Hearing. 1 Introduction. 1.2 Psychoacoustics. 1.1 Auditory system

Size: px
Start display at page:

Download "Hearing. 1 Introduction. 1.2 Psychoacoustics. 1.1 Auditory system"

Transcription

1 Hearing Hearing 1 1 Introduction Hearing 2 Sources: Rossing. (1990). The science of sound. Chapters 5 7. Karjalainen. (1999). Kommunikaatioakustiikka. Pulkki, Karjalainen (2015). Communication acoustics Moore. (1997). An introduction to the psychology of hearing. Contents: 1. Introduction 2. Ear physiology 3. Loudness 4. Masking 5. Pitch 6. Spatial hearing! Auditory system can be divided in two parts Peripheral auditory system (outer, middle, and inner ear) Auditory nervous system (in the brain)! Ear physiology studies the peripheral system! Psychoacoustics studies the entire sensation: relationships between sound stimuli and the subjective sensation 1.1 Auditory system Hearing Psychoacoustics Hearing 4! Dynamic range of hearing is wide ratio of a very loud to a barely audible sound pressure level is 1:10 6 (120 db)! Frequency range of hearing varies a lot between individuals only few can hear from 20 Hz to 20 khz sensitivity to low sounds (< 100Hz) is not very good sensitivity to high sounds (> 12 khz) decreases along with age! Selectivity of hearing listener can pick an instrument from among an orchestra listener can follow a speaker at a cocktail party One can sleep in background noise but still wake up to an abnormal sound! Perception involves information processing in the brain Information about the brain is limited! Psychoacoustics studies the relationships between sound stimuli and the resulting sensations Attempt to model the process of perception For example trying to predict the perceived loudness / pitch / timbre from the acoustic properties of the sound signal! In a psychoacoustic listening test Test subject listens to sounds Questions are made or the subject is asked to describe her sensasions

2 2 Ear physiology! The human ear consists of three main parts: (1) outer ear, (2) middle ear, (3) inner ear Hearing 5 Hearing Outer ear! Outer ear consists of: pinna gathers sound; direction-dependent response auditory canal (ear canal) - conveys sound to middle ear, and acts as a resonator at 3-4 khz amplifying sound +10 db! Outer ear is passive and linear, and its behavior can be completely described by laws of acoustic wave propagation. Nerve signal to brain [Chittka05] 2.2 Middle ear Hearing 7! Middle ear contains Eardrum that transforms sound waves into mechanic vibration Tiny audtory bones (ossicles): 1 Malleus (resting against the eardrum, see figure), 2 Incus and 3 Staples! The ossicles transmit eardrum vibrations (in air) to the oval window of the inner ear (filled with fluid)! Acoustic reflex: when sound 1 2 pressure level exceeds db, eardrum tension increases and staples is removed from oval window 3 Protects the inner ear from damage 2.3 Inner ear, cochlea Hearing 8! The inner ear contains the cochlea: a fluid-filled organ where vibrations are converted into nerve impulses to the brain.! Cochlea = Greek: snail shell.! Spiral tube: When stretched out, approximately 35 millimeters long.! Vibrations on the cochlea s oval window cause hydraulic pressure waves inside the cochlea! Inside the cochlea there is the basilar membrane,! On the basilar membrane there is the organ of Corti with nerve cells that are sensitive to vibration! Nerve cells transform movement information into neural impulses in the auditory nerve

3 2.4 Basilar membrane Hearing 9 Basilar membrane Hearing 10! Figure: cochlea stretched out for illustration purposes Basilar membrane divides the fluid of the cochlea into separate tunnels When hydraulic pressure waves travel along the cochlea, they move the basilar membrane from oval window to round window. apex! Different frequencies produce highest amplitude at different sites! Preliminary frequency analysis happens on the basilar membrane Travelling waves: base apex base Best freq (Hz) 2.5 Sensory hair cells! Distributed along the basilar membrane are sensory hair cells that transform membrane movement into neural impulses! When a hair cell bends, it generates neural impulses Impulse rate depends on vibration amplitude and frequency Hearing 11! Depending on the position on the basilar membrane, each nerve cell has a characteristic frequency to which it is most responsive to (right fig.: tuning curves of 6 different cells from different positions)! Left fig: Varying the amplitude of stimulus (db) broadens the range of frequencies that the hair cell reacts to 3 Loudness! Loudness describes the subjective level of sound Perception of loudness is relatively complex, but consistent phenomenon and one of the central parts of psychoacoustics Hearing 12! The loudness of a sound can be compared to a standardized reference tone, for example 1000 Hz sinusoidal tone Loudness level (phon) is defined to be the sound pressure level (db) of a 1000 Hz sinusoidal, that has the the same subjective loudness as the target sound For example if the heard sound is perceived as equally loud as 40 db 1kHz sinusoidal, is the loudness level 40 phons

4 3.1 Equal-loudness curves Sound pressure level (db) Loudness level (phons) Frequency (Hz) Hearing Critical bands Hearing 14! Comparing to two band-limited noises with same center frequencies and increasing the other s bandwidth, the perceived loudness increases only after a critical bandwidth Figure: 1 60 db, Critical bandwidth is 160 Hz at 1 khz! Ear analyzes sound at critical band resolution. Each critical band contributes to the overall loudness level! Each center frequency f c has a critical bandwidth Δf (Bark bandwidths)! Equivalent rectangular bandwidth (ERB) is a different type of procedure to measure a rectangular bandwidth of auditory filters.! Both bandwidths can be used to define a frequency Bark and ERB scales Stack bandwidths on top of each other 3.3 Perceptually-motivated frequency scales Hearing Loudness of a complex sound Hearing 16 mm. on basilar membrane frequency / khz frequency / mel frequency / Bark! A broadband sound is perceived louder than a narrowband sound of equal SPL, as shown by the critical bandwidth experiment.! Loudness of a complex sound is calculated by using socalled specific loudness of a critical band as intermediate unit! Specific loudness is roughly proportional to the log-power of the signal at the band (weighted according to sensitivity of hearing and spread slightly by convolving over bands)! Overall loudness is obtained by summing up specific loudness values over critical band

5 3.5 Measuring sound level! SPL does not work well as a perceptual metric of sound loudness. Hearing 17! Different frequency weighting curves (A,B,C,D) can be applied to measure sound level, which is more related to frequency sensitivity of hearing! A-weighting is most common, referred as db(a), it roughly resembles the inverse of the hearing threshold curve. wikipedia 4 Masking! Masking describes the situation where a weaker but clearly audible signal (maskee, test tone) becomes inaudible in the presence of a louder signal (masker)! Masking depends on both the spectral structure of the sounds and their variation over time Hearing Masking in frequency domain Hearing 19 Masking in frequency domain Hearing 20! Model of the frequency analysis in the auditory system subdivision of the frequency axis into critical bands frequency components within a same critical band mask each other easily Bark & ERB scales: frequency scales that are derived by mapping frequencies to critical band numbers! Narrowband noise masks a tone (sinusoidal) easier than a tone masks noise! Masked threshold refers to the raised threshold of audibility caused by the masker sounds with a level below the masked threshold are inaudible masked threshold in quiet = threshold of hearing in quiet! Figure: masked thresholds [Herre95] masker: narrowband noise around 250 Hz, 1 khz, 4 khz spreading function: the effect of masking extends to the spectral vicinity of the masker (spreads more towards high freqencies)! Additivity of masking: joint masked thresh is approximately (but slightly more than) sum of the components

6 4.2 Masking in time domain! Forward masking masking effect extends to times after the masker is switched off! Backwards masking masking extends to times before the masker is been switched on! Forward/backward masking does not extend far in time " simultaneous masking is more important phenomenon backward masking forward masking Hearing 21 5 Pitch Hearing 22! Pitch Subjective attribute of sounds that enables us to arrange them on a frequency-related scale ranging from low to high Sound has a certain pitch if human listaners can consistently match the frequency of a sinusoidal tone to the pitch of the sound! Fundamental frequency vs. pitch Fundamental frequency is a physical attribute Pitch is a perceptual attribute Both are measured in Hertz (Hz) In practise, perceived pitch fundamental frequency! "Perfect pitch" or "absolute pitch" - ability to recognize the pitch of a musical note without any reference Minority of the population can do that 5.1 Harmonic sound! For a sinusoidal tone Fundamental frequency = sinusoidal frequency Pitch sinusoidal frequency! Harmonic sound Hearing 23 Trumpet sound: * Fundamental frequency F = 262 Hz * Wavelength 1/F = 3.8 ms Hearing Pitch perception! Pitch perception has been tried to explain using two competing theories Place theory: Peak activity along the basilar membrane determines pitch (fails to explain missing fundamental) Periodicity theory: Pitch depends on rate, not place, of response. Neurons fire in sync with signals! The real mechanism is a combination of the above Sound is subdivided into subbands (critical bands) Periodicity of the amplitude envelope (see lowest panel) is analyzed within bands Results are combined across bands

7 6 Spatial hearing Hearing Monaural source localization Hearing 26! The most important auditory cues for localizing a sound sources in space are 1. Interaural time difference (ITD) Is relatively constant with frequency 2. Interaural intensity difference (ILD) Increases with frequency 3. Direction-dependent filtering of the sound spectrum by head and pinnae! Terms Monaural : with one ear Binaural : with two ears Interaural : between the ears (interaural time difference etc) Lateralization : localizing a source in horizontal plane! Diretional hearing works to some extent even with one ear! Head and pinna form a direction-dependent filter Direction-dependent changes in the spectrum of the sound arriving in the ear can be described with HRTFs HRTF = head-related transfer function! HRTFs are crucial for localizing sources in the median plane (vertical localization) Monaural source localization Hearing Localizing a sinusoidal Hearing 28! HRTFs can be measured by recording Sound emitted by a source Sounds arriving to the auditory canal or eardrum (transfer function of the auditory canal does not vary along with direction)! In practice left: microphone in the ear of a test subject, OR right: head and torso simulator! Experimenting with sinusoidal tones helps to understand the localization of more complex sounds! Angle-of-arrival perception for sinusoids below 750 Hz is based mainly on interaural time difference

8 Localizing a sinusoidal Hearing Localizing complex sounds Hearing 30! Interaural time difference is useful only up to 750 Hz Above that, the time difference is ambiguous, since there are several wavelengths within the time difference Moving the head (or source movement) helps: can be done up to 1500 Hz! At higher frequencies (> 750 Hz) the auditory system utilizes interaural intensity difference Head causes and acoustic shadow (sound level is lower behind the head) Works especially at high frequencies with shorter wavelenghts compared to head dimensions! Complex sounds refer to sounds that involve a number of different frequency components and vary over time! Localizing sound sources is typically a result of combining all the above-described mechanisms 1. Interaural time difference (most important) 2. Interaural intensity difference 3. HRTFs! Wideband noise: directional hearing works well 6.4 Lateralization in headphone listening Hearing Precedence effect Hearing 32! When listening with headphones, the sounds are often localized inside the head, on the axis between the ears Sound does not seem to come from outside the head because the diffraction caused by pinnae and head is missing If the sounds are processed with HRTFs carefully, they move outside the head! The sound in indoors that reaches the listener contains the direct path, early reflections, and late reverberation.! The brain suppresses early reflected sounds to aid in source direction perception Early reflections are not heard as separate sounds. Instead, they amplify the loudness of direct sound! Precedence effect works when 1. Early reflections arrive less than ~ 35ms after direct sound. 2. The spectrum of a reflection is similar to that of the direct sound 3. Reflections are lower or at least not signigicantly louder than direct sound Even a sound with +10 db SPL than direct sound can not be heard

Lecture 4: Jan 12, 2005

Lecture 4: Jan 12, 2005 EE516 Computer Speech Processing Winter 2005 Lecture 4: Jan 12, 2005 Lecturer: Prof: J. Bilmes University of Washington Dept. of Electrical Engineering Scribe: Scott Philips

More information

What Audio Engineers Should Know About Human Sound Perception. Part 2. Binaural Effects and Spatial Hearing

What Audio Engineers Should Know About Human Sound Perception. Part 2. Binaural Effects and Spatial Hearing What Audio Engineers Should Know About Human Sound Perception Part 2. Binaural Effects and Spatial Hearing AES 112 th Convention, Munich AES 113 th Convention, Los Angeles Durand R. Begault Human Factors

More information

Hearing and Deafness 1. Anatomy & physiology

Hearing and Deafness 1. Anatomy & physiology Hearing and Deafness 1. Anatomy & physiology Chris Darwin Web site for lectures, lecture notes and filtering lab: http://www.lifesci.susx.ac.uk/home/chris_darwin/ safari 1 Outer, middle & inner ear Capture;

More information

The Design and Implementation of Multimedia Software

The Design and Implementation of Multimedia Software Chapter 10 Auditory Content The Design and Implementation of Multimedia Software David Bernstein Jones and Bartlett Publishers www.jbpub.com David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett

More information

Your Hearing ILLUMINATED

Your Hearing ILLUMINATED Your Hearing ILLUMINATED INFORMATION FROM YOUR HEARING CARE PROFESSIONAL REDISCOVER your hearing and reconnect 1 with the important things you might have been missing. Your sense of hearing is a vital

More information

A diagram of the ear s structure. The outer ear includes the portion of the ear that we see the pinna/auricle and the ear canal.

A diagram of the ear s structure. The outer ear includes the portion of the ear that we see the pinna/auricle and the ear canal. A diagram of the ear s structure THE OUTER EAR The outer ear includes the portion of the ear that we see the pinna/auricle and the ear canal. The pinna or auricle is a concave cartilaginous structure,

More information

Convention Paper Presented at the 112th Convention 2002 May 10 13 Munich, Germany

Convention Paper Presented at the 112th Convention 2002 May 10 13 Munich, Germany Audio Engineering Society Convention Paper Presented at the 112th Convention 2002 May 10 13 Munich, Germany This convention paper has been reproduced from the author's advance manuscript, without editing,

More information

AP Psychology ~ Ms. Justice

AP Psychology ~ Ms. Justice AP Psychology ~ Ms. Justice 8: What are the characteristics of air pressure waves that we hear as sound? Audition Audition, or hearing, is highly adaptive. We hear a wide range of sounds, but we hear best

More information

PURE TONE AUDIOMETRY Andrew P. McGrath, AuD

PURE TONE AUDIOMETRY Andrew P. McGrath, AuD PURE TONE AUDIOMETRY Andrew P. McGrath, AuD Pure tone audiometry is the standard behavioral assessment of an individual s hearing. The results of pure tone audiometry are recorded on a chart or form called

More information

Anatomy and Physiology of Hearing (added 09/06)

Anatomy and Physiology of Hearing (added 09/06) Anatomy and Physiology of Hearing (added 09/06) 1. Briefly review the anatomy of the cochlea. What is the cochlear blood supply? SW 2. Discuss the effects of the pinna, head and ear canal on the transmission

More information

Sound Perception. Sensitivity to Sound. Sensitivity to Sound 1/9/11. Not physically sensitive to all possible sound frequencies Range

Sound Perception. Sensitivity to Sound. Sensitivity to Sound 1/9/11. Not physically sensitive to all possible sound frequencies Range Sound Perception Similarities between sound and light perception Characteristics of sound waves Wavelength = Pitch Purity = Timbre Amplitude = loudness Sensitivity to Sound Not physically sensitive to

More information

The Effects of Ultrasonic Sound Generated by Ultrasonic Cleaning Systems on Human Hearing and Physiology

The Effects of Ultrasonic Sound Generated by Ultrasonic Cleaning Systems on Human Hearing and Physiology The Effects of Ultrasonic Sound Generated by Ultrasonic Cleaning Systems on Human Hearing and Physiology Questions about the effects of ultrasonic energy on hearing and other human physiology arise from

More information

Dr. Abdel Aziz Hussein Lecturer of Physiology Mansoura Faculty of Medicine

Dr. Abdel Aziz Hussein Lecturer of Physiology Mansoura Faculty of Medicine Physiological Basis of Hearing Tests By Dr. Abdel Aziz Hussein Lecturer of Physiology Mansoura Faculty of Medicine Introduction Def: Hearing is the ability to perceive certain pressure vibrations in the

More information

Acoustic Terms, Definitions and General Information

Acoustic Terms, Definitions and General Information Acoustic Terms, Definitions and General Information Authored by: Daniel Ziobroski Acoustic Engineer Environmental and Acoustic Engineering GE Energy Charles Powers Program Manager Environmental and Acoustic

More information

Noise. CIH Review PDC March 2012

Noise. CIH Review PDC March 2012 Noise CIH Review PDC March 2012 Learning Objectives Understand the concept of the decibel, decibel determination, decibel addition, and weighting Know the characteristics of frequency that are relevant

More information

What are the causes of presbycusis? What can be done? How can I communicate with someone who has a hearing loss? How does hearing work?

What are the causes of presbycusis? What can be done? How can I communicate with someone who has a hearing loss? How does hearing work? This e-book will answer the following questions: What is presbycusis? What are the symptoms of presbycusis? What are the causes of presbycusis? What can be done? How can I communicate with someone who

More information

5th Congress of Alps-Adria Acoustics Association NOISE-INDUCED HEARING LOSS

5th Congress of Alps-Adria Acoustics Association NOISE-INDUCED HEARING LOSS 5th Congress of Alps-Adria Acoustics Association 12-14 September 2012, Petrčane, Croatia NOISE-INDUCED HEARING LOSS Davor Šušković, mag. ing. el. techn. inf. davor.suskovic@microton.hr Abstract: One of

More information

Nature of the Sound Stimulus. Sound is the rhythmic compression and decompression of the air around us caused by a vibrating object.

Nature of the Sound Stimulus. Sound is the rhythmic compression and decompression of the air around us caused by a vibrating object. Sound and Hearing Nature of the Sound Stimulus Sound is the rhythmic compression and decompression of the air around us caused by a vibrating object. Applet Applet2 Frequency measured in cycles/sec = Hertz

More information

Tonal Detection in Noise: An Auditory Neuroscience Insight

Tonal Detection in Noise: An Auditory Neuroscience Insight Image: http://physics.ust.hk/dusw/ Tonal Detection in Noise: An Auditory Neuroscience Insight Buddhika Karunarathne 1 and Richard H.Y. So 1,2 1 Dept. of IELM, Hong Kong University of Science & Technology,

More information

T-61.184. Automatic Speech Recognition: From Theory to Practice

T-61.184. Automatic Speech Recognition: From Theory to Practice Automatic Speech Recognition: From Theory to Practice http://www.cis.hut.fi/opinnot// September 27, 2004 Prof. Bryan Pellom Department of Computer Science Center for Spoken Language Research University

More information

Trigonometric functions and sound

Trigonometric functions and sound Trigonometric functions and sound The sounds we hear are caused by vibrations that send pressure waves through the air. Our ears respond to these pressure waves and signal the brain about their amplitude

More information

Noise: Impact on Hearing; Regulation

Noise: Impact on Hearing; Regulation Noise: Impact on Hearing; Regulation EOH 466A Fall 2008 Mechanism of Hearing Sound waves collected, focused by the outer ear. Humans have little control over muscles in outer ear. Many animals have the

More information

So, how do we hear? outer middle ear inner ear

So, how do we hear? outer middle ear inner ear The ability to hear is critical to understanding the world around us. The human ear is a fully developed part of our bodies at birth and responds to sounds that are very faint as well as sounds that are

More information

Light wear for a powerful hearing. Bone Conduction Headset

Light wear for a powerful hearing. Bone Conduction Headset Light wear for a powerful hearing Bone Conduction Headset 2 Light wear for a powerful hearing Melody Flex, the new bone conduction headset is AUTEL s solution to improve hearing quality of those affected

More information

SPATIAL IMPULSE RESPONSE RENDERING: A TOOL FOR REPRODUCING ROOM ACOUSTICS FOR MULTI-CHANNEL LISTENING

SPATIAL IMPULSE RESPONSE RENDERING: A TOOL FOR REPRODUCING ROOM ACOUSTICS FOR MULTI-CHANNEL LISTENING SPATIAL IMPULSE RESPONSE RENDERING: A TOOL FOR REPRODUCING ROOM ACOUSTICS FOR MULTI-CHANNEL LISTENING VILLE PULKKI AND JUHA MERIMAA Laboratory of Acoustics and Audio Signal Processing, Helsinki University

More information

University of Huddersfield Repository

University of Huddersfield Repository University of Huddersfield Repository Moore, David J. and Wakefield, Jonathan P. Surround Sound for Large Audiences: What are the Problems? Original Citation Moore, David J. and Wakefield, Jonathan P.

More information

BONE-CONDUCTION HEARING AIDS

BONE-CONDUCTION HEARING AIDS BONE-CONDUCTION HEARING AIDS Introduction Conventional hearing aids fit in the ear canal and amplify sounds, which the hearing aid user then hears in the normal way. However, these hearing aids are not

More information

Building Design for Advanced Technology Instruments Sensitive to Acoustical Noise

Building Design for Advanced Technology Instruments Sensitive to Acoustical Noise Building Design for Advanced Technology Instruments Sensitive to Acoustic Noise Michael Gendreau Colin Gordon & Associates Presentation Outline! High technology research and manufacturing instruments respond

More information

CHAPTER 6 PRINCIPLES OF NEURAL CIRCUITS.

CHAPTER 6 PRINCIPLES OF NEURAL CIRCUITS. CHAPTER 6 PRINCIPLES OF NEURAL CIRCUITS. 6.1. CONNECTIONS AMONG NEURONS Neurons are interconnected with one another to form circuits, much as electronic components are wired together to form a functional

More information

Lecture 2, Human cognition

Lecture 2, Human cognition Human Cognition An important foundation for the design of interfaces is a basic theory of human cognition The information processing paradigm (in its most simple form). Human Information Processing The

More information

TECHNICAL LISTENING TRAINING: IMPROVEMENT OF SOUND SENSITIVITY FOR ACOUSTIC ENGINEERS AND SOUND DESIGNERS

TECHNICAL LISTENING TRAINING: IMPROVEMENT OF SOUND SENSITIVITY FOR ACOUSTIC ENGINEERS AND SOUND DESIGNERS TECHNICAL LISTENING TRAINING: IMPROVEMENT OF SOUND SENSITIVITY FOR ACOUSTIC ENGINEERS AND SOUND DESIGNERS PACS: 43.10.Sv Shin-ichiro Iwamiya, Yoshitaka Nakajima, Kazuo Ueda, Kazuhiko Kawahara and Masayuki

More information

HEARING. With Your Brain

HEARING. With Your Brain HEARING With Your Brain Better Hearing with Both Ears Experience A NEW FREEDOM Your brain is responsible for processing everything you hear and needs accurate sound information from both ears. When you

More information

Ruth Litovsky University of Wisconsin Madison, WI USA

Ruth Litovsky University of Wisconsin Madison, WI USA WAISMAN CENTER Binaural Hearing and Speech Laboratory Emergence of Spa?al Hearing in Pediatric Bilateral Cochlear Implant Users Ruth Litovsky University of Wisconsin Madison, WI USA ACIA, Nashville, December

More information

Welcome to the United States Patent and TradeMark Office

Welcome to the United States Patent and TradeMark Office Welcome to the United States Patent and TradeMark Office an Agency of the United States Department of Commerce United States Patent 5,159,703 Lowery October 27, 1992 Silent subliminal presentation system

More information

Presbycusis. What is presbycusis? What are the symptoms of presbycusis?

Presbycusis. What is presbycusis? What are the symptoms of presbycusis? Presbycusis What is presbycusis? Presbycusis is the loss of hearing that gradually occurs in most individuals as they grow older. Hearing loss is a common disorder associated with aging. About 30-35 percent

More information

Estimation of Loudness by Zwicker's Method

Estimation of Loudness by Zwicker's Method Estimation of Loudness by Zwicker's Method Loudness is one category in the list of human perceptions of sound. There are many methods of estimating Loudness using objective measurements. No method is perfect.

More information

Sound Quality Aspects for Environmental Noise. Abstract. 1. Introduction

Sound Quality Aspects for Environmental Noise. Abstract. 1. Introduction The 2002 International Congress and Exposition on Noise Control Engineering Dearborn, MI, USA. August 19-21, 2002 Sound Quality Aspects for Environmental Noise Dr.-Ing. Klaus Genuit HEAD acoustics GmbH

More information

Comparative study of the commercial software for sound quality analysis

Comparative study of the commercial software for sound quality analysis TECHNICAL REPORT #2008 The Acoustical Society of Japan Comparative study of the commercial software for sound quality analysis Sung-Hwan Shin Department of Electrical and Mechanical Engineering, Seikei

More information

Hearing Conservation Procedures

Hearing Conservation Procedures Hearing Conservation Procedures Purpose The University of Regina is committed to providing a safe and healthy work and educational environment for all members of the University community by ensuring that

More information

Pure Tone Hearing Screening in Schools: Revised Notes on Main Video. IMPORTANT: A hearing screening does not diagnose a hearing loss.

Pure Tone Hearing Screening in Schools: Revised Notes on Main Video. IMPORTANT: A hearing screening does not diagnose a hearing loss. Pure Tone Hearing Screening in Schools: Revised Notes on Main Video (Notes are also available for Video segments: Common Mistakes and FAQs) IMPORTANT: A hearing screening does not diagnose a hearing loss.

More information

The loudness war is fought with (and over) compression

The loudness war is fought with (and over) compression The loudness war is fought with (and over) compression Susan E. Rogers, PhD Berklee College of Music Dept. of Music Production & Engineering 131st AES Convention New York, 2011 A summary of the loudness

More information

Guideline for Hearing Conservation and Noise Control

Guideline for Hearing Conservation and Noise Control EVERYONE'S RESPONSIBILITY Guideline for Hearing Conservation and Noise Control February 2007 Guideline for Hearing Conservation and Noise Control Workplace Safety & Health Division 200 401 York Avenue

More information

Innovative ways hearing aids can be improved for clinical use A Literature Review

Innovative ways hearing aids can be improved for clinical use A Literature Review 2012 Scottish Universities Medical Journal, Dundee Published online: July 2012 Electronically Published SUMJ 007 Grewal R & Irwin J (2012). Innovative ways hearing aids can be improved for clinical use:

More information

The Role of the Efferent System in Auditory Performance in Background Noise

The Role of the Efferent System in Auditory Performance in Background Noise The Role of the Efferent System in Auditory Performance in Background Noise Utah Speech-Language Hearing Association, 2015 Skyler G. Jennings Ph.D., Au.D. CCC-A Outline Hearing in a noisy background Normal

More information

MICROPHONE SPECIFICATIONS EXPLAINED

MICROPHONE SPECIFICATIONS EXPLAINED Application Note AN-1112 MICROPHONE SPECIFICATIONS EXPLAINED INTRODUCTION A MEMS microphone IC is unique among InvenSense, Inc., products in that its input is an acoustic pressure wave. For this reason,

More information

Understanding Hearing Loss 404.591.1884. www.childrensent.com

Understanding Hearing Loss 404.591.1884. www.childrensent.com Understanding Hearing Loss 404.591.1884 www.childrensent.com You just found out your child has a hearing loss. You know what the Audiologist explained to you, but it is hard to keep track of all the new

More information

Hearcentres Guide to Hearing Aid Terminology

Hearcentres Guide to Hearing Aid Terminology Hearcentres Guide to Hearing Aid Terminology Sophisticated modern hearing aids use a number of complicated technologies and techniques to ensure great improvements in hearing. Not only are the terms used

More information

Check Your Hearing - http://www.youtube.com/watch?v=mmu6npeidoy

Check Your Hearing - http://www.youtube.com/watch?v=mmu6npeidoy The Science of Hearing The human hearing range is between 20 to 20,000 Hz. There is considerable variation in the hearing range between individuals. Most young people can hear up to 18,000 Hz. Our ability

More information

AP1 Waves. (A) frequency (B) wavelength (C) speed (D) intensity. Answer: (A) and (D) frequency and intensity.

AP1 Waves. (A) frequency (B) wavelength (C) speed (D) intensity. Answer: (A) and (D) frequency and intensity. 1. A fire truck is moving at a fairly high speed, with its siren emitting sound at a specific pitch. As the fire truck recedes from you which of the following characteristics of the sound wave from the

More information

Schindler 3300 / Schindler 5300 Information on noise and vibration.

Schindler 3300 / Schindler 5300 Information on noise and vibration. Schindler 3300 / Schindler 5300. Content Introduction 1. Ride quality Jerk Car acceleration Vertical car vibration Lateral car vibration Sound in the car 2. Sound basics 3. Vibration basics 4. Structure-borne

More information

This is the flow diagram of a hearing aid that is currently under inves8ga8on at Essex University. The purpose of this talk is to explain how the

This is the flow diagram of a hearing aid that is currently under inves8ga8on at Essex University. The purpose of this talk is to explain how the 1 This is the flow diagram of a hearing aid that is currently under inves8ga8on at Essex University. The purpose of this talk is to explain how the design is linked to research using computer models of

More information

Interference to Hearing Aids by Digital Mobile Telephones Operating in the 1800 MHz Band.

Interference to Hearing Aids by Digital Mobile Telephones Operating in the 1800 MHz Band. Interference to Hearing Aids by Digital Mobile Telephones Operating in the 1800 MHz Band. Reference: EB968 Date: January 2008 Author: Eric Burwood (National Acoustic Laboratories) Collaborator: Walter

More information

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. Title to improve 3D audio playback Author(s) Sunder, Kaushik; Tan, Ee-Leng; Gan, Woon-Seng Citation Sunder,

More information

Room Acoustic Reproduction by Spatial Room Response

Room Acoustic Reproduction by Spatial Room Response Room Acoustic Reproduction by Spatial Room Response Rendering Hoda Nasereddin 1, Mohammad Asgari 2 and Ayoub Banoushi 3 Audio Engineer, Broadcast engineering department, IRIB university, Tehran, Iran,

More information

application note Directional Microphone Applications Introduction Directional Hearing Aids

application note Directional Microphone Applications Introduction Directional Hearing Aids APPLICATION NOTE AN-4 Directional Microphone Applications Introduction The inability to understand speech in noisy environments is a significant problem for hearing impaired individuals. An omnidirectional

More information

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Chapter 20. Traveling Waves You may not realize it, but you are surrounded by waves. The waviness of a water wave is readily apparent, from the ripples on a pond to ocean waves large enough to surf. It

More information

Basic Concepts of Sound. Contents: Definitions db Conversion Sound Fields db ± db

Basic Concepts of Sound. Contents: Definitions db Conversion Sound Fields db ± db Basic Concepts of Sound Contents: Definitions db Conversion Sound Fields db ± db BA 7666-11, 1 Abstract This lecture introduces sound and sound measurements by describing sound pressure, sound level and

More information

Audiometry and Hearing Loss Examples

Audiometry and Hearing Loss Examples Audiometry and Hearing Loss Examples An audiogram shows the quietest sounds you can just hear. The red circles represent the right ear and the blue crosses represent the left ear. Across the top, there

More information

Low-frequency noise: a biophysical phenomenon

Low-frequency noise: a biophysical phenomenon Low-frequency noise: a biophysical phenomenon * * Mireille.Oud@gmail.com, http://nl.linkedin.com/in/mireilleoud, the Netherlands Abstract Complaints on low-frequency noise were till recently fairly unexplained,

More information

Sound Pressure Measurement

Sound Pressure Measurement Objectives: Sound Pressure Measurement 1. Become familiar with hardware and techniques to measure sound pressure 2. Measure the sound level of various sizes of fan modules 3. Calculate the signal-to-noise

More information

On frequency characteristics of bone conduction actuators by measuring loudness, acceleration and otoacoustic emission

On frequency characteristics of bone conduction actuators by measuring loudness, acceleration and otoacoustic emission On frequency characteristics of bone conduction actuators by measuring loudness, acceleration and otoacoustic emission Xiuyuan QIN 1 ; Yoshifumi CHISAKI 2 ; Tsuyoshi USAGAWA 3 1,2,3 Kumamoto University,

More information

Veterans UK Leaflet 10. Notes about War Pension claims for deafness

Veterans UK Leaflet 10. Notes about War Pension claims for deafness Veterans UK Leaflet 10 Notes about War Pension claims for deafness 1 About this leaflet About this leaflet This leaflet tells you how claims for deafness are decided and gives you some information about

More information

Bachelorarbeit. Sylvia Sima HRTF Measurements and Filter Design for a Headphone-Based 3D-Audio System

Bachelorarbeit. Sylvia Sima HRTF Measurements and Filter Design for a Headphone-Based 3D-Audio System Bachelorarbeit Sylvia Sima HRTF Measurements and Filter Design for a Headphone-Based 3D-Audio System Fakultät Technik und Informatik Department Informatik Faculty of Engineering and Computer Science Department

More information

Hearing Tests And Your Child

Hearing Tests And Your Child HOW EARLY CAN A CHILD S HEARING BE TESTED? Most parents can remember the moment they first realized that their child could not hear. Louise Tracy has often told other parents of the time she went onto

More information

SEMI-IMPLANTABLE AND FULLY IMPLANTABLE MIDDLE EAR HEARING AIDS

SEMI-IMPLANTABLE AND FULLY IMPLANTABLE MIDDLE EAR HEARING AIDS Coverage for services, procedures, medical devices and drugs are dependent upon benefit eligibility as outlined in the member's specific benefit plan. This Medical Coverage Guideline must be read in its

More information

Lecture 1-6: Noise and Filters

Lecture 1-6: Noise and Filters Lecture 1-6: Noise and Filters Overview 1. Periodic and Aperiodic Signals Review: by periodic signals, we mean signals that have a waveform shape that repeats. The time taken for the waveform to repeat

More information

CONVENTIONAL AND DIGITAL HEARING AIDS

CONVENTIONAL AND DIGITAL HEARING AIDS CONVENTIONAL AND DIGITAL HEARING AIDS Coverage for services, procedures, medical devices and drugs are dependent upon benefit eligibility as outlined in the member's specific benefit plan. This Medical

More information

Very special thanks to Wolfgang Gentzsch and Burak Yenier for making the UberCloud HPC Experiment possible.

Very special thanks to Wolfgang Gentzsch and Burak Yenier for making the UberCloud HPC Experiment possible. Digital manufacturing technology and convenient access to High Performance Computing (HPC) in industry R&D are essential to increase the quality of our products and the competitiveness of our companies.

More information

PROTECT YOUR HEARING

PROTECT YOUR HEARING PROTECT YOUR HEARING Original idea from David Carlisle Aviation can be a noisy business that can assault tour ears and chip away at your ability to hear clearly. Prevention is your only effective defense.

More information

Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals. Introduction

Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals. Introduction Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals Modified from the lecture slides of Lami Kaya (LKaya@ieee.org) for use CECS 474, Fall 2008. 2009 Pearson Education Inc., Upper

More information

Byron's Hudson Valley Hearing Aid Centers Kingston/Lake Katrine 845-336-0108 Poughkeepsie 845-485-0168 Your hearing Journey

Byron's Hudson Valley Hearing Aid Centers Kingston/Lake Katrine 845-336-0108 Poughkeepsie 845-485-0168 Your hearing Journey Your hearing Journey Don't miss out on the joys of life, your hearing is our concern. Trust our experts to enhance your quality of life. Ask Yourself: Do you have difficulty following a conversation in

More information

Acoustics: the study of sound waves

Acoustics: the study of sound waves Acoustics: the study of sound waves Sound is the phenomenon we experience when our ears are excited by vibrations in the gas that surrounds us. As an object vibrates, it sets the surrounding air in motion,

More information

SPEECH INTELLIGIBILITY and Fire Alarm Voice Communication Systems

SPEECH INTELLIGIBILITY and Fire Alarm Voice Communication Systems SPEECH INTELLIGIBILITY and Fire Alarm Voice Communication Systems WILLIAM KUFFNER, M.A. Sc., P.Eng, PMP Senior Fire Protection Engineer Director Fire Protection Engineering October 30, 2013 Code Reference

More information

Noise and Hearing Protection

Noise and Hearing Protection Noise and Hearing Protection Noise and Hearing Safety Training This training module is designed to teach you about the purpose and benefits of a hearing conservation program. After completing the training,

More information

1 Cornea 6 Macula 2 Lens 7 Vitreous humor 3 Iris 8 Optic disc 4 Conjunctiva 9 Ciliary muscles 5 Sclera 10 Choroid

1 Cornea 6 Macula 2 Lens 7 Vitreous humor 3 Iris 8 Optic disc 4 Conjunctiva 9 Ciliary muscles 5 Sclera 10 Choroid Anatomy and Physiology Quiz 1 Sample Question Answers Use the following table to answer Questions 1 2. 1 Cornea 6 Macula 2 Lens 7 Vitreous humor 3 Iris 8 Optic disc 4 Conjunctiva 9 Ciliary muscles 5 Sclera

More information

Noise from large wind turbines (with focus on low frequencies)

Noise from large wind turbines (with focus on low frequencies) Noise from large wind turbines (with focus on low frequencies) Christian Sejer Pedersen M.Sc. EE., Ph. D. Associate professor Acoustics, Department of Electronic Systems, Aalborg University Fredrik Bajers

More information

Hearing Aids. What Is a Hearing Aid? How Common Is Hearing Loss and What Causes It? How Do We Hear?

Hearing Aids. What Is a Hearing Aid? How Common Is Hearing Loss and What Causes It? How Do We Hear? Hearing Aids What Is a Hearing Aid? A hearing aid is an electronic, battery-operated device that amplifies and changes sound to allow for improved communication. Hearing aids receive sound through a microphone,

More information

Yerkes Summer Institute 2002

Yerkes Summer Institute 2002 Before we begin our investigations into radio waves you should review the following material on your trip up to Yerkes. For some of you this will be a refresher, but others may want to spend more time

More information

Solution Derivations for Capa #13

Solution Derivations for Capa #13 Solution Derivations for Capa #13 1 Identify the following waves as T-Transverse, or L-Longitudinal. If the first is T and the rets L, enter TLLL. QUESTION: A The WAVE made by fans at sports events. B

More information

Ear Disorders and Problems

Ear Disorders and Problems Ear Disorders and Problems Introduction Your ear has three main parts: outer, middle and inner. You use all of them to hear. There are many disorders and problems that can affect the ear. The symptoms

More information

Once your baby has good head control and can turn towards something interesting, a more advanced behavioural procedure can be used.

Once your baby has good head control and can turn towards something interesting, a more advanced behavioural procedure can be used. How do we test the hearing of babies and children? An audiologist will select from a range of different tests to evaluate your child s hearing. The choice of test depends on the information that is needed

More information

Unlocking. Potential. Using The Listening Program to Help Individuals with Autism Spectrum Disorders Improve Auditory Processing

Unlocking. Potential. Using The Listening Program to Help Individuals with Autism Spectrum Disorders Improve Auditory Processing Unlocking Potential Using The Listening Program to Help Individuals with Autism Spectrum Disorders Improve Auditory Processing Children with autism spectrum disorders can recover. A bold statement perhaps

More information

Workshop Perceptual Effects of Filtering and Masking Introduction to Filtering and Masking

Workshop Perceptual Effects of Filtering and Masking Introduction to Filtering and Masking Workshop Perceptual Effects of Filtering and Masking Introduction to Filtering and Masking The perception and correct identification of speech sounds as phonemes depends on the listener extracting various

More information

Binaural hearing ability with mastoid applied bilateral bone conduction stimulation in normal hearing subjects

Binaural hearing ability with mastoid applied bilateral bone conduction stimulation in normal hearing subjects Binaural hearing ability with mastoid applied bilateral bone conduction stimulation in normal hearing subjects Stefan Stenfelt and Mehrnaz Zeitooni Linköping University Post Print N.B.: When citing this

More information

Hearing Tests And Your Child

Hearing Tests And Your Child How Early Can A Child s Hearing Be Tested? Most parents can remember the moment they first realized that their child could not hear. Louise Tracy has often told other parents of the time she went onto

More information

ARTICLE. Sound in surveillance Adding audio to your IP video solution

ARTICLE. Sound in surveillance Adding audio to your IP video solution ARTICLE Sound in surveillance Adding audio to your IP video solution Table of contents 1. First things first 4 2. Sound advice 4 3. Get closer 5 4. Back and forth 6 5. Get to it 7 Introduction Using audio

More information

Convention Paper Presented at the 118th Convention 2005 May 28 31 Barcelona, Spain

Convention Paper Presented at the 118th Convention 2005 May 28 31 Barcelona, Spain Audio Engineering Society Convention Paper Presented at the 118th Convention 25 May 28 31 Barcelona, Spain 6431 This convention paper has been reproduced from the author s advance manuscript, without editing,

More information

Lecture 1-10: Spectrograms

Lecture 1-10: Spectrograms Lecture 1-10: Spectrograms Overview 1. Spectra of dynamic signals: like many real world signals, speech changes in quality with time. But so far the only spectral analysis we have performed has assumed

More information

Sound absorption and acoustic surface impedance

Sound absorption and acoustic surface impedance Sound absorption and acoustic surface impedance CHRISTER HEED SD2165 Stockholm October 2008 Marcus Wallenberg Laboratoriet för Ljud- och Vibrationsforskning Sound absorption and acoustic surface impedance

More information

Help maintain homeostasis by capturing stimuli from the external environment and relaying them to the brain for processing.

Help maintain homeostasis by capturing stimuli from the external environment and relaying them to the brain for processing. The Sense Organs... (page 409) Help maintain homeostasis by capturing stimuli from the external environment and relaying them to the brain for processing. Ex. Eye structure - protected by bony ridges and

More information

Functional Communication for Soft or Inaudible Voices: A New Paradigm

Functional Communication for Soft or Inaudible Voices: A New Paradigm The following technical paper has been accepted for presentation at the 2005 annual conference of the Rehabilitation Engineering and Assistive Technology Society of North America. RESNA is an interdisciplinary

More information

Aircraft cabin noise synthesis for noise subjective analysis

Aircraft cabin noise synthesis for noise subjective analysis Aircraft cabin noise synthesis for noise subjective analysis Bruno Arantes Caldeira da Silva Instituto Tecnológico de Aeronáutica São José dos Campos - SP brunoacs@gmail.com Cristiane Aparecida Martins

More information

The Physics of Music: Brass Instruments. James Bernhard

The Physics of Music: Brass Instruments. James Bernhard The Physics of Music: Brass Instruments James Bernhard As a first approximation, brass instruments can be modeled as closed cylindrical pipes, where closed means closed at one end, open at the other Here

More information

Samuel R. Atcherson, Ph.D.

Samuel R. Atcherson, Ph.D. Beyond Hearing Aids and Cochlear Implants: Helping Families Make the Most of Assistive Technology Samuel R. Atcherson, Ph.D. Assistant Professor, Clinical Audiologist, Person w/ Hearing Loss University

More information

Audio Conferencing Enhancements. Leena Vesterinen

Audio Conferencing Enhancements. Leena Vesterinen Audio Conferencing Enhancements Leena Vesterinen University of Tampere Department of Computer Sciences Interactive Technology Master s Thesis Supervisor: Kari-Jouko Räihä June 2006 i University of Tampere

More information

The Use of Directional Sound to Aid Aircraft Evacuation

The Use of Directional Sound to Aid Aircraft Evacuation The Use of to Aid Aircraft Evacuation Professor Deborah Withington, School of Biomedical Sciences, University of Leeds, LS2 9NQ, U.K. & Sound Alert Technology plc. The ability to safely evacuate passengers

More information

Dynamic sound source for simulating the Lombard effect in room acoustic modeling software

Dynamic sound source for simulating the Lombard effect in room acoustic modeling software Dynamic sound source for simulating the Lombard effect in room acoustic modeling software Jens Holger Rindel a) Claus Lynge Christensen b) Odeon A/S, Scion-DTU, Diplomvej 381, DK-2800 Kgs. Lynby, Denmark

More information

Tutorial about the VQR (Voice Quality Restoration) technology

Tutorial about the VQR (Voice Quality Restoration) technology Tutorial about the VQR (Voice Quality Restoration) technology Ing Oscar Bonello, Solidyne Fellow Audio Engineering Society, USA INTRODUCTION Telephone communications are the most widespread form of transport

More information

Paediatric Hearing Assessment

Paediatric Hearing Assessment Information for parents Paediatric Hearing Assessment Hearing assessment of infants is limited by their ability to respond to sounds. This is determined by both the development of the hearing system and

More information

Advanced Speech-Audio Processing in Mobile Phones and Hearing Aids

Advanced Speech-Audio Processing in Mobile Phones and Hearing Aids Advanced Speech-Audio Processing in Mobile Phones and Hearing Aids Synergies and Distinctions Peter Vary RWTH Aachen University Institute of Communication Systems WASPAA, October 23, 2013 Mohonk Mountain

More information