Exercise 1: Trigger Levels of TTL and CMOS Gates

Size: px
Start display at page:

Download "Exercise 1: Trigger Levels of TTL and CMOS Gates"

Transcription

1 TTL and CMOS Comparison Digital Logic Fundamentals Exercise 1: Trigger Levels of TTL and CMOS Gates EXERCISE OBJECTIVE When you have completed this exercise, you will be able to demonstrate the input voltage at which the output of a TTL gate or a CMOS gate changes logic states by using the TTL/CMOS COMPARISON circuit block. You will verify your results with an oscilloscope and a multimeter. EXERCISE DISCUSSION TTL gates use a positive supply voltage of 5 Vdc. The negative supply voltage is ground. CMOS gates use a positive supply voltage (V DD ) of 5, 10, or 15 Vdc. The negative supply voltage (V SS ) is less than the input and output voltages, and the input and output voltages are less than V DD. 270 FACET by Lab-Volt

2 Digital Logic Fundamentals TTL and CMOS Comparison The positive supply voltage and negative supply voltage for a CMOS gate are a. V CC and ground, respectively. b. V DD and V SS, respectively. TTL and CMOS gates will not change output states when the input voltage is less than the input low voltage (V IL IH At some input voltage between V IL and V IH, the gate output state changes; this input voltage is the trigger level. When the input to a TTL or CMOS gate is greater than V IH, the input is in a(n) a. logic 0 state. b. uncertain logic state. c. logic 1 state. TTL maximum V IL = 0.8 Vdc minimum V IH = 2.0 Vdc FACET by Lab-Volt 271

3 TTL and CMOS Comparison Digital Logic Fundamentals The table shows the TTL buffer (7407) output logic state that corresponds to an input voltage. For the TTL gate, an input voltage between 0 Vdc and 0.8 Vdc is considered low, and the output is low. Between 0.8 Vdc and 2.0 Vdc, the logic state of the input is uncertain, and consequently the output logic state is uncertain. 272 FACET by Lab-Volt

4 Digital Logic Fundamentals TTL and CMOS Comparison At an input voltage of 2.0 Vdc and above, the input is high and the output is high. Actually, the output changes state at an input voltage (trigger level) in the uncertain region between 0.8 and 2.0 Vdc. When a 7407 TTL buffer has an input voltage of 0.7 Vdc, the input is in a(n) a. logic 0 state. b. uncertain state. c. logic 1 state. FACET by Lab-Volt 273

5 TTL and CMOS Comparison Digital Logic Fundamentals CMOS The CMOS gate output changes state at an input voltage between a V IL and a V IH that depend on the supply voltage (V DD ). For a 4069UB CMOS gate with V DD at 5.0 Vdc, V IL is 1.0 Vdc and V IH is 4.0 Vdc. For a 4069UB CMOS gate with V DD at 10.0 Vdc, V IL is 2.0 Vdc and V IH is 8.0 Vdc. 274 FACET by Lab-Volt

6 Digital Logic Fundamentals TTL and CMOS Comparison For a 4069UB CMOS gate with V DD at 15.0 Vdc, V IL is 2.5 Vdc and V IH is 12.5 Vdc. The output changes state at an input voltage (trigger level) in the uncertain region between V IL and V IH. When the input voltage for a 4069UB CMOS gate with V DD at 15 Vdc is 10 Vdc, the input is in a(n) a. logic 0 state. b. uncertain logic state. c. logic 1 state. Noise Margins In general, CMOS gates have better noise margins than TTL gates do. The difference between V IH and V IL is an indication of the noise immunity of a gate: V noise = V IH V IL. FACET by Lab-Volt 275

7 TTL and CMOS Comparison Digital Logic Fundamentals A CMOS gate used on the circuit board has a V IH of 4.0 Vdc and a V IL of 1.0 Vdc at a V DD of 5.0 Vdc. The highest noise, the extra signal superimposed on the authentic logic level, that the input could receive without changing state is calculated as follows: V noise = = 3.0 Vdc. For the TTL gate, V noise is only 1.2 Vdc ( ). Power Consumption is practically no input current. Consequently, the power consumed and heat dissipated are very low compared to a TTL gate, which is a current device. However, at very high clock frequencies (switching rates), the power consumption of a CMOS gate increases to TTL consumption levels. Which gates have a high noise immunity and lower power consumption? a. TTL b. CMOS 276 FACET by Lab-Volt

8 Digital Logic Fundamentals TTL and CMOS Comparison A 7407 buffer is an open-collector gate. It can convert TTL levels into CMOS levels. Standard TTL gates cannot operate above V CC ; however, the open-collector output can be pulled to V DD. The CMOS (4069UB) gate does not require pull-up resistors, but they are added to the circuit to provide a sharp contrast between the gate supply voltages (V DD and V SS ). DD at 5 Vdc, or CMOS with V DD at S, the supply voltage (V CC or V DD ), for gate and resistor pull-ups. FACET by Lab-Volt 277

9 TTL and CMOS Comparison Digital Logic Fundamentals PROCEDURE TTL Gate Locate the TTL/CMOS COMPARISON circuit block. Connect a test lead between the positive variable supply and the TTL gate input, as shown. This is the schematic of the TTL buffer circuit. 278 FACET by Lab-Volt

10 Digital Logic Fundamentals TTL and CMOS Comparison Connect the positive voltmeter lead to the input (V I ) of the TTL gate, and connect the negative ground lead to a ground terminal on the circuit board. Adjust the positive variable supply for a TTL gate input voltage (V I ) less than 0.4 Vdc. Connect the oscilloscope channel 1 probe to the TTL gate output (V O ), and connect the probe ground clip to a ground terminal on the circuit board. On channel 1 of the oscilloscope, measure the TTL gate output low voltage (V OL ). Your answer should be in mv. V OL = mvdc (Recall Value 1) FACET by Lab-Volt 279

11 TTL and CMOS Comparison Digital Logic Fundamentals With V S (V CC = 5 V) connected to the TTL gate output by a pull-up resistor, what no load output high voltage (V OH ) would you expect? V OH = Vdc (Recall Value 2) The maximum low-level input voltage (V IL means that the gate output will not switch from a low to a high until the input voltage is above 0.8 Vdc; the gate recognizes inputs below V IL as low. The minimum high-level input voltage (V IH that the gate output will switch from a low to a high before the input voltage is above 2.0 Vdc; the gate recognizes inputs above V IH as high. In other words, at an input voltage between 0.8 Vdc and 2.0 Vdc, the TTL gate output changes logic states. While observing V O on channel 1 of the oscilloscope, adjust the positive variable supply to slowly increase V I until V O switches from a low (0 Vdc) to a high (5 Vdc). At what input voltage did the output switch from low to high? V I = Vdc (Recall Value 3) Is the measured value of the input voltage ( Vdc [Step 9, Recall Value 3]) when the output switched to high greater than V IL (0.8 Vdc) and less than V IH (2.0 Vdc)? a. yes b. no 280 FACET by Lab-Volt

12 Digital Logic Fundamentals TTL and CMOS Comparison What is the output voltage of the TTL gate indicated on channel 1 of the oscilloscope screen? V O = Vdc (Recall Value 4) Adjust the input voltage to 5.0 Vdc. While observing V O on channel 1 of the oscilloscope, adjust the positive variable supply to slowly decrease V I until V O switches from a high (5 Vdc) to a low (0 Vdc). At what voltage did the output switch from high to low? V I = Vdc (Recall Value 5) Is the measured value of the input voltage ( Vdc [Step 12, Recall Value 5]) when the output switched to low less than V IH (2.0 Vdc) and greater than V IL (0.8 Vdc)? a. yes b. no FACET by Lab-Volt 281

13 TTL and CMOS Comparison Digital Logic Fundamentals CMOS Gate A CMOS gate can operate with the V DD (V S ) supply voltage at 5, 10, or 15 Vdc. However, the DD (V S ) only at 5 or 15 Vdc. Set S1 to CMOS. Keep S2 set to +5 V to select a V DD (V S ) of 5 V. Maintain the multimeter and oscilloscope connections. The maximum low-level input voltage (V IL means that the gate output will not switch from a low to a high until the input voltage is above 1.0 Vdc; the gate recognizes inputs below V IL as low. The minimum high-level input voltage (V IH means that the gate output will switch from a low to a high before the input voltage is above 4.0 Vdc; the gate recognizes inputs above V IH as high. In other words, at an input voltage between 1.0 Vdc and 4.0 Vdc, the CMOS gate output changes logic states. 282 FACET by Lab-Volt

14 Digital Logic Fundamentals TTL and CMOS Comparison Set the input voltage (V I ) to the CMOS gate to less than 0.4 Vdc by adjusting the positive variable supply. While observing V O on channel 1 of the oscilloscope, adjust the positive variable supply to slowly increase V I until V O switches from a low (0 Vdc) to a high (5 Vdc). At what input voltage does the output switch from low to high? V I = Vdc (Recall Value 6) Is the measured value of the input voltage ( Vdc [Step 19, Recall Value 6]) when the output switched to high greater than V IL (1.0 Vdc) and less than V IH (4.0 Vdc)? a. yes b. no What is the output voltage of the CMOS gate indicated on channel 1 of the oscilloscope screen? V O = Vdc (Recall Value 7) FACET by Lab-Volt 283

15 TTL and CMOS Comparison Digital Logic Fundamentals Adjust the input voltage to 5.0 Vdc. While observing V O on channel 1 of the oscilloscope, adjust the positive variable supply to slowly decrease V I until V O switches from a high (5 Vdc) to a low (0 Vdc). At what input voltage did the output switch from high to low? V I = Vdc (Recall Value 8) Is the measured value of the input voltage ( Vdc [Step 22, Recall Value 8]) when the output switched to low less than V IH (4.0 Vdc) and greater than V IL (1.0 Vdc)? a. yes b. no Interfacing a TTL Open Collector Gate with a CMOS Gate Connect the circuit shown. Set S1 to CMOS and set S2 to +15 V. 284 FACET by Lab-Volt

16 Digital Logic Fundamentals TTL and CMOS Comparison The schematic for the connected circuit is shown. The open collector TTL buffer (7407) is connected to a 15 Vdc pull-up resistor and to the input of the CMOS buffer (two 4069UB) with V DD equal to 15 Vdc. Connect the voltmeter to the input of the TTL gate, and connect the oscilloscope channel 1 probe to the output of the CMOS gate. FACET by Lab-Volt 285

17 TTL and CMOS Comparison Digital Logic Fundamentals Set the positive variable supply to 0 Vdc. Slowly increase the positive supply voltage until the output of the CMOS gate changes state. At what input voltage to the TTL buffer did the CMOS gate change state? V I = Vdc (Recall Value 9) With the oscilloscope, measure the output voltage of the TTL buffer as shown in the image below. What is the TTL output voltage? V O = Vdc (Recall Value 10) What is the output voltage of the logic 1 state of the CMOS gate? V O = Vdc (Recall Value 11) 286 FACET by Lab-Volt

18 Digital Logic Fundamentals TTL and CMOS Comparison CONCLUSION The positive power supply for TTL gates is designated V CC and is set at 5 Vdc; the negative power supply is ground. The positive power supply for CMOS gates is designated V DD and is set at 5, 10, or 15 Vdc; the negative power supply is designated V SS, which is less than the input or output voltages. CMOS gates have a wider range between the input low voltage (V IL ) and input high voltage (V IH ). An open collector TTL gate can drive a CMOS gate when the TTL open collector output has a pull-up resistor connected to V DD. CMOS gates have better noise immunity and lower power consumption than TTL gates. REVIEW QUESTIONS 1. The positive power supply level (V CC ) of a TTL gate is nominally a. 15 Vdc. b. 10 Vdc. c. 5 Vdc. d. None of the above. 2. The positive power supply level (V DD ) of a CMOS gate is nominally a. 15 Vdc. b. 10 Vdc. c. 5 Vdc. d. Any of the above. 3. The voltage difference between the V IL and V IH a. the same as a CMOS gate. b. greater than a CMOS gate. c. less than a CMOS gate. d. dependent on V CC. 4. When a TTL gate drives a CMOS gate, the a. CMOS gate must be an open collector with V DD equal to V CC. b. TTL gate must be an open collector with V CC equal to V DD. c. TTL gate must be an open collector with the output pulled up to V DD. d. TTL gate and the CMOS gate must have equal supply voltages. 5. CMOS gates have better noise immunity than TTL gates because a. the voltage difference between V IL and V IH is greater for CMOS gates. b. the voltage difference between V IL and V IH is less for CMOS gates. c. V DD is usually greater than V CC. d. TTL gates have open collector outputs. FACET by Lab-Volt 287

EGR 278 Digital Logic Lab File: N278L3A Lab # 3 Open-Collector and Driver Gates

EGR 278 Digital Logic Lab File: N278L3A Lab # 3 Open-Collector and Driver Gates EGR 278 Digital Logic Lab File: N278L3A Lab # 3 Open-Collector and Driver Gates A. Objectives The objectives of this laboratory are to investigate: the operation of open-collector gates, including the

More information

CMOS Logic Integrated Circuits

CMOS Logic Integrated Circuits CMOS Logic Integrated Circuits Introduction CMOS Inverter Parameters of CMOS circuits Circuits for protection Output stage for CMOS circuits Buffering circuits Introduction Symetrical and complementary

More information

EXPERIMENT 3: TTL AND CMOS CHARACTERISTICS

EXPERIMENT 3: TTL AND CMOS CHARACTERISTICS EXPERIMENT 3: TTL AND CMOS CHARACTERISTICS PURPOSE Logic gates are classified not only by their logical functions, but also by their logical families. In any implementation of a digital system, an understanding

More information

CMOS, the Ideal Logic Family

CMOS, the Ideal Logic Family CMOS, the Ideal Logic Family INTRODUCTION Let s talk about the characteristics of an ideal logic family. It should dissipate no power, have zero propagation delay, controlled rise and fall times, and have

More information

CD40174BC CD40175BC Hex D-Type Flip-Flop Quad D-Type Flip-Flop

CD40174BC CD40175BC Hex D-Type Flip-Flop Quad D-Type Flip-Flop Hex D-Type Flip-Flop Quad D-Type Flip-Flop General Description The CD40174BC consists of six positive-edge triggered D- type flip-flops; the true outputs from each flip-flop are externally available. The

More information

CHAPTER 11: Flip Flops

CHAPTER 11: Flip Flops CHAPTER 11: Flip Flops In this chapter, you will be building the part of the circuit that controls the command sequencing. The required circuit must operate the counter and the memory chip. When the teach

More information

HCF4010B HEX BUFFER/CONVERTER (NON INVERTING)

HCF4010B HEX BUFFER/CONVERTER (NON INVERTING) HEX BUFFER/CONVERTER (NON INVERTING) PROPAGATION DELAY TIME: t PD = 50ns (Typ.) at V DD = 10V C L = 50pF HIGH TO LOW LEVEL LOGIC CONVERSION MULTIPLEXER: 1 TO 6 OR 6 TO 1 HIGH "SINK" AND "SOURCE" CURRENT

More information

Application Examples

Application Examples ISHAY SEMICONDUCTORS www.vishay.com Optocouplers and Solid-State Relays Application Note 2 INTRODUCTION Optocouplers are used to isolate signals for protection and safety between a safe and a potentially

More information

CD4013BC Dual D-Type Flip-Flop

CD4013BC Dual D-Type Flip-Flop CD4013BC Dual D-Type Flip-Flop General Description The CD4013B dual D-type flip-flop is a monolithic complementary MOS (CMOS) integrated circuit constructed with N- and P-channel enhancement mode transistors.

More information

DM74LS05 Hex Inverters with Open-Collector Outputs

DM74LS05 Hex Inverters with Open-Collector Outputs Hex Inverters with Open-Collector Outputs General Description This device contains six independent gates each of which performs the logic INVERT function. The open-collector outputs require external pull-up

More information

CD4027BC Dual J-K Master/Slave Flip-Flop with Set and Reset

CD4027BC Dual J-K Master/Slave Flip-Flop with Set and Reset October 1987 Revised March 2002 CD4027BC Dual J-K Master/Slave Flip-Flop with Set and Reset General Description The CD4027BC dual J-K flip-flops are monolithic complementary MOS (CMOS) integrated circuits

More information

HCF4001B QUAD 2-INPUT NOR GATE

HCF4001B QUAD 2-INPUT NOR GATE QUAD 2-INPUT NOR GATE PROPAGATION DELAY TIME: t PD = 50ns (TYP.) at V DD = 10V C L = 50pF BUFFERED INPUTS AND OUTPUTS STANDARDIZED SYMMETRICAL OUTPUT CHARACTERISTICS QUIESCENT CURRENT SPECIFIED UP TO 20V

More information

CD4027BM CD4027BC Dual J-K Master Slave Flip-Flop with Set and Reset

CD4027BM CD4027BC Dual J-K Master Slave Flip-Flop with Set and Reset CD4027BM CD4027BC Dual J-K Master Slave Flip-Flop with Set and Reset General Description These dual J-K flip-flops are monolithic complementary MOS (CMOS) integrated circuits constructed with N- and P-

More information

HCF4028B BCD TO DECIMAL DECODER

HCF4028B BCD TO DECIMAL DECODER BCD TO DECIMAL DECODER BCD TO DECIMAL DECODING OR BINARY TO OCTAL DECODING HIGH DECODED OUTPUT DRIVE CAPABILITY "POSITIVE LOGIC" INPUTS AND OUTPUTS: DECODED OUTPUTS GO HIGH ON SELECTION MEDIUM SPEED OPERATION

More information

High-Speed, 5 V, 0.1 F CMOS RS-232 Driver/Receivers ADM202/ADM203

High-Speed, 5 V, 0.1 F CMOS RS-232 Driver/Receivers ADM202/ADM203 a FEATURES kb Transmission Rate ADM: Small (. F) Charge Pump Capacitors ADM3: No External Capacitors Required Single V Power Supply Meets EIA-3-E and V. Specifications Two Drivers and Two Receivers On-Board

More information

Here we introduced (1) basic circuit for logic and (2)recent nano-devices, and presented (3) some practical issues on nano-devices.

Here we introduced (1) basic circuit for logic and (2)recent nano-devices, and presented (3) some practical issues on nano-devices. Outline Here we introduced () basic circuit for logic and (2)recent nano-devices, and presented (3) some practical issues on nano-devices. Circuit Logic Gate A logic gate is an elemantary building block

More information

Lab #4 Thevenin s Theorem

Lab #4 Thevenin s Theorem In this experiment you will become familiar with one of the most important theorems in circuit analysis, Thevenin s Theorem. Thevenin s Theorem can be used for two purposes: 1. To calculate the current

More information

ENCODER TEST MODULE APPLICATION GUIDE

ENCODER TEST MODULE APPLICATION GUIDE ENCODER TEST MODULE APPLICATION GUIDE MODEL NUMBER: EM-DR1-ET-5-TB-4469-24V PART NUMBER: 924-60002-001 7230 Hollister Avenue, Goleta, CA 93117-2891 Phone: (800)362-6337 or (800)938-0782 Fax: (800)960-2726

More information

AP-1 Application Note on Remote Control of UltraVolt HVPS

AP-1 Application Note on Remote Control of UltraVolt HVPS Basics Of UltraVolt HVPS Output Voltage Control Application Note on Remote Control of UltraVolt HVPS By varying the voltage at the Remote Adjust Input terminal (pin 6) between 0 and +5V, the UV highvoltage

More information

MADR-009269-0001TR. Single Driver for GaAs FET or PIN Diode Switches and Attenuators Rev. V1. Functional Schematic. Features.

MADR-009269-0001TR. Single Driver for GaAs FET or PIN Diode Switches and Attenuators Rev. V1. Functional Schematic. Features. Features High Voltage CMOS Technology Complementary Outputs Positive Voltage Control CMOS device using TTL input levels Low Power Dissipation Low Cost Plastic SOIC-8 Package 100% Matte Tin Plating over

More information

Low-power configurable multiple function gate

Low-power configurable multiple function gate Rev. 7 10 September 2014 Product data sheet 1. General description The provides configurable multiple functions. The output state is determined by eight patterns of 3-bit input. The user can choose the

More information

DM9368 7-Segment Decoder/Driver/Latch with Constant Current Source Outputs

DM9368 7-Segment Decoder/Driver/Latch with Constant Current Source Outputs DM9368 7-Segment Decoder/Driver/Latch with Constant Current Source Outputs General Description The DM9368 is a 7-segment decoder driver incorporating input latches and constant current output circuits

More information

3 The TTL NAND Gate. Fig. 3.1 Multiple Input Emitter Structure of TTL

3 The TTL NAND Gate. Fig. 3.1 Multiple Input Emitter Structure of TTL 3 The TTL NAND Gate 3. TTL NAND Gate Circuit Structure The circuit structure is identical to the previous TTL inverter circuit except for the multiple emitter input transistor. This is used to implement

More information

Tone Ringer SL2410 LOGIC DIAGRAM PIN ASSIGNMENT SLS

Tone Ringer SL2410 LOGIC DIAGRAM PIN ASSIGNMENT SLS Tone Ringer The SL2410 is a bipolar integrated circuit designed for telephone bell replacement. Designed for Telephone Bell Replacement Low Curent Drain Adjustable 2-frequency Tone Adjustable Warbling

More information

MM74HC273 Octal D-Type Flip-Flops with Clear

MM74HC273 Octal D-Type Flip-Flops with Clear MM74HC273 Octal D-Type Flip-Flops with Clear General Description The MM74HC273 edge triggered flip-flops utilize advanced silicon-gate CMOS technology to implement D-type flipflops. They possess high noise

More information

CD4001BC/CD4011BC Quad 2-Input NOR Buffered B Series Gate Quad 2-Input NAND Buffered B Series Gate

CD4001BC/CD4011BC Quad 2-Input NOR Buffered B Series Gate Quad 2-Input NAND Buffered B Series Gate CD4001BC/CD4011BC Quad 2-Input NOR Buffered B Series Gate Quad 2-Input NAND Buffered B Series Gate General Description The CD4001BC and CD4011BC quad gates are monolithic complementary MOS (CMOS) integrated

More information

CD4013BC Dual D-Type Flip-Flop

CD4013BC Dual D-Type Flip-Flop Dual D-Type Flip-Flop General Description The CD4013B dual D-type flip-flop is a monolithic complementary MOS (CMOS) integrated circuit cotructed with N- and P-channel enhancement mode traistors. Each

More information

MM74HC174 Hex D-Type Flip-Flops with Clear

MM74HC174 Hex D-Type Flip-Flops with Clear Hex D-Type Flip-Flops with Clear General Description The MM74HC174 edge triggered flip-flops utilize advanced silicon-gate CMOS technology to implement D-type flipflops. They possess high noise immunity,

More information

Obsolete Product(s) - Obsolete Product(s)

Obsolete Product(s) - Obsolete Product(s) SYNCHRONOUS PROGRAMMABLE 4-BIT BINARY COUNTER WITH ASYNCHRONOUS CLEAR INTERNAL LOOK-AHEAD FOR FAST COUNTING CARRY OUTPUT FOR CASCADING SYNCHRONOUSLY PROGRAMMABLE LOW-POWER TTL COMPATIBILITY STANDARDIZED

More information

MADR-009443-0001TR. Quad Driver for GaAs FET or PIN Diode Switches and Attenuators. Functional Schematic. Features. Description. Pin Configuration 2

MADR-009443-0001TR. Quad Driver for GaAs FET or PIN Diode Switches and Attenuators. Functional Schematic. Features. Description. Pin Configuration 2 Features Functional Schematic High Voltage CMOS Technology Four Channel Positive Voltage Control CMOS device using TTL input levels Low Power Dissipation Low Cost 4x4 mm, 20-lead PQFN Package 100% Matte

More information

HEF4011B. 1. General description. 2. Features and benefits. 3. Ordering information. 4. Functional diagram. Quad 2-input NAND gate

HEF4011B. 1. General description. 2. Features and benefits. 3. Ordering information. 4. Functional diagram. Quad 2-input NAND gate Rev. 6 10 December 2015 Product data sheet 1. General description 2. Features and benefits 3. Ordering information The is a quad 2-input NAND gate. The outputs are fully buffered for the highest noise

More information

These help quantify the quality of a design from different perspectives: Cost Functionality Robustness Performance Energy consumption

These help quantify the quality of a design from different perspectives: Cost Functionality Robustness Performance Energy consumption Basic Properties of a Digital Design These help quantify the quality of a design from different perspectives: Cost Functionality Robustness Performance Energy consumption Which of these criteria is important

More information

MASW-007070-0001TB. GaAs SPST Switch, Absorptive, Single Supply, DC-4.0 GHz. Features. Pin Configuration 1,2,3,4. Description. Ordering Information

MASW-007070-0001TB. GaAs SPST Switch, Absorptive, Single Supply, DC-4.0 GHz. Features. Pin Configuration 1,2,3,4. Description. Ordering Information Features Operates DC - 4 GHz on Single Supply ASIC TTL / CMOS Driver Low DC Power Consumption 50 Ohm Nominal Impedance Test Boards are Available Tape and Reel are Available Lead-Free 4 x 6 mm PQFN Package

More information

CpE358/CS381. Switching Theory and Logical Design. Class 4

CpE358/CS381. Switching Theory and Logical Design. Class 4 Switching Theory and Logical Design Class 4 1-122 Today Fundamental concepts of digital systems (Mano Chapter 1) Binary codes, number systems, and arithmetic (Ch 1) Boolean algebra (Ch 2) Simplification

More information

Supply voltage Supervisor TL77xx Series. Author: Eilhard Haseloff

Supply voltage Supervisor TL77xx Series. Author: Eilhard Haseloff Supply voltage Supervisor TL77xx Series Author: Eilhard Haseloff Literature Number: SLVAE04 March 1997 i IMPORTANT NOTICE Texas Instruments (TI) reserves the right to make changes to its products or to

More information

MADR-009190-0001TR. Quad Driver for GaAs FET or PIN Diode Switches and Attenuators Rev. 4. Functional Schematic. Features.

MADR-009190-0001TR. Quad Driver for GaAs FET or PIN Diode Switches and Attenuators Rev. 4. Functional Schematic. Features. Features High Voltage CMOS Technology Four Channel Positive Voltage Control CMOS device using TTL input levels Low Power Dissipation Low Cost Lead-Free SOIC-16 Plastic Package Halogen-Free Green Mold Compound

More information

NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter

NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter Description: The NTE2053 is a CMOS 8 bit successive approximation Analog to Digital converter in a 20 Lead DIP type package which uses a differential

More information

ECE124 Digital Circuits and Systems Page 1

ECE124 Digital Circuits and Systems Page 1 ECE124 Digital Circuits and Systems Page 1 Chip level timing Have discussed some issues related to timing analysis. Talked briefly about longest combinational path for a combinational circuit. Talked briefly

More information

Bi-directional level shifter for I²C-bus and other systems.

Bi-directional level shifter for I²C-bus and other systems. APPLICATION NOTE Bi-directional level shifter for I²C-bus and other Abstract With a single MOS-FET a bi-directional level shifter circuit can be realised to connect devices with different supply voltages

More information

ICS379. Quad PLL with VCXO Quick Turn Clock. Description. Features. Block Diagram

ICS379. Quad PLL with VCXO Quick Turn Clock. Description. Features. Block Diagram Quad PLL with VCXO Quick Turn Clock Description The ICS379 QTClock TM generates up to 9 high quality, high frequency clock outputs including a reference from a low frequency pullable crystal. It is designed

More information

HIGH SPEED-10 MBit/s LOGIC GATE OPTOCOUPLERS

HIGH SPEED-10 MBit/s LOGIC GATE OPTOCOUPLERS DESCRIPTION The, /6 single-channel and /6 dual-channel optocouplers consist of a 5 nm AlGaAS LED, optically coupled to a very high speed integrated photodetector logic gate with a strobable output. This

More information

The 74LVC1G11 provides a single 3-input AND gate.

The 74LVC1G11 provides a single 3-input AND gate. Rev. 8 17 September 2015 Product data sheet 1. General description The provides a single 3-input AND gate. The input can be driven from either 3.3 V or 5 V devices. This feature allows the use of this

More information

74HC2G02; 74HCT2G02. 1. General description. 2. Features and benefits. 3. Ordering information. Dual 2-input NOR gate

74HC2G02; 74HCT2G02. 1. General description. 2. Features and benefits. 3. Ordering information. Dual 2-input NOR gate Rev. 5 27 September 2013 Product data sheet 1. General description 2. Features and benefits 3. Ordering information The is a dual 2-input NOR gate. Inputs include clamp diodes. This enables the use of

More information

Chapter 10 Advanced CMOS Circuits

Chapter 10 Advanced CMOS Circuits Transmission Gates Chapter 10 Advanced CMOS Circuits NMOS Transmission Gate The active pull-up inverter circuit leads one to thinking about alternate uses of NMOS devices. Consider the circuit shown in

More information

HEF4021B. 1. General description. 2. Features and benefits. 3. Ordering information. 8-bit static shift register

HEF4021B. 1. General description. 2. Features and benefits. 3. Ordering information. 8-bit static shift register Rev. 10 21 March 2016 Product data sheet 1. General description 2. Features and benefits 3. Ordering information The is an (parallel-to-serial converter) with a synchronous serial data input (DS), a clock

More information

3-input EXCLUSIVE-OR gate. The 74LVC1G386 provides a 3-input EXCLUSIVE-OR function.

3-input EXCLUSIVE-OR gate. The 74LVC1G386 provides a 3-input EXCLUSIVE-OR function. Rev. 02 3 September 2007 Product data sheet 1. General description The provides a 3-input EXCLUSIVE-OR function. The input can be driven from either 3.3 or 5 V devices. This feature allows the use of these

More information

CD4001BC/CD4011BC Quad 2-Input NOR Buffered B Series Gate Quad 2-Input NAND Buffered B Series Gate

CD4001BC/CD4011BC Quad 2-Input NOR Buffered B Series Gate Quad 2-Input NAND Buffered B Series Gate Quad 2-Input NOR Buffered B Series Gate Quad 2-Input NAND Buffered B Series Gate General Description The CD4001BC and CD4011BC quad gates are monolithic complementary MOS (CMOS) integrated circuits cotructed

More information

How To Power A Power Supply On A Microprocessor (Mii) Or Microprocessor Power Supply (Miio) (Power Supply) (Microprocessor) (Miniio) Or Power Supply Power Control (Power) (Mio) Power Control

How To Power A Power Supply On A Microprocessor (Mii) Or Microprocessor Power Supply (Miio) (Power Supply) (Microprocessor) (Miniio) Or Power Supply Power Control (Power) (Mio) Power Control November 200 HI-010, HI-110 CMOS High oltage Display Driver GENERAL DESCRIPTION PIN CONFIGURATION (Top iew) The HI-010 & HI-110 high voltage display drivers are constructed of MOS P Channel and N Channel

More information

74HC107; 74HCT107. Dual JK flip-flop with reset; negative-edge trigger

74HC107; 74HCT107. Dual JK flip-flop with reset; negative-edge trigger Rev. 5 30 November 2015 Product data sheet 1. General description 2. Features and benefits 3. Ordering information The is a dual negative edge triggered JK flip-flop featuring individual J and K inputs,

More information

Interfacing 3V and 5V applications

Interfacing 3V and 5V applications Authors: Tinus van de Wouw (Nijmegen) / Todd Andersen (Albuquerque) 1.0 THE NEED FOR TERFACG BETWEEN 3V AND 5V SYSTEMS Many reasons exist to introduce 3V 1 systems, notably the lower power consumption

More information

High and Low Side Driver

High and Low Side Driver High and Low Side Driver Features Product Summary Floating channel designed for bootstrap operation Fully operational to 200V Tolerant to negative transient voltage, dv/dt immune Gate drive supply range

More information

11. High-Speed Differential Interfaces in Cyclone II Devices

11. High-Speed Differential Interfaces in Cyclone II Devices 11. High-Speed Differential Interfaces in Cyclone II Devices CII51011-2.2 Introduction From high-speed backplane applications to high-end switch boxes, low-voltage differential signaling (LVDS) is the

More information

MC10SX1190. Fibre Channel Coaxial Cable Driver and Loop Resiliency Circuit

MC10SX1190. Fibre Channel Coaxial Cable Driver and Loop Resiliency Circuit Fibre Channel Coaxial Cable Driver and Loop Resiliency Circuit Description The MC10SX1190 is a differential receiver, differential transmitter specifically designed to drive coaxial cables. It incorporates

More information

MM74HC4538 Dual Retriggerable Monostable Multivibrator

MM74HC4538 Dual Retriggerable Monostable Multivibrator MM74HC4538 Dual Retriggerable Monostable Multivibrator General Description The MM74HC4538 high speed monostable multivibrator (one shots) is implemented in advanced silicon-gate CMOS technology. They feature

More information

HCC/HCF4032B HCC/HCF4038B

HCC/HCF4032B HCC/HCF4038B HCC/HCF4032B HCC/HCF4038B TRIPLE SERIAL ADDERS INERT INPUTS ON ALL ADDERS FOR SUM COMPLEMENTING APPLICATIONS FULLY STATIC OPERATION...DC TO 10MHz (typ.) @ DD = 10 BUFFERED INPUTS AND OUTPUTS SINGLE-PHASE

More information

ECEN 1400, Introduction to Analog and Digital Electronics

ECEN 1400, Introduction to Analog and Digital Electronics ECEN 1400, Introduction to Analog and Digital Electronics Lab 4: Power supply 1 INTRODUCTION This lab will span two lab periods. In this lab, you will create the power supply that transforms the AC wall

More information

Operating Manual Ver.1.1

Operating Manual Ver.1.1 4 Bit Binary Ripple Counter (Up-Down Counter) Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731-

More information

Pulse Width Modulation (PWM) LED Dimmer Circuit. Using a 555 Timer Chip

Pulse Width Modulation (PWM) LED Dimmer Circuit. Using a 555 Timer Chip Pulse Width Modulation (PWM) LED Dimmer Circuit Using a 555 Timer Chip Goals of Experiment Demonstrate the operation of a simple PWM circuit that can be used to adjust the intensity of a green LED by varying

More information

74HC377; 74HCT377. 1. General description. 2. Features and benefits. 3. Ordering information

74HC377; 74HCT377. 1. General description. 2. Features and benefits. 3. Ordering information Rev. 4 24 February 2016 Product data sheet 1. General description 2. Features and benefits 3. Ordering information The is an octal positive-edge triggered D-type flip-flop. The device features clock (CP)

More information

Troubleshooting accelerometer installations

Troubleshooting accelerometer installations Troubleshooting accelerometer installations Accelerometer based monitoring systems can be tested to verify proper installation and operation. Testing ensures data integrity and can identify most problems.

More information

TYPICAL APPLICATION CIRCUIT. ORDER INFORMATION SOP-EP 8 pin A703EFT (Lead Free) A703EGT (Green)

TYPICAL APPLICATION CIRCUIT. ORDER INFORMATION SOP-EP 8 pin A703EFT (Lead Free) A703EGT (Green) www.addmtek.com 2 CHANNELS 150mA HIGH VOLTAGE ADJUSTABLE CURRENT REGULATOR DESCRIPTION A703 is a high voltage, adjustable constant current driver for LED applications. Two regulated current ports are designed

More information

IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF HIGH AND LOW SIDE DRIVER Product Summary

IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF HIGH AND LOW SIDE DRIVER Product Summary Data Sheet No. PD6147 rev.u Features Floating channel designed for bootstrap operation Fully operational to +5V or +6V Tolerant to negative transient voltage dv/dt immune Gate drive supply range from 1

More information

IR2110(S)/IR2113(S) & (PbF)

IR2110(S)/IR2113(S) & (PbF) Data Sheet No. PD6147 Rev.T Features Floating channel designed for bootstrap operation Fully operational to +5V or +6V Tolerant to negative transient voltage dv/dt immune Gate drive supply range from 1

More information

CD4008BM CD4008BC 4-Bit Full Adder

CD4008BM CD4008BC 4-Bit Full Adder CD4008BM CD4008BC 4-Bit Full Adder General Description The CD4008B types consist of four full-adder stages with fast look-ahead carry provision from stage to stage Circuitry is included to provide a fast

More information

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER LABORATORY 2 THE DIFFERENTIAL AMPLIFIER OBJECTIVES 1. To understand how to amplify weak (small) signals in the presence of noise. 1. To understand how a differential amplifier rejects noise and common

More information

HCF4056B BCD TO 7 SEGMENT DECODER /DRIVER WITH STROBED LATCH FUNCTION

HCF4056B BCD TO 7 SEGMENT DECODER /DRIVER WITH STROBED LATCH FUNCTION BCD TO 7 SEGMENT DECODER /DRIVER WITH STROBED LATCH FUNCTION QUIESCENT CURRENT SPECIF. UP TO 20V OPERATION OF LIQUID CRYSTALS WITH CMOS CIRCUITS PROVIDES ULTRA LOW POWER DISPLAY. EQUIVALENT AC OUTPUT DRIVE

More information

+5 V Powered RS-232/RS-422 Transceiver AD7306

+5 V Powered RS-232/RS-422 Transceiver AD7306 a FEATURES RS- and RS- on One Chip Single + V Supply. F Capacitors Short Circuit Protection Excellent Noise Immunity Low Power BiCMOS Technology High Speed, Low Skew RS- Operation C to + C Operations APPLICATIONS

More information

DM74LS169A Synchronous 4-Bit Up/Down Binary Counter

DM74LS169A Synchronous 4-Bit Up/Down Binary Counter Synchronous 4-Bit Up/Down Binary Counter General Description This synchronous presettable counter features an internal carry look-ahead for cascading in high-speed counting applications. Synchronous operation

More information

DM74LS191 Synchronous 4-Bit Up/Down Counter with Mode Control

DM74LS191 Synchronous 4-Bit Up/Down Counter with Mode Control August 1986 Revised February 1999 DM74LS191 Synchronous 4-Bit Up/Down Counter with Mode Control General Description The DM74LS191 circuit is a synchronous, reversible, up/ down counter. Synchronous operation

More information

74F168*, 74F169 4-bit up/down binary synchronous counter

74F168*, 74F169 4-bit up/down binary synchronous counter INTEGRATED CIRCUITS 74F168*, * Discontinued part. Please see the Discontinued Product List in Section 1, page 21. 1996 Jan 5 IC15 Data Handbook FEATURES Synchronous counting and loading Up/Down counting

More information

Signal Types and Terminations

Signal Types and Terminations Helping Customers Innovate, Improve & Grow Application Note Signal Types and Terminations Introduction., H, LV, Sinewave, Clipped Sinewave, TTL, PECL,,, CML Oscillators and frequency control devices come

More information

Transistor Amplifiers

Transistor Amplifiers Physics 3330 Experiment #7 Fall 1999 Transistor Amplifiers Purpose The aim of this experiment is to develop a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must accept input

More information

AN460 Using the P82B96 for bus interface

AN460 Using the P82B96 for bus interface INTEGRATED CIRCUITS 2001 Feb 14 IC12a and IC28 Data Handbook The P82B96 offers many different ways in which it can be used as a bus interface. In its simplest application it can be used as an interface

More information

PLL frequency synthesizer

PLL frequency synthesizer ANALOG & TELECOMMUNICATION ELECTRONICS LABORATORY EXERCISE 4 Lab 4: PLL frequency synthesizer 1.1 Goal The goals of this lab exercise are: - Verify the behavior of a and of a complete PLL - Find capture

More information

DM74LS47 BCD to 7-Segment Decoder/Driver with Open-Collector Outputs

DM74LS47 BCD to 7-Segment Decoder/Driver with Open-Collector Outputs DM74LS47 BCD to 7-Segment Decoder/Driver with Open-Collector Outputs General Description The DM74LS47 accepts four lines of BCD (8421) input data, generates their complements internally and decodes the

More information

HCF4070B QUAD EXCLUSIVE OR GATE

HCF4070B QUAD EXCLUSIVE OR GATE QUAD EXCLUSIE OR GATE MEDIUM-SPEED OPERATION t PHL = t PLH = 70ns (Typ.) at CL = 50 pf and DD = 10 QUIESCENT CURRENT SPECIFIED UP TO 20 5, 10 AND 15 PARAMETRIC RATINGS INPUT LEAKAGE CURRENT I I = 100nA

More information

1. Oscilloscope is basically a graph-displaying device-it draws a graph of an electrical signal.

1. Oscilloscope is basically a graph-displaying device-it draws a graph of an electrical signal. CHAPTER 3: OSCILLOSCOPE AND SIGNAL GENERATOR 3.1 Introduction to oscilloscope 1. Oscilloscope is basically a graph-displaying device-it draws a graph of an electrical signal. 2. The graph show signal change

More information

3-Channel Supervisor IC for Power Supply

3-Channel Supervisor IC for Power Supply 3-Channel Supervisor IC for Power Supply Features Over-voltage protection and lockout Under-voltage protection and lockout Open drain power good output signal Built-in 300mS delay for power good 38mS de-bounce

More information

CD4040BC, 12-Stage Ripple Carry Binary Counters CD4060BC, 14-Stage Ripple Carry Binary Counters

CD4040BC, 12-Stage Ripple Carry Binary Counters CD4060BC, 14-Stage Ripple Carry Binary Counters CD4040BC, 12-Stage Ripple Carry Binary Counters CD4060BC, 14-Stage Ripple Carry Binary Counters Features Wide supply voltage range: 3.0V to 15V High noise immunity: 0.45 V DD (Typ.) Low power TTL compatibility:

More information

Analog & Digital Electronics Course No: PH-218

Analog & Digital Electronics Course No: PH-218 Analog & Digital Electronics Course No: PH-218 Lec-28: Logic Gates & Family Course Instructor: Dr. A. P. VAJPEYI Department of Physics, Indian Institute of Technology Guwahati, India 1 Digital Logic Gates

More information

Design and Applications of HCPL-3020 and HCPL-0302 Gate Drive Optocouplers

Design and Applications of HCPL-3020 and HCPL-0302 Gate Drive Optocouplers Design and Applications of HCPL-00 and HCPL-00 Gate Drive Optocouplers Application Note 00 Introduction The HCPL-00 (DIP-) and HCPL-00 (SO-) consist of GaAsP LED optically coupled to an integrated circuit

More information

Fast Ethernet 100BASE-LX10 SFP Single Mode Transceivers with Digital Diagnostics

Fast Ethernet 100BASE-LX10 SFP Single Mode Transceivers with Digital Diagnostics Fast Ethernet 00BASE-0 SFP Single Mode Transceivers with Digital Diagnostics TXAGM Single Mode Product Description The TXAGM SFP series of multi-rate fiber optic transceivers with integrated digital diagnostics

More information

DATA SHEET. HEF40374B MSI Octal D-type flip-flop with 3-state outputs. For a complete data sheet, please also download: INTEGRATED CIRCUITS

DATA SHEET. HEF40374B MSI Octal D-type flip-flop with 3-state outputs. For a complete data sheet, please also download: INTEGRATED CIRCUITS INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download: The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF,

More information

74HC74; 74HCT74. 1. General description. 2. Features and benefits. 3. Ordering information

74HC74; 74HCT74. 1. General description. 2. Features and benefits. 3. Ordering information Rev. 5 3 December 2015 Product data sheet 1. General description 2. Features and benefits 3. Ordering information The 74HC74 and 74HCT74 are dual positive edge triggered D-type flip-flop. They have individual

More information

ICS514 LOCO PLL CLOCK GENERATOR. Description. Features. Block Diagram DATASHEET

ICS514 LOCO PLL CLOCK GENERATOR. Description. Features. Block Diagram DATASHEET DATASHEET ICS514 Description The ICS514 LOCO TM is the most cost effective way to generate a high-quality, high-frequency clock output from a 14.31818 MHz crystal or clock input. The name LOCO stands for

More information

DM74LS151 1-of-8 Line Data Selector/Multiplexer

DM74LS151 1-of-8 Line Data Selector/Multiplexer 1-of-8 Line Data Selector/Multiplexer General Description This data selector/multiplexer contains full on-chip decoding to select the desired data source. The DM74LS151 selects one-of-eight data sources.

More information

DM74LS157 DM74LS158 Quad 2-Line to 1-Line Data Selectors/Multiplexers

DM74LS157 DM74LS158 Quad 2-Line to 1-Line Data Selectors/Multiplexers September 1986 Revised April 2000 DM74LS157 DM74LS158 Quad 2-Line to 1-Line Data Selectors/Multiplexers General Description These data selectors/multiplexers contain inverters and drivers to supply full

More information

74HC574; 74HCT574. Octal D-type flip-flop; positive edge-trigger; 3-state

74HC574; 74HCT574. Octal D-type flip-flop; positive edge-trigger; 3-state Rev. 7 4 March 2016 Product data sheet 1. General description 2. Features and benefits 3. Ordering information The is an 8-bit positive-edge triggered D-type flip-flop with 3-state outputs. The device

More information

74VHC574 Octal D-Type Flip-Flop with 3-STATE Outputs

74VHC574 Octal D-Type Flip-Flop with 3-STATE Outputs 74HC574 Octal D-Type Flip-Flop with 3-STATE Outputs General Description Ordering Code: March 1993 Revised May 2005 The HC574 is an advanced high speed CMOS octal flipflop with 3-STATE output fabricated

More information

A Digital Timer Implementation using 7 Segment Displays

A Digital Timer Implementation using 7 Segment Displays A Digital Timer Implementation using 7 Segment Displays Group Members: Tiffany Sham u2548168 Michael Couchman u4111670 Simon Oseineks u2566139 Caitlyn Young u4233209 Subject: ENGN3227 - Analogue Electronics

More information

HCF4081B QUAD 2 INPUT AND GATE

HCF4081B QUAD 2 INPUT AND GATE QUAD 2 INPUT AND GATE MEDIUM SPEED OPERATION : t PD = 60ns (Typ.) at 10 QUIESCENT CURRENT SPECIFIED UP TO 20 5, 10 AND 15 PARAMETRIC RATINGS INPUT LEAKAGE CURRENT I I = 100nA (MAX) AT DD = 18 T A = 25

More information

Programmable Single-/Dual-/Triple- Tone Gong SAE 800

Programmable Single-/Dual-/Triple- Tone Gong SAE 800 Programmable Single-/Dual-/Triple- Tone Gong Preliminary Data SAE 800 Bipolar IC Features Supply voltage range 2.8 V to 18 V Few external components (no electrolytic capacitor) 1 tone, 2 tones, 3 tones

More information

INTEGRATED CIRCUITS. 74F74 Dual D-type flip-flop. Product specification Supercedes data of 1990 Oct 23 IC15 Data Handbook.

INTEGRATED CIRCUITS. 74F74 Dual D-type flip-flop. Product specification Supercedes data of 1990 Oct 23 IC15 Data Handbook. INTEGRATED CIRCUITS Supercedes data of 1990 Oct 23 IC15 Data Handbook 1996 Mar 12 FEATURE Industrial temperature range available ( 40 C to +85 C) DESCRIPTION The is a dual positive edge-triggered D-type

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. CHAPTER3 QUESTIONS MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. ) If one input of an AND gate is LOW while the other is a clock signal, the output

More information

SG6520 FEATURES DESCRIPTION TYPICAL APPLICATION. Product Specification. PC Power Supply Supervisors

SG6520 FEATURES DESCRIPTION TYPICAL APPLICATION. Product Specification. PC Power Supply Supervisors FEATURES Two 12V sense input pins: VS12 and VS12B Over voltage protection (OVP) for 3.3V, 5V and two 12V Over current protection (OCP) for 3.3V, 5V and two 12V Under voltage protection (UVP) for 3.3V,

More information

DM74LS112A Dual Negative-Edge-Triggered Master-Slave J-K Flip-Flop with Preset, Clear, and Complementary Outputs

DM74LS112A Dual Negative-Edge-Triggered Master-Slave J-K Flip-Flop with Preset, Clear, and Complementary Outputs August 1986 Revised March 2000 DM74LS112A Dual Negative-Edge-Triggered Master-Slave J-K Flip-Flop with Preset, Clear, and Complementary General Description This device contains two independent negative-edge-triggered

More information

Electronics. Discrete assembly of an operational amplifier as a transistor circuit. LD Physics Leaflets P4.2.1.1

Electronics. Discrete assembly of an operational amplifier as a transistor circuit. LD Physics Leaflets P4.2.1.1 Electronics Operational Amplifier Internal design of an operational amplifier LD Physics Leaflets Discrete assembly of an operational amplifier as a transistor circuit P4.2.1.1 Objects of the experiment

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science. 6.002 Electronic Circuits Spring 2007

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science. 6.002 Electronic Circuits Spring 2007 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.002 Electronic Circuits Spring 2007 Lab 4: Audio Playback System Introduction In this lab, you will construct,

More information

8031AH 8051AH 8032AH 8052AH NMOS SINGLE-CHIP 8-BIT MICROCONTROLLERS

8031AH 8051AH 8032AH 8052AH NMOS SINGLE-CHIP 8-BIT MICROCONTROLLERS 8031AH 8051AH 8032AH 8052AH MCS 51 NMOS SINGLE-CHIP 8-BIT MICROCONTROLLERS Automotive High Performance HMOS Process Internal Timers Event Counters 2-Level Interrupt Priority Structure 32 I O Lines (Four

More information