In addition,

More information

Pre Calculus Math 40S: Explained!

Pre Calculus Math 40S: Explained! Pre Calculus Math 0S: Eplained! www.math0s.com 0 Logarithms Lesson PART I: Eponential Functions Eponential functions: These are functions where the variable is an eponent. The first tpe of eponential graph

More information

9.5 CALCULUS AND POLAR COORDINATES

9.5 CALCULUS AND POLAR COORDINATES smi9885_ch09b.qd 5/7/0 :5 PM Page 760 760 Chapter 9 Parametric Equations and Polar Coordinates 9.5 CALCULUS AND POLAR COORDINATES Now that we have introduced ou to polar coordinates and looked at a variet

More information

STUDENT TEXT AND HOMEWORK HELPER

STUDENT TEXT AND HOMEWORK HELPER UNIT 4 EXPONENTIAL FUNCTIONS AND EQUATIONS STUDENT TEXT AND HOMEWORK HELPER Randall I. Charles Allan E. Bellman Basia Hall William G. Handlin, Sr. Dan Kenned Stuart J. Murph Grant Wiggins Boston, Massachusetts

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS 379 Chapter 9 DIFFERENTIAL EQUATIONS He who seeks f methods without having a definite problem in mind seeks f the most part in vain. D. HILBERT 9. Introduction In Class XI and in

More information

Section 6-3 Double-Angle and Half-Angle Identities

Section 6-3 Double-Angle and Half-Angle Identities 6-3 Double-Angle and Half-Angle Identities 47 Section 6-3 Double-Angle and Half-Angle Identities Double-Angle Identities Half-Angle Identities This section develops another important set of identities

More information

The Distance Formula and the Circle

The Distance Formula and the Circle 10.2 The Distance Formula and the Circle 10.2 OBJECTIVES 1. Given a center and radius, find the equation of a circle 2. Given an equation for a circle, find the center and radius 3. Given an equation,

More information

2.3 Quadratic Functions

2.3 Quadratic Functions 88 Linear and Quadratic Functions. Quadratic Functions You ma recall studing quadratic equations in Intermediate Algebra. In this section, we review those equations in the contet of our net famil of functions:

More information

SAMPLE. Polynomial functions

SAMPLE. Polynomial functions Objectives C H A P T E R 4 Polnomial functions To be able to use the technique of equating coefficients. To introduce the functions of the form f () = a( + h) n + k and to sketch graphs of this form through

More information

4 Constrained Optimization: The Method of Lagrange Multipliers. Chapter 7 Section 4 Constrained Optimization: The Method of Lagrange Multipliers 551

4 Constrained Optimization: The Method of Lagrange Multipliers. Chapter 7 Section 4 Constrained Optimization: The Method of Lagrange Multipliers 551 Chapter 7 Section 4 Constrained Optimization: The Method of Lagrange Multipliers 551 LEVEL CURVES 2 7 2 45. f(, ) ln 46. f(, ) 6 2 12 4 16 3 47. f(, ) 2 4 4 2 (11 18) 48. Sometimes ou can classif the critical

More information

Ellington High School Principal

Ellington High School Principal Mr. Neil Rinaldi Ellington High School Principal 7 MAPLE STREET ELLINGTON, CT 0609 Mr. Dan Uriano (860) 896- Fa (860) 896-66 Assistant Principal Mr. Peter Corbett Lead Teacher Mrs. Suzanne Markowski Guidance

More information

DISTANCE, CIRCLES, AND QUADRATIC EQUATIONS

DISTANCE, CIRCLES, AND QUADRATIC EQUATIONS a p p e n d i g DISTANCE, CIRCLES, AND QUADRATIC EQUATIONS DISTANCE BETWEEN TWO POINTS IN THE PLANE Suppose that we are interested in finding the distance d between two points P (, ) and P (, ) in the

More information

I think that starting

I think that starting . Graphs of Functions 69. GRAPHS OF FUNCTIONS One can envisage that mathematical theor will go on being elaborated and etended indefinitel. How strange that the results of just the first few centuries

More information

Name Class Date. Additional Vocabulary Support

Name Class Date. Additional Vocabulary Support - Additional Vocabular Support Rate of Change and Slope Concept List negative slope positive slope rate of change rise run slope slope formula slope of horizontal line slope of vertical line Choose the

More information

Florida Algebra I EOC Online Practice Test

Florida Algebra I EOC Online Practice Test Florida Algebra I EOC Online Practice Test Directions: This practice test contains 65 multiple-choice questions. Choose the best answer for each question. Detailed answer eplanations appear at the end

More information

Summer Math Exercises. For students who are entering. Pre-Calculus

Summer Math Exercises. For students who are entering. Pre-Calculus Summer Math Eercises For students who are entering Pre-Calculus It has been discovered that idle students lose learning over the summer months. To help you succeed net fall and perhaps to help you learn

More information

Review of Intermediate Algebra Content

Review of Intermediate Algebra Content Review of Intermediate Algebra Content Table of Contents Page Factoring GCF and Trinomials of the Form + b + c... Factoring Trinomials of the Form a + b + c... Factoring Perfect Square Trinomials... 6

More information

Solving Absolute Value Equations and Inequalities Graphically

Solving Absolute Value Equations and Inequalities Graphically 4.5 Solving Absolute Value Equations and Inequalities Graphicall 4.5 OBJECTIVES 1. Draw the graph of an absolute value function 2. Solve an absolute value equation graphicall 3. Solve an absolute value

More information

2.5 Library of Functions; Piecewise-defined Functions

2.5 Library of Functions; Piecewise-defined Functions SECTION.5 Librar of Functions; Piecewise-defined Functions 07.5 Librar of Functions; Piecewise-defined Functions PREPARING FOR THIS SECTION Before getting started, review the following: Intercepts (Section.,

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION INTEGRATED ALGEBRA. Tuesday, January 24, 2012 9:15 a.m. to 12:15 p.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION INTEGRATED ALGEBRA. Tuesday, January 24, 2012 9:15 a.m. to 12:15 p.m. INTEGRATED ALGEBRA The Universit of the State of New York REGENTS HIGH SCHOOL EXAMINATION INTEGRATED ALGEBRA Tuesda, Januar 4, 01 9:15 a.m. to 1:15 p.m., onl Student Name: School Name: Print our name and

More information

Linear and Quadratic Functions

Linear and Quadratic Functions Chapter Linear and Quadratic Functions. Linear Functions We now begin the stud of families of functions. Our first famil, linear functions, are old friends as we shall soon see. Recall from Geometr that

More information

Direct Variation. 1. Write an equation for a direct variation relationship 2. Graph the equation of a direct variation relationship

Direct Variation. 1. Write an equation for a direct variation relationship 2. Graph the equation of a direct variation relationship 6.5 Direct Variation 6.5 OBJECTIVES 1. Write an equation for a direct variation relationship 2. Graph the equation of a direct variation relationship Pedro makes $25 an hour as an electrician. If he works

More information

NAME DATE PERIOD. 11. Is the relation (year, percent of women) a function? Explain. Yes; each year is

NAME DATE PERIOD. 11. Is the relation (year, percent of women) a function? Explain. Yes; each year is - NAME DATE PERID Functions Determine whether each relation is a function. Eplain.. {(, ), (0, 9), (, 0), (7, 0)} Yes; each value is paired with onl one value.. {(, ), (, ), (, ), (, ), (, )}. No; in the

More information

Exponential Functions, Logarithms, and e

Exponential Functions, Logarithms, and e chapter 3 Starry Night, painted by Vincent Van Gogh in 889. The brightness of a star as seen from Earth is measured using a logarithmic scale. Eponential Functions, Logarithms, and e This chapter focuses

More information

6.3 PARTIAL FRACTIONS AND LOGISTIC GROWTH

6.3 PARTIAL FRACTIONS AND LOGISTIC GROWTH 6 CHAPTER 6 Techniques of Integration 6. PARTIAL FRACTIONS AND LOGISTIC GROWTH Use partial fractions to find indefinite integrals. Use logistic growth functions to model real-life situations. Partial Fractions

More information

Chapter 4: Exponential and Logarithmic Functions

Chapter 4: Exponential and Logarithmic Functions Chapter 4: Eponential and Logarithmic Functions Section 4.1 Eponential Functions... 15 Section 4. Graphs of Eponential Functions... 3 Section 4.3 Logarithmic Functions... 4 Section 4.4 Logarithmic Properties...

More information

Section 0.3 Power and exponential functions

Section 0.3 Power and exponential functions Section 0.3 Power and eponential functions (5/6/07) Overview: As we will see in later chapters, man mathematical models use power functions = n and eponential functions =. The definitions and asic properties

More information

EQUATIONS OF LINES IN SLOPE- INTERCEPT AND STANDARD FORM

EQUATIONS OF LINES IN SLOPE- INTERCEPT AND STANDARD FORM . Equations of Lines in Slope-Intercept and Standard Form ( ) 8 In this Slope-Intercept Form Standard Form section Using Slope-Intercept Form for Graphing Writing the Equation for a Line Applications (0,

More information

SECTION 7-4 Algebraic Vectors

SECTION 7-4 Algebraic Vectors 7-4 lgebraic Vectors 531 SECTIN 7-4 lgebraic Vectors From Geometric Vectors to lgebraic Vectors Vector ddition and Scalar Multiplication Unit Vectors lgebraic Properties Static Equilibrium Geometric vectors

More information

Chapter 13 Introduction to Linear Regression and Correlation Analysis

Chapter 13 Introduction to Linear Regression and Correlation Analysis Chapter 3 Student Lecture Notes 3- Chapter 3 Introduction to Linear Regression and Correlation Analsis Fall 2006 Fundamentals of Business Statistics Chapter Goals To understand the methods for displaing

More information

Imagine a cube with any side length. Imagine increasing the height by 2 cm, the. Imagine a cube. x x

Imagine a cube with any side length. Imagine increasing the height by 2 cm, the. Imagine a cube. x x OBJECTIVES Eplore functions defined b rddegree polnomials (cubic functions) Use graphs of polnomial equations to find the roots and write the equations in factored form Relate the graphs of polnomial equations

More information

4Unit 2 Quadratic, Polynomial, and Radical Functions

4Unit 2 Quadratic, Polynomial, and Radical Functions CHAPTER 4Unit 2 Quadratic, Polnomial, and Radical Functions Comple Numbers, p. 28 f(z) 5 z 2 c Quadratic Functions and Factoring Prerequisite Skills... 234 4. Graph Quadratic Functions in Standard Form...

More information

ACT Math Vocabulary. Altitude The height of a triangle that makes a 90-degree angle with the base of the triangle. Altitude

ACT Math Vocabulary. Altitude The height of a triangle that makes a 90-degree angle with the base of the triangle. Altitude ACT Math Vocabular Acute When referring to an angle acute means less than 90 degrees. When referring to a triangle, acute means that all angles are less than 90 degrees. For eample: Altitude The height

More information

Five 5. Rational Expressions and Equations C H A P T E R

Five 5. Rational Expressions and Equations C H A P T E R Five C H A P T E R Rational Epressions and Equations. Rational Epressions and Functions. Multiplication and Division of Rational Epressions. Addition and Subtraction of Rational Epressions.4 Comple Fractions.

More information

2.6. The Circle. Introduction. Prerequisites. Learning Outcomes

2.6. The Circle. Introduction. Prerequisites. Learning Outcomes The Circle 2.6 Introduction A circle is one of the most familiar geometrical figures and has been around a long time! In this brief Section we discuss the basic coordinate geometr of a circle - in particular

More information

Substitute 4 for x in the function, Simplify.

Substitute 4 for x in the function, Simplify. Page 1 of 19 Review of Eponential and Logarithmic Functions An eponential function is a function in the form of f ( ) = for a fied ase, where > 0 and 1. is called the ase of the eponential function. The

More information

t hours This is the distance in miles travelled in 2 hours when the speed is 70mph. = 22 yards per second. = 110 yards.

t hours This is the distance in miles travelled in 2 hours when the speed is 70mph. = 22 yards per second. = 110 yards. The area under a graph often gives useful information. Velocit-time graphs Constant velocit The sketch shows the velocit-time graph for a car that is travelling along a motorwa at a stead 7 mph. 7 The

More information